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Abstract

Factorisation of probability trees is a useful tool for inference in Bayesian networks. Prob-
abilistic potentials some of whose parts are proportional can be decomposed as a product
of smaller trees. Some algorithms, like lazy propagation, can take advantage of this fact.
Also, the factorisation can be used as a tool for approximating inference, if the decompo-
sition is carried out even if the proportionality is not completely reached. In this paper we
propose the use of approximate factorisation as a means of controlling the approximation
level in a dynamic importance sampling algorithm.

1 Introduction

In this paper we propose an algorithm for up-
dating probabilities in Bayesian networks. This
problem is known to be NP-hard even in the ap-
proximate case (Dagum and Luby, 1993). There
exist several deterministic approximate algo-
rithms (Cano et al., 2000; Cano et al., 2002;
Cano et al., 2003; Kjærulff, 1994) as well as
algorithms based on Monte Carlo simulation.
The two main approaches are: Gibbs sam-
pling (Jensen et al., 1995; Pearl, 1987) and im-
portance sampling (Cheng and Druzdzel, 2000;
Hernández et al., 1998; Moral and Salmerón,
2005; Salmerón et al., 2000; Shachter and Peot,
1990).

A class of these simulation procedures is
composed by the importance sampling algo-
rithms based on approximate pre-computation
(Hernández et al., 1998; Moral and Salmerón,
2005; Salmerón et al., 2000). These methods
perform first a fast but non exact propagation,
consisting of a node removal process (Zhang and
Poole, 1996). In this way, an approximate ‘a

posteriori’ distribution is obtained. In the sec-
ond stage a sample is drawn using the approx-
imate distribution and the probabilities are es-
timated according to the importance sampling
methodology (Rubinstein, 1981). In the most
recent algorithm (Moral and Salmerón, 2005) a
dynamic approach is adopted, in which the sam-
pling distributions are updated according to the
information collected during the simulation.

Recently, a new approach to construct ap-
proximate deterministic algorithms was pro-
posed in (Mart́ınez et al., 2005), based on
the concept of approximate factorisation of the
probability trees used to represent the probabil-
ity functions.

The goal of this paper is to incorporate the
ideas contained in (Mart́ınez et al., 2005) to the
dynamic algorithm introduced in (Moral and
Salmerón, 2005), with the aim of showing that
the approximation level can be controlled by the
factorisation alternatively to pruning the trees.

The rest of the paper is organised as fol-
lows: in section 2 we analyse the main features
of the dynamic importance sampling algorithm



in (Moral and Salmerón, 2005). Section 3 ex-
plain the concept of approximate factorisation
of probability trees. Then, in section 4 we ex-
plain how both ideas can be combined in a new
algorithm. The performance of the new algo-
rithm is tested using three real-world Bayesian
networks in section 5 and the paper ends with
the conclusions in section 6.

2 Dynamic importance sampling in

Bayesian networks

Along this paper we will consider a Bayesian
network with variables X = {X1, . . . ,Xn}
where each Xi is a discrete variable taking val-
ues on a finite set ΩXi

. By ΩX we denote the
state space of the n-dimensional random vari-
able X.

Probabilistic reasoning in Bayesian networks
requires the computation of the posterior prob-
abilities p(xk|e), xk ∈ ΩXk

for each variable of
interest Xk, given that some other variables E

have been observed to take value e.

The posterior probability mentioned above
can be expressed as

p(xk|e) =
p(xk, e)

p(e)
∀xk ∈ ΩXk

,

and, since p(e) is a constant value, the prob-
lem of calculating the posterior probability of
interest is equivalent to obtaining p(xk, e) and
normalising afterwards. If we denote by p(x)
the joint distribution for variables X, then it
holds that

p(xk, e) =
∑

ΩX\({Xk}∪E)

p(x) ,

where we assume that the k-th coordinate of
x is equal to xk and the coordinates in x cor-
responding to observed variables are equal to
e. Therefore, the problem of probabilistic rea-
soning can be reduced to computing a sum, and
here is where the importance sampling technique
takes part.

Importance sampling is a well known method
for computing integrals (Rubinstein, 1981) or
sums over multivariate functions. A straight-
forward way to do that could be to draw a sam-

ple from p(x) and then estimate p(xk, e) from
it. However, p(x) is often unmanageable, due
to the large size of the state space of X, ΩX.

