English Español
  • Aula Virtual
  • Directorio
  • Mapa web
Campus de Excelencia Internacional

Homepage >> Antonio Salmerón Cerdán

Google Scholar

PhD Thesis

  • Pre-computation in dependence graphs using approximate algorithms (In Spanish) Dept. of Computer Science and Artificial Intelligence. University of Granada. 1998.[pdf]

Journal papers

  • Juan Pablo Marczuk Rojas, Antonio Salmerón, Alfredo Alcayde, Viktor Isanbaev, Lorenzo Carretero Paulet (2024) Plastid DNA is a major source of nuclear genome complexity and of RNA genes in the orphan crop moringa. BMC Plant Biology 24, 437. [link]
  • Juan Pablo Marczuk Rojas, Angélica María Álamo Sierra, Antonio Salmerón, Alfredo Alcayde, Viktor Isanbaev, Lorenzo Carretero Paulet (2024) Spatial and temporal characterization of the rich fraction of plastid DNA present in the nuclear genome of Moringa oleifera reveals unanticipated complexity in NUPTs formation. BMC Genomics 25, 60. [link]
  • Santiago del Rey, Silverio Martínez-Fernández, Antonio Salmerón (2023) Bayesian Network analysis of software logs for data-driven software maintenance. IET Software 17, 268-286. [link]
  • María Morales, Antonio Salmerón, Ana D. Maldonado, Andrés R. Masegosa, Rafael Rumí (2022) An empirical analysis of the impact of continuous assessment on the final exam mark. Mathematics 10, 3994. [link]
  • Antonio Salmerón (2022) Comments on: Hybrid semiparametric Bayesian networks. Test 31, 331-334. [link]
  • Rosa F. Ropero, Ana D. Maldonado, Laura Uusitalo, Antonio Salmerón, Rafael Rumí, Pedro A. Aguilera (2021) A soft clustering approach to detect socio-ecological landscape boundaries using Bayesian networks. Agronomy 11, 740. [link]
  • Andrés R. Masegosa, Rafael Cabañas, Helge Langseth, Thomas D. Nielsen, Antonio Salmerón (2021) Probabilistic models with deep neural networks. Entropy 23, 117. [link]
  • Inmaculada Pérez-Bernabé, Ana D. Maldonado, Thomas D. Nielsen, Antonio Salmerón (2020) MoTBFs: An R package for learning hybrid Bayesian networks using mixtures of truncated basis functions. The R Journal 12, 342-358. [link]
  • Fernando Reche, María Morales, Antonio Salmerón (2020) Statistical parameters based on fuzzy measures. Mathematics 8, 2015. [link]
  • Andrés R. Masegosa, Darío Ramos-López, Antonio Salmerón, Helge Langseth, Thomas D. Nielsen (2020) Variational inference over nonstationary data streams for exponential family models. Mathematics 8, 1942. [link]
  • Javier Cózar, Rafael Cabañas, Antonio Salmerón, Andrés R. Masegosa (2020) InferPy: Probabilistic modeling with deep neural networks made easy. Neurocomputing 415, 408-410. [link]
  • Fernando Reche, María Morales, Antonio Salmerón (2020) Construction of fuzzy measures over product spaces. Mathematics 8, 1605. [link]
  • Andrés R Masegosa, Ana M. Martínez, Darío Ramos-Lopez, Helge Langseth, Thomas D. Nielsen, Antonio Salmerón (2020) Analyzing concept drift: a case study in the financial sector. Intelligent Data Analysis 24, 665-688. [link]
  • Andrés R Masegosa, Antonio Torres, María Morales, Antonio Salmerón (2020) Comparing two multinomial samples using hierarchical Bayesian models. Progress in Artificial Intelligence 9, 145-154. [link]
  • Ana D. Maldonado, María Morales, Pedro A. Aguilera, Antonio Salmerón (2020) Analyzing uncertainty in complex socio-ecological networks. Entropy 22, 123. [link]
  • Mauro Scanagatta, Antonio Salmerón, Fabio Stella (2019) A survey on Bayesian network structure learning from data. Progress in Artificial Intelligence 8, 425-439. [link]
  • Ana D. Maldonado, Laura Uusitalo, Allan Tucker, Thorsten Blenckner, Pedro A. Aguilera, Antonio Salmerón (2019) Prediction of a complex system with few data: Evaluation of the effect of model structure and amount of data with dynamic Bayesian network models. Environmental Modelling & Software 118, 281-297. [link]
  • Rafael Cabañas, Antonio Salmerón, Andrés R. Masegosa (2019) InferPy: Probabilistic modeling with Tensorflow made easy. Knowledge Based Systems 168, 25-27. [link]
  • Andrés R. Masegosa, Ana M. Martínez, Darío Ramos-López, Rafael Cabañas, Antonio Salmerón, Helge Langseth, Thomas D. Nielsen, Anders L. Madsen (2019) AMIDST: a Java toolbox for scalable probabilistic machine learning. Knowledge Based Systems 163, 595-597. [link]
  • Ana D. Maldonado, Pedro A. Aguilera, Antonio Salmerón, Ann E. Nicholson (2018) Probabilistic modeling of the relationship between socioeconomy and ecosystem services in cultural landscapes. Ecosystem Services 33, 146-164. [link]
  • Antonio Salmerón, Rafael Rumí, Helge Langseth, Thomas D. Nielsen, Anders L. Madsen (2018) A review of inference algorithms for hybrid Bayesian networks. Journal of Artificial Intelligence Research 62, 799-828. [link]
  • Darío Ramos-López, Andrés R. Masegosa, Antonio Salmerón, Rafael Rumí, Helge Langseth, Thomas D. Nielsen, Anders L. Madsen (2018) Scalable importance sampling estimation of Gaussian mixture posteriors in Bayesian networks. International Journal of Approximate Reasoning 100, 115-134. [link]
  • Andrés R. Masegosa, Ana M. Martínez, Helge Langseth, Thomas D. Nielsen, Antonio Salmerón, Darío Ramos-López, Anders L. Madsen (2017) Scaling up Bayesian variational inference using distributed computing clusters. International Journal of Approximate Reasoning 88, 435-451. [link]
  • Darío Ramos-López, Andrés R. Masegosa, Ana M. Martínez, Antonio Salmerón, Thomas D. Nielsen, Helge Langseth, Anders L. Madsen (2017) MAP inference in dynamic hybrid Bayesian networks. Progress in Artificial Intelligence 6, 133-144. [link]
  • Anders L. Madsen, Frank Jensen, Antonio Salmerón, Helge Langseth, Thomas D. Nielsen (2017) A parallel algorithm for Bayesian network structure learning from large datasets. Knowledge-Based Systems 117, 46-55. [link]
  • Ana D. Maldonado, Pedro A. Aguilera, Antonio Salmerón (2016) Continuous Bayesian networks for probabilistic environmental risk mapping. Stochastic Environmental Research and Risk Assessment 30, 1441-1455. [link]
  • Ana D. Maldonado, Pedro A. Aguilera, Antonio Salmerón (2016) Modeling zero-inflated explanatory variables in hybrid Bayesian network classifiers for species occurrence prediction. Environmental Modelling & Software 82, 31-43. [link]
  • Inmaculada Pérez-Bernabé, Antonio Fernández, Rafael Rumí, Antonio Salmerón (2016) Parameter learning in hybrid Bayesian networks using prior knowledge. Data Mining and Knowledge Discovery 30, 576-604. [link]
  • Ana D. Maldonado, Rosa F. Ropero, Pedro A. Aguilera, Rafael Rumí, Antonio Salmerón (2015) Continuous Bayesian networks for the estimation of species richness. Progress in Artificial Intelligence 4, 49-57. [link]
  • Ana D. Maldonado, Rosa F. Ropero, Pedro A. Aguilera, Antonio Fernández, Rafael Rumí, Antonio Salmerón (2015) Continuous Bayesian networks vs. other methods for regression in environmental modelling. Procedia Environmental Sciences 26, 70-73. [link]
  • Barry R. Cobb, Alan W. Johnson, Rafael Rumí, Antonio Salmerón (2015) Accurate lead time demand modeling and optimal inventory policies in continuous review systems. International Journal of Production Economics 163, 124-136. [link]
  • Concha Bielza, Serafín Moral, Antonio Salmerón (2015) Recent advances in probabilistic graphical models. International Journal of Intelligent Systems 30, 207-208. [link]