Importance sampling tries to overcome this
problem by using a simplified probability func-
tion p∗(x) to obtain a sample of ΩX. The es-
timation is carried out according to the next
procedure.

Importance Sampling

1. FOR j := 1 to m (sample size)

(a) Generate a configuration x(j) ∈ ΩX

using p∗.

(b) Compute a weight for the generated
configuration as:

wj :=
p(x(j))

p∗(x(j))
. (1)

2. For each xk ∈ ΩXk
, estimate p(xk, e) as

p̂(xk, e) obtained as the sum of the weights
in formula (1) corresponding to configura-
tions containing xk divided by m.

3. Normalise the values p̂(xk, e) in order
to obtain p̂(xk|e), i.e., an estimation of
p(xk|e).

In (Salmerón et al., 2000; Moral and
Salmerón, 2005), a sampling distribution is
computed for each variable, so that p∗ is equal
to the product of the sampling distributions
for all the variables. The sampling distribu-
tion for each variable can be obtained through
a process of variable elimination. Assume that
the variables are eliminated following the or-
der X1, . . . ,Xn, and that, before eliminating the
first variable, H is the set of conditional dis-
tributions in the network. Then, the next al-
gorithm obtains a sampling distribution for he
i-th variable.

Get Sampling Distribution(Xi,H)

1. Hi := {f ∈ H|f is defined for Xi}.

2. fi :=
∏

f∈Hi
f .

3. f ′

i :=
∑

x∈ΩXi
fi.



4. H := H \ Hi ∪ {f ′

i}.

5. RETURN (fi).

Simulation is carried out in an order contrary
to the one in which variables are deleted. Each
variable Xi is simulated from its sampling distri-
bution fi. This function is defined for variable
Xi and other variables already sampled. The
potential fi is restricted to the already obtained
values of the variables for which it is defined,
except Xi, giving rise to a function which de-
pends only on Xi. Finally, a value for this vari-
able is obtained with probability proportional
to the values of this potential. If all the compu-
tations are exact, it was proved in (Hernández
et al., 1998) that, following this procedure, we
are really sampling with the optimal probability
p∗(x) = p(x|e). However, the result of the com-
binations in the process of obtaining the sam-
pling distributions may require a large amount
of space to be stored, and therefore approxima-
tions are usually employed, either using proba-
bility tables (Hernández et al., 1998) or proba-
bility trees (Salmerón et al., 2000) to represent
the distributions.

In (Moral and Salmerón, 2005) an alternative
procedure to simulate each variable was used.
Instead of restricting fi to the values of the
variables already sampled, all the functions in
Hi are restricted, resulting in a set of functions
depending only on Xi. The sampling distribu-
tion is then computed by multiplying all these
functions. If the computations are exact, then
both distributions are the same, as restriction
and combination commute. This is the basis
for the dynamic updating procedure proposed
in (Moral and Salmerón, 2005). Probabilistic
potentials are represented by probability trees,
which are approximated by pruning some of its
branches when computing fi during the calcula-
tion of the sampling distributions. This approx-
imation is somehow corrected according to the
information collected during the simulation: the
probability value of the configuration already
simulated provided by the product of the poten-
tials in Hi must be the same as the probability
value for the same configuration provided by f ′

i .

Otherwise, potential fi is re-computed in order
to correct the detected discrepancy.

3 Factorisation of probability trees

As mentioned in section 2, the approximation of
the probability trees used to represent the prob-
abilistic potentials consists of pruning some of
their branches, namely those that lead to simi-
lar leaves (similar probability values), that can
be substituted by the average, so that the error
of the approximation depends on the differences
between the values of the leaves corresponding
to the pruned branches. Another way of tak-
ing advantage of the use of probability trees is
given by the possible presence of proportional-
ity between different subtrees (Mart́ınez et al.,
2002). This fact is illustrated in figures 1 and
2. In this case, the tree in figure 1 can be repre-
sented, without loss of precision, by the product
of two smaller trees, shown in figure 2.

Note that the second tree in figure 2 does
not contain variable X. It means that, when
computing the sampling distribution for vari-
able X, the products necessary to obtain func-
tion fi would be done over smaller trees.