  • Prakash P. Shenoy, Rafael Rumí, Antonio Salmerón (2015) Practical aspects of solving hybrid Bayesian networks containing deterministic conditionals. International Journal of Intelligent Systems 30, 265-291. [link]

  • Antonio Fernández, José A. Gámez, Rafael Rumí, Antonio Salmerón (2014) Data clustering using hidden variables in hybrid Bayesian networks. Progress in Artificial Intelligence 2, 141-152. [link]

  • Helge Langseth, Thomas D. Nielsen, Inmaculada Pérez-Bernabé, Antonio Salmerón (2014) Learning mixtures of truncated basis functions from data. International Journal of Approximate Reasoning 55, 940-956. [link]

  • Jens D. Nielsen, José A. Gámez, Antonio Salmerón (2014) A tool based on Bayesian networks for supporting geneticists in plant improvement by controlled pollination. International Journal of Approximate Reasoning 55, 74-83. [link]

  • Irene Martínez, Serafín Moral, Carmelo Rodríguez, Antonio Salmerón (2013) New strategies for finding multiplicative decompositions of probability trees. Applied Mathematics and Computation 225, 573-589. [link]

  • Andrés Cano, Manuel Gómez-Olmedo, Serafín Moral, Cora B. Pérez-Ariza, Antonio Salmerón (2013) Inference in Bayesian networks with Recursive Probability Trees: data structure definition and operations. International Journal of Intelligent Systems 28, 623-647. [link]

  • Barry R. Cobb, Rafael Rumí, Antonio Salmerón (2013) Inventory management with Log-normal demand per unit time. Computers and Operations Research 40, 1842-1851. [link]

  • Andrés Cano, Manuel Gómez-Olmedo, Serafín Moral, Cora B. Pérez-Ariza, Antonio Salmerón (2012) Learning recursive probability trees from probabilistic potentials. International Journal of Approximate Reasoning 53, 1367-1387. [link]

  • José A. Gámez, Jens D. Nielsen, Antonio Salmerón (2012) Modelling and inference with conditional Gaussian probabilistic decision graphs. International Journal of Approximate Reasoning 53, 929-945. [link]

  • Antonio Fernández, Rafael Rumí, Antonio Salmerón (2012) Answering queries in hybrid Bayesian networks using importance sampling. Decision Support Systems 53, 580-590. [link]

  • Andrés Cano, Manuel Gómez-Olmedo, Cora B. Pérez-Ariza, Antonio Salmerón (2012) Fast factorisation of probabilistic potentials and its application to approximate inference in Bayesian networks. International Journal of Uncertainty, Fuzziness and Knowledge Based Systems 20, 223-243. [link] [preprint]

  • Enrique de Amo, Manuel Díaz Carrillo, Juan Fernández-Sánchez, Antonio Salmerón (2012) Moments and associated measures of copulas with fractal support. Applied Mathematics and Computation 218, 8634-8644. [link]

  • Helge Langseth, Thomas D. Nielsen, Rafael Rumí, Antonio Salmerón (2012) Mixtures of truncated basis functions. International Journal of Approximate Reasoning 53, 212-227. [link] [preprint]

  • Pedro A. Aguilera, Antonio Fernández, Rosa Fernández, Rafael Rumí, Antonio Salmerón (2011) Bayesian networks in environmental modelling. Environmental Modelling & Software 26, 1376-1388. [link]

  • Antonio Fernández, María Morales, Carmelo Rodríguez, Antonio Salmerón (2011) A system for relevance analysis of performance indicators in higher education using Bayesian networks. Knowledge and Information Systems 27, 327-344. [link]

  • Jens D. Nielsen, Rafael Rumí, Antonio Salmerón (2010) Structural-EM for learning PDG models from incomplete data. International Journal of Approximate Reasoning 51, 515-530. [link] [preprint]

  • Helge Langseth, Thomas D. Nielsen, Rafael Rumí, Antonio Salmerón (2010) Parameter estimation and model selection for mixtures of truncated exponentials. International Journal of Approximate Reasoning 51, 485-498. [link] [preprint]

  • Antonio Fernández, Jens D. Nielsen, Antonio Salmerón (2010) Learning Bayesian networks for regression from incomplete databases. International Journal of Uncertainty, Fuzziness and Knowledge Based Systems 18, 69-86. [link] [preprint]

  • Helge Langseth, Thomas D. Nielsen, Rafael Rumí, Antonio Salmerón (2009) Inference in hybrid Bayesian networks. Reliability Engineering and Systems Safety 94, 1499-1509. [link] [preprint]

  • Jens D. Nielsen, Rafael Rumí, Antonio Salmerón (2009) Supervised classification using probabilistic decision graphs. Computational Statistics and Data Analysis 53, 1299-1311. [link] [preprint]

  • Antonio Fernández, Antonio Salmerón (2008) BayesChess: A computer chess program based on Bayesian networks. Pattern Recognition Letters 29, 1154-1159. [link] [preprint]

  • María Morales, Carmelo Rodríguez, Antonio Salmerón (2007) Selective naive Bayes for regression using mixtures of truncated exponentials. International Journal of Uncertainty, Fuzziness and Knowledge Based Systems 15, 697-716. [preprint]

  • Rafael Rumí, Antonio Salmerón (2007) Approximate probability propagation with mixtures of truncated exponentials. International Journal of Approximate Reasoning 45,191-210. [link] [preprint]

  • Vanessa Romero, Rafael Rumí, Antonio Salmerón (2006) Learning hybrid Bayesian networks using mixtures of truncated exponentials. International Journal of Approximate Reasoning 42, 54-68. [link]

  • Peter J.F. Lucas, José A. Gámez, Antonio Salmerón (2006) Special issue on PGM'04: Second European workshop on probabilistic graphical models 2004. International Journal of Approximate Reasoning 42, 1-3. [link]

  • Rafael Rumí, Antonio Salmerón and Serafín Moral (2006) Estimating mixtures of truncated exponentials in hybrid Bayesian networks. Test 15, 397-421. [link]

  • Serafín Moral and Antonio Salmerón (2005) Dynamic importance sampling in Bayesian networks based on probability trees. International Journal of Approximate Reasoning 38, 245-261. [link]

  • José A. Gámez and Antonio Salmerón (2003) Probabilistic graphical models. International Journal of Intelligent Systems 18, 149-151. [link]

  • Andrés Cano, Serafín Moral and Antonio Salmerón (2003) Novel strategies to approximate probability trees in Penniless propagation. International Journal of Intelligent Systems 18, 193-203. [link]

  • Andrés Cano, Serafín Moral and Antonio Salmerón (2002) Lazy evaluation in Penniless propagation over join trees. Networks 39, 175-185. [link]

  • Andrés Cano, Serafín Moral and Antonio Salmerón (2002) Diferentes estrategias para aproximar árboles de probabilidad en propagación Penniless. Inteligencia Artificial. Revista Iberomericana de IA 15, 10-18. [pdf]

  • Andrés Cano, Serafín Moral and Antonio Salmerón (2000) Penniless propagation in join trees. International Journal of Intelligent Systems 15, 1027-1059. [link]

  • Antonio Salmerón, Andrés Cano, Serafín Moral (2000) Importance sampling in Bayesian networks using probability trees. Computational Statistics and Data Analysis 34, 387-413. [link]

  • Fernando Reche, Antonio Salmerón (2000) Operational approach to general fuzzy measures. Interantional Journal of Uncertainty, Fuzziness and Knowledge Based Systems 8, 357-367. [link]

  • Luis D. Hernández, Serafín Moral and Antonio Salmerón (1998) A Monte Carlo algorithm for probabilistic propagation in belief networks based on importance sampling and stratified simulation techniques. International Journal of Approximate Reasoning 18, 53-91. [link]

  • Manuel J. Bolaños, Luis D. Hernández, Antonio Salmerón (1996) Numerical experimentation and comparison of fuzzy integrals. Mathware and Soft Computing 3, 309-319. [pdf]

Conference proceedings

  • Antonio Salmerón, Helge Langseth, Andrés R. Masegosa, Thomas D. Nielsen (2022) A reparameterization of mixtures of truncated basis functions and its applications. Proceedings of The 11th International Conference on Probabilistic Graphical Models, PMLR 186:205-216. [link]
  • Antonio Torres, Andrés Masegosa, Antonio Salmerón (2018) Un test de dos muestras multinomiales basado en modelos Bayesianos jerárquicos. Actas de la XVII Conferencia de la Asociación Española de Inteligencia Artificial (CAEPIA 2018), pp. 7 - 12. [link]
  • Andrés Masegosa, Thomas D. Nielsen, Helge Langseth, Darío Ramos-López, Antonio Salmerón, Anders L. Madsen (2017) Bayesian Models of Data Streams with Hierarchical Power Priors. Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, PMLR 70, pp. 2334 - 2343. [link]
  • Ana D. Maldonado, Pedro A. Aguilera, Antonio Salmerón (2016) An experimental comparison of methods to handle missing values in environmental datasets. Proceedings of the 8th International Congress on Environmental Modeling and Software 3, pp. 573 - 580. [link]
  • María D. Sánchez-García, José del Sagrado, Antonio Salmerón, Rafael Rumí (2016) PGMs4SDA: a public repository for Probabilistic Graphical Models. Proceedings of the 28th Benelux Conference On Artificial Intelligence (BNAIC'16), pp. 241 - 242. [link]
  • Darío Ramos-López, Antonio Salmerón, Rafael Rumí, Ana M. Martínez, Thomas D. Nielsen, Andrés R. Masegosa, Helge Langseth, Anders L. Madsen (2016) Scalable MAP inference in Bayesian networks based on a Map-Reduce approach. PGM'2016. JMLR: Workshop and Conference Proceedings, vol. 52: 415-425. [link]

  • Andrés R. Masegosa, Ana M. Martínez, Helge Langseth, Thomas D. Nielsen, Antonio Salmerón, Darío Ramos-López, Anders L. Madsen (2016) d-VMP: Distributed variational message passing. PGM'2016. JMLR: Workshop and Conference Proceedings, vol. 52: 321-332. [link]
  • Antonio Salmerón, Anders L. Madsen, Frank Jensen, Helge Langseth, Thomas D. Nielsen, Darío Ramos-López, Ana M. Martínez, Andrés R. Masegosa (2016) Parallel Filter-Based Feature Selection Based on Balanced Incomplete Block Designs. ECAI. Frontiers in Artificial Intelligence and Applications, vol. 285: 743-750. [link]

  • Andrés R. Masegosa, Ana M. Martínez, Hanen Borchani, Darío Ramos-López, Thomas D. Nielsen, Helge Langseth, Antonio Salmerón, Antonio Fernández, Anders L. Madsen (2015) AMIDST: Analysis of MassIve Data STreams. In proceedings of The 27th Benelux Conference on Artificial Intelligence, Hasselt, Belgium, November 5-6, 2015. [link]

  • Hanen Borchani, Ana M. Martínez, Andrés R. Masegosa, Helge Langseth, Thomas D. Nielsen, Antonio Salmerón, Antonio Fernández, Anders L. Madsen, Ramón Sáez (2015) Dynamic Bayesian modeling for risk prediction in credit operations. The 13th Scandinavian Conference on Artificial Intelligence, Halmstad, Sweden, November 5-6, 2015, pages 72-83. [link]

  • Hanen Borchani, Ana M. Martínez, Andrés R. Masegosa, Helge Langseth, Thomas D. Nielsen, Antonio Salmerón, Antonio Fernández, Anders L. Madsen, Ramón Sáez (2015) Modeling concept drift: A probabilistic graphical model based approach. IDA'2015. Lecture Notes in Computer Science 9385, 72-83. [link]

  • Anders L. Madsen, Frank Jensen, Antonio Salmerón, Helge Langseth, Thomas D. Nielsen (2015) Parallelisation of the PC algorithm. CAEPIA'2015. Lecture Notes in Artificial Intelligence 9422, 14-24. [link]

  • Antonio Salmerón, Darío Ramos-López, Hanen Borchani, Ana M. Martínez, Andrés R. Masegosa, Antonio Fernández, Helge Langseth, Anders L. Madsen, Thomas D. Nielsen (2015) Parallel importance sampling in conditional linear Gaussian networks. CAEPIA'2015. Lecture Notes in Artificial Intelligence 9422, 36-46. [link]

  • Ana D. Maldonado, Rosa F. Ropero, Pedro Aguilera, Rafael Rumí, Antonio Salmerón (2015) Estimation of species richness Using Bayesian networks. CAEPIA'2015. Lecture Notes in Artificial Intelligence 9422, 153-163. [link]

  • Inmaculada Pérez-Bernabé, Antonio Salmerón, Helge Langseth (2015) Learning Conditional Distributions Using Mixtures of Truncated Basis Functions. ECSQARU'2015. Lecture Notes in Artificial Intelligence 9161, 397-406. [link]

  • Anders L. Madsen, Antonio Salmerón (2015) Analysis of massive data streams using R and AMIDST. In book of abstracts of useR!2015, page 171. [link]

  • Antonio Salmerón, Rafael Rumí, Helge Langseth, Thomas D. Nielsen, Anders L. Madsen (2015) MPE Inference in Conditional Linear Gaussian Networks. ECSQARU'2015. Lecture Notes in Artificial Intelligence 9161, 407-416. [link]

  • Anders L. Madsen, Frank Jensen, Antonio Salmerón, Martin Karlsen, Helge Langseth, Thomas D. Nielsen (2014) A new method for vertical parallelisation of TAN learning based on balanced incomplete block designs. PGM'2014. Lecture Notes in Artificial Intelligence 8754, 302-317. [link]

  • Antonio Fernández, Rafael Rumí, José del Sagrado, Antonio Salmerón (2014) Supervised classification using hybrid probabilistic decision graphs. PGM'2014. Lecture Notes in Artificial Intelligence 8754, 206-221. [link]

  • Thomas D. Nielsen, Sigve Hovda, Antonio Fernández, Helge Langseth, Anders L. Madsen, Andrés R. Masegosa, Antonio Salmerón (2014) Requirement Engineering for a Small Project with Pre-Specified Scope. Proceedings of the NIK: Norsk Informatikkonferanse 2014. [link]

  • Antonio Fernández, Inmaculada Pérez-Bernabé, Rafael Rumí, Antonio Salmerón (2013) Incorporating Prior Knowledge when Learning Mixtures of Truncated Basis Functions from Data. Proceedings of the 12th Scandinavian AI conference (SCAI 2013) pp. 95-104. [link]

  • Antonio Fernández, Inmaculada Pérez-Bernabé, Antonio Salmerón (2013) On using the PC algorithm for learning continuous Bayesian networks: An experimental analysis. CAEPIA'13. Lecture Notes in Artificial Intelligence 8109, 342-351. [link]

  • Andrés Cano, Manuel Gómez-Olmedo, Serafín Moral, Cora B. Pérez-Ariza, Antonio Salmerón (2013) Learning recursive probability trees from data. CAEPIA'13. Lecture Notes in Artificial Intelligence 8109, 332-341. [link]

  • Rosa Fernández-Ropero, Ana D. Maldonado, Pedro A. Aguilera, Antonio Fernández, Rafael Rumí, Antonio Salmerón (2013) Discrete vs. Hybrid Bayesian network in ecological modelling. 11th INTECOL Congress, Ecology: Into the next 100 years.

  • Antonio Salmerón, Finn V. Jensen (2012) HUGIN architecture for propagating belief functions. 5th International Conference of the ERCIM Working Group on Computing & Statistics (ERCIM'12). [pdf]

  • Rafael Rumí, Antonio Salmerón and Prakash P. Shenoy (2012) Tractable inference in hybrid Bayesian networks with deterministic conditionals using re-approximations. Proceedings of the Sixth European Workshop on Probabilistic Graphical Models (PGM'2012), pp.275-282. [pdf]

  • Helge Langseth, Thomas D. Nielsen, Rafael Rumí and Antonio Salmerón (2012) Inference in hybrid Bayesian networks with Mixtures of Truncated Basis Functions. Proceedings of the Sixth European Workshop on Probabilistic Graphical Models (PGM'2012), pp.171-178. [pdf]

  • Helge Langseth, Thomas D. Nielsen and Antonio Salmerón (2012) Learning Mixtures of Truncated Basis Functions from Data. Proceedings of the Sixth European Workshop on Probabilistic Graphical Models (PGM'2012), pp.163-170. [pdf]

  • Barry R. Cobb, Rafael Rumí and Antonio Salmerón (2012) Approximating the Distribution of a Sum of Log-normal Random Variables. Proceedings of the Sixth European Workshop on Probabilistic Graphical Models (PGM'2012), pp.67-74. [pdf]

  • José A. Gámez, Jens D. Nielsen, Antonio Salmerón (2011) Estimating CGPDGs from incomplete data using an EM approach. 4th International Conference of the ERCIM Working Group on Computing & Statistics (ERCIM'11). [pdf]

  • Antonio Fernández, José A. Gámez, Rafael Rumí, Antonio Salmerón (2011) Data clustering using hidden variables in hybrid Bayesian networks. 4th International Conference of the ERCIM Working Group on Computing & Statistics (ERCIM'11). [pdf]

  • Prakash P. Shenoy, Rafael Rumí, Antonio Salmerón (2011) Some Practical Issues in Inference in Hybrid Bayesian Networks with Deterministic Conditionals. Proceedings of the Intelligent Systems Design and Applications (ISDA), 2011. [pdf]

  • Julia Flores, José A. Gámez, Ana M. Martínez, Antonio Salmerón (2011) Mixture of Truncated Exponentials in Supervised Classification: case study for Naive Bayes and Averaged One-Dependence Estimators. In 11th International Conference on Intelligent Systems Design and Applicat, Pag. 593-598, 2011. [pdf]

  • Andrés Cano, Manuel Gómez-Olmedo, Serafín Moral, Cora Pérez-Ariza, Antonio Salmerón (2010) Learning recursive probability trees from probabilistic potentials. Proceedings of The Fifth European Workshop on Probabilistic Graphical Models (PGM 2010), pp. 49-56. [link]

  • Antonio Fernández, Helge Langseth, Thomas Nielsen, Antonio Salmerón (2010) Parameter learning in MTE networks using incomplete data. Proceedings of The Fifth European Workshop on Probabilistic Graphical Models (PGM 2010), pp. 137-144. [link]

  • Jens D. Nielsen, Antonio Salmerón (2010) Conditional Gaussian probabilistic decision graphs. Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS 2010), pp. 549-554. [preprint]

  • Barry R. Cobb, Rafael Rumí, Antonio Salmerón (2009) Predicting stock and portfolio returns using mixtures of truncated exponentials. ECSQARU 2009. Lecture Notes in Computer Science 5590, 781-792. [preprint]

  • Helge Langseth, Thomas D. Nielsen, Rafael Rumí, Antonio Salmerón (2009) Maximum Likelihood Learning of Conditional MTE Distributions. ECSQARU 2009. Lecture Notes in Computer Science 5590, 240-251. [preprint]

  • Antonio Fernández, Antonio Salmerón (2008) Extension of Bayesian network classifiers to regression problems. IBERAMIA'08. Lecture Notes in Artificial Intelligence 5290, 83-92. [link]

  • Jens D. Nielsen, Rafael Rumi and Antonio Salmeron (2008) Structural-EM for Learning PDG Models from Incomplete Data. Proceedings of the Fourth European Workshop on Probabilistic Graphical Models.Pages 217--224. [pdf]

  • Helge Langseth, Thomas D. Nielsen, Rafael Rumi and Antonio Salmeron (2008) Parameter Estimation in Mixtures of Truncated Exponentials. Proceedings of the Fourth European Workshop on Probabilistic Graphical Models. (PGM'08). Pages 169--176. [pdf]

  • Antonio Fernández, Jens D. Nielsen and Antonio Salmerón (2008) Learning naive Bayes regression models with missing data using mixtures of truncated exponentials. Proceedings of the Fourth European Workshop on Probabilistic Graphical Models (PGM'08) Pages 105-112. [pdf]

  • María Morales, Carmelo Rodríguez, Antonio Salmerón (2007) Metodología para el análisis de relevancia de indicadores de rendimiento en educación superior. Presented at: XXX Congreso Nacional de Estadística e Investigación Operativa. [pdf]

  • Jens Dalgaard Nielsen, Rafael Rumí and Antonio Salmerón (2007) El clasificador Grafo de Decisión Probabilístico. Presented at: XXX Congreso Nacional de Estadística e Investigación Operativa. [link]

  • Helge Langseth, Thomas D. Nielsen, Rafael Rumí, Antonio Salmerón (2007) Maximum Likelihood vs. Least Squares for Estimating Mixtures of Truncated Exponentials. INFORMS Annual Meeting, 2007. [pdf]

  • Antonio Fernández, María Morales and Antonio Salmerón (2007) Tree Augmented Naive Bayes for Regression Using Mixtures of Truncated Exponentials: Application to Higher Education Management. IDA'07. Lecture Notes in Computer Science 4723, 59-69. [pdf]

  • Ildikó Flesch, Antonio Fernández and Antonio Salmerón (2007) Incremental supervised classification for the MTE distribution: a preliminary study. Proceedings of the CEDI'07-SICO'07, pp. 217-224. [pdf]

  • José A. Gámez, Rafael Rumí and Antonio Salmerón (2006) Unsupervised naive Bayes for data clustering with mixtures of truncated exponentials. Proceedings of the Third European Workshop on Probabilistic Graphical Models (PGM'06), pp. 123-132. [pdf]

  • Irene Martínez, Carmelo Rodríguez and Antonio Salmerón (2006) Dynamic importance sampling in Bayesian networks using factorisation of probability trees. Proceedings of the Third European Workshop on Probabilistic Graphical Models (PGM'06), pp. 187-194. [pdf]

  • María Morales, Carmelo Rodríguez and Antonio Salmerón (2006) Selective naive Bayes predictor with mixtures of truncated exponentials. Proceedings of the ICMSM'06. [pdf]

  • Antonio Fernández, Antonio Salmerón (2006) BayesChess: programa de ajedrez adaptativo basado en redes bayesianas. Proceedings of the CMPI'06, pp. 613-624.
    [pdf]

  • María Morales, Carmelo Rodríguez and Antonio Salmerón (2005) Estudio de dependencias de indicadores de rendimiento del alumnado universitario mediante redes bayesianas. Actas de la VI Jornadas de Transferencia de Tecnología en I.A., pp. 29-36. [pdf]

  • José A. Gámez and Antonio Salmerón (2005) Predicción del valor genético en ovejas de raza manchega usando técnicas de aprendizaje automático. Actas de la VI Jornadas de Transferencia de Tecnología en I.A., pp. 71-80. [pdf]

  • José A. Piedra, Antonio Salmerón, F. Guindos and M. Cantón (2005) Reduction of irrelevant features in oceanic satellite images by means of Bayesian networks. Actas de la VI Jornadas de Transferencia de Tecnología en I.A., pp. 133-140. [pdf]

  • Barry R. Cobb, Rafael Rumí, Antonio Salmerón (2005) Especificación de distribuciones condicionadas de variables continuas en redes bayesianas. Actas de la VI Jornadas de Transferencia de Tecnología en I.A., pp. 21-28. [pdf]

  • Rafael Rumí and Antonio Salmerón (2005) Penniless propagation with mixtures of truncated exponentials. ECSQARU'05. Lecture Notes in Artificial Intelligence 3571, 39-50. [link]

  • Irene Martínez, Serafín Moral, Carmelo Rodríguez and Antonio Salmerón (2005) Approximate factorisation of probability trees. ECSQARU'05. Lecture Notes in Artificial Intelligence 3571, 51-62. [link]

  • Barry R. Cobb, Rafael Rumí and Antonio Salmerón (2005) Modeling conditional distributions of continuous variables in Bayesian networks. IDA'05. Lecture Notes in Computer Science 3646, 36-45. [link]

  • Vanessa Romero, Rafael Rumí and Antonio Salmerón (2004) Structural learning of Bayesian networks with mixtures of truncated exponentials. Proceedings of the Second European Workshop on Probabilistic Graphical Models (PGM'04), pp. 177-184. [link]

  • José del Sagrado and Antonio Salmerón (2004) Representing canocical models as probability trees. X Conferencia de la Asociación Española para la Inteligencia Artificial. Lecture Notes in Artificial Intelligence 3040, 478-487. [link]

  • Serafín Moral, Rafael Rumí, Antonio Salmerón (2003) Approximating conditional MTE distributions by means of mixed trees. Seventh European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty. Lecture Notes in Artificial Intelligence 2711, 173-183. [link]

  • Serafín Moral, Antonio Salmerón (2003) Dynamic importance sampling computation in Bayesian networks. Seventh European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty. Lecture Notes in Artificial Intelligence 2711, 137-148. [link]

  • María Morales, Antonio Salmerón (2003) Análisis del alumnado de la Universidad de Almería mediante redes bayesianas. Actas del 27 Congreso Nacional de Estadística e I.O., pp. 3413-3436. [pdf]

  • Antonio J. Céspedes, Rafael Rumí, Antonio Salmerón, Francisco J. Soler (2003) Análisis del sector agrario del poniente almeriense mediante redes bayesianas. Actas del 27 Congreso Nacional de Estadística e I.O., pp. 3438-3455. [pdf]

  • Elvira Consortium (2002) Elvira: An environment for probabilistic graphical models. Proceedings of the First European Workshop on Probabilistic Graphical Models (PGM'02), pp. 222-230. [link]

  • Irene Martínez, Serafín Moral, Carmelo Rodríguez and Antonio Salmerón (2002) Factorisation of probability trees and its application to inference in Bayesian networks. Proceedings of the First European Workshop on Probabilistic Graphical Models (PGM'02), pp. 127-134. [link]

  • Serafín Moral, Rafael Rumí and Antonio Salmerón (2002) Estimating mixtures of truncated exponentials from data. Proceedings of the First European Workshop on Probabilistic Graphical Models (PGM'02), pp. 135-143. [link]

  • Andrés Cano, Serafín Moral and Antonio Salmerón (2001) Different strategies to approximate probability trees in Penniless propagation. IX Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA'2001), Vol II, pp. 1045-1054. [pdf]

  • Antonio Salmerón, Serafín Moral (2001) Importance sampling in Bayesian networks using antithetic variables. Sixth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty. Lecture Notes in Artificial Intelligence 2143, 168-179. [link]

  • Serafín Moral, Rafael Rumí, Antonio Salmerón (2001) Mixtures of truncated exponentials in hybrid Bayesian networks. Sixth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty. Lecture Notes in Artificial Intelligence 2143, 156-167. [link]

  • Antonio Salmerón, María Morales (2000) Propagación Monte Carlo en redes bayesianas usando variables correlacionadas. Actas del XXV Congreso Nacional de Estadística e I.O., 407-408. [pdf]

  • Fernando Reche, Antonio Salmerón (1999) Towards an operational interpretation of fuzzy measures. Proceedings of the First International Symposium on Imprecise Probabilities and their Applications, pp. 312-318. [pdf]

  • Serafín Moral, Antonio Salmerón (1999) A Monte Carlo algorithm for combining Dempster-Shafer belief based on approximate pre-computation. Fifth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty. Lecture Notes in Artificial Intelligence 1638, 305-315. [link]

  • Antonio Salmerón, Serafín Moral (1998) Muestreo sistemático recursivo en redes bayesianas. (in Spanish) Actas XXIV Congreso Nacional de Estadística e I.O., 139-140. [pdf]

  • Luis D. Hernández, Serafín Moral, Antonio Salmerón (1997) Inferencia en redes causales probabilistas mediante precomputación aproximada. (in Spanish) Actas XXIII Congreso Nacional de Estadística e I.O., 37.5-37.6. [pdf]

  • Luis D. Hernández, Antonio Salmerón (1996) Distancias e índices parciales de medidas difusas. (in Spanish) Proceedings of ESTYLF'96 Conference, 149-154. [pdf]

  • Luis D. Hernández, Serafín Moral, Antonio Salmerón (1996) Importance sampling algorithms for belief networks based on approximate computation. Proceedings of the IPMU'96 Conference, vol. II, 859-864. [pdf]

  • Antonio Salmerón, Manuel J. Bolaños (1995) Método híbrido para inferencia en redes Bayesianas. (In Spanish) Actas XXII Congreso Nacional de Estadística e I.O., 243-244. [pdf]

  • Manuel J. Bolaños, Luis D. Hernández, Antonio Salmerón (1995) Experimentación numérica y comparación de integrales difusas. (In Spanish). Estylf'95. Anales de Informática Vol. 1, 89-94. [pdf]
  • Books

    • Concha Bielza, Antonio Salmerón, Amparo Alonso-Betanzos, J. Ignacio Hidalgo, Luis Martínez, Alicia Troncoso, Emilio Corchado, Juan M. Corchado (2013) Advances in Artificial Intelligence. Proceedings of the 15th Conference of the Spanish Association for Artificial Intelligence. CAEPIA 2013. Lecture Notes in Artificial Intelligence, vol. 8109. Springer. [link]

    • María Morales, Carmelo Rodríguez, Antonio Salmerón (2007) Análisis de indicadores de rendimiento mediante redes bayesianas. Editorial Universidad de Almería.

    • Peter J.F. Lucas, José A. Gámez, Antonio Salmerón (2007) Advances in probabilistic graphical models. Series: Studies in Fuzziness and Soft Computing, vol. 213. Springer. [link]

    • José A. Gámez, Serafín Moral, Antonio Salmerón (2004) Advances in Bayesian networks. Series: Studies in Fuzziness and Soft Computing, vol. 146. Springer. [link]

    • José A. Gámez, Antonio Salmerón (2002) Proceedings of the First European Workshop on Probabilistic Graphical Models. Cuenca (Spain).

    • Antonio Salmerón, María Morales (2001) Estadística Computacional. Colección de Material Didáctico. Servicio de Publicaciones de la Universidad de Almería. [pdf]

    Book chapters

    • Andrés Cano, Manuel Gómez-Olmero, Cora B. Pérez-Ariza, Antonio Salmerón (2010) Fast factorization of probability trees and its application to recursive trees learning. In: Combining soft computing and statistical methods in data analysis. Series: Advances in Intelligent and Soft Computing. Springer, pp. 65-72.

    • Irene Martínez, Carmelo Rodríguez, Antonio Salmerón (2010) Probability tree factorisation with median free term. In: Combining soft computing and statistical methods in data analysis. Series: Advances in Intelligent and Soft Computing. Springer, pp. 457-466.

    • Barry R. Cobb, Rafael Rumí, Antonio Salmerón (2007) Bayesian network models with discrete and continuous variables. In: Advances in Probabilistic graphical models. Series: Studies in Fuzziness and Soft Computing, vol. 213. Springer, pp. 81-102. [link]

    • Vanessa Romero and Antonio Salmerón (2004) Multivariate imputation of qualitative missing data using Bayesian networks. In: Soft methodology and random information systems. Springer, pp. 605-612. [pdf]

    • Andrés Cano, Serafín Moral, Antonio Salmerón (2004) Algorithms for approximate probability propagation in Bayesian networks. In: Advances in Bayesian networks. Series: Studies in Fuzziness and Soft Computing, vol. 146. Springer, pp. 77-99. [link]

    • Antonio Salmerón (2001) Modelos gráficos. In: Técnicas Estadísticas aplicadas al análisis de datos y su tratamiento informático. Servicio de Publicaciones de la Universidad de Almería. Pag. 199-212.

    • Antonio Salmerón (1998) Algoritmos de propagación II: Métodos de Monte Carlo. En: Sistemas Expertos Probabilísticos. Colección Ciencia y Técnica. Ediciones de la Universidad de Castilla-La Mancha, pp. 65-88. [pdf]

    Technical reports

    • Antonio Salmerón, Finn V. Jensen. HUGIN architecture for propagating belief functions. 23 pages. December 1997. [pdf]


    Contact

    Edificio Científico-Técnico III
    Dpto. de Matemáticas
    Universidad de Almería
    Planta: 2, Despacho: 2.41
    La Cañada de San Urbano s/n
    04120 ALMERÍA. SPAIN.
    Phone: +34 950 01 5668
    e-mail: antonio.salmeron@ ual.es

    Office hours (tutorías)

    Actualizado por: Antonio Salmerón Cerdán

    Fecha: 7 de octubre de 2018

    Icono de Nivel doble-A de conformidad. Pautas W3C-WAI 1.0 para contenido web accesible CSS válido XHTML 1.0 Transitional válido

    © Copyright UAL 2009

    Logotipo de la Universidad de Almería