3.1 Approximate Factorisation of

Probability Trees

Factorisation of probability trees can be utilised
as a tool for developing approximate inference
algorithms, when the proportionality condition
is relaxed. In this case, probability trees can be
decomposed even if we find only almost propor-
tional, rather than proportional, subtrees. Ap-
proximate factorisation and its application to
Lazy propagation was proposed in (Mart́ınez et
al., 2005), and is stated as follows. Let T1 and
T2 be two sub-trees which are siblings for a given
context (i.e. both sub-trees are children of the
same node), such that both have the same size
and their leaves contain only strictly positive
numbers. The goal of the approximate factori-

sation is to find a tree T ∗

2 with the same struc-
ture than T2, such that T ∗

2 and T1 become pro-
portional, under the restriction that the poten-
tial represented by T ∗

2 must be as close as possi-
ble to the one represented by T2. Then, T2 can
be replaced by T ∗

2 and the resulting tree that
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Figure 1: A probability tree proportional below X for context (W = 0).
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Figure 2: Decomposition of the tree in figure 1 with respect to variable X.

contain T1 and T2 can be decomposed by factori-
sation. Formally, approximate factorisation is
defined through the concept of δ-factorisability.

Definition 1. A probability tree T is δ-
factorisable within context (XC = xC), with
proportionality factors α with respect to a di-
vergence measure D if there is an xi ∈ ΩX and
a set L ⊂ ΩX \ {xi} such that for every xj ∈ L,
∃αj > 0 such that

D(T R(XC=xC ,X=xj), αj · T
R(XC=xC ,X=xi)) ≤ δ ,

where T R(XC=xC ,X=xi) denotes the subtree of
T which is reached by the branch where vari-
ables XC take values xC and Xi takes value xi.
Parameter δ > 0 is called the tolerance of the

approximation.

Observe that if δ = 0, we have exact factori-
sation. In the definition above, D and α =
(α1, . . . , αk) are related in such a way that α

can be computed in order to minimise the value
of the divergence measure D.

In (Mart́ınez et al., 2005) several divergence
measures are considered, giving the optimal α

in each case. In this work we will consider
only the measure that showed the best perfor-
mance in (Mart́ınez et al., 2005) that we will
describe now. Consider a probability tree T .
Let T1 and T2 be sub-trees of T below a vari-
able X, for a given context (XC = xc) with
leaves P = {pi : i = 1, . . . , n ; pi 6= 0} and Q =
{qi : i = 1, . . . , n} respectively. As we described
before, approximate factorisation is achieved by
replacing T2 by another tree T ∗

2 such that T ∗

2 is
proportional to T1. It means that the leaves of
T ∗

2 will be Q∗ = {αpi : i = 1, . . . , n}, where α
is the proportionality factor between T1 and T2.
Let us denote by {πi = qi/pi, i = 1, . . . , n} the
ratios between the leaves of T2 and T1.

The χ2 divergence, defined as

Dχ(T2,T
∗

2 ) =

n
∑

i=1

(qi − αpi)
2

qi

,



is minimised for α equal to

αχ =

∑n
i=1 pi

∑n
i=1 pi/πi

.

In this work we will use its normalised version

Dχ∗(T2,T
∗

2 ) =

√

Dχ

Dχ + n
, (2)

which takes values between 0 and 1 and is min-
imised for the same α.

4 Dynamic importance sampling

combined with factorisation

As we mentioned in section 2, the complexity
of the dynamic importance sampling algorithm
relies on the computation of the sampling dis-
tribution. In the algorithm proposed in (Moral
and Salmerón, 2005), this complexity is con-
trolled by pruning the trees resulting from mul-
tiplications of other trees.

Here we propose to use approximate factori-
sation instead of tree pruning to control the
complexity of the sampling distributions com-
putation. Note that these two alternatives (ap-
proximate factorisation and tree pruning) are
not exclusive. They can be used in a combined
form. However, in order to have a clear idea of
how approximate factorisation affects the accu-
racy of the results, we will not mix it with tree
pruning in the algorithm proposed here.

The difference between the dynamic algo-
rithm described in (Moral and Salmerón, 2005)
and the method we propose in this paper is
in the computation of the sampling distribu-
tions. The simulation phase and the update of
the sampling distribution is carried out exactly
in the same way, except that we have estab-
lished a limit for the number of updates dur-
ing the simulations equal to 1000 iterations. It
means that, after iteration #1000 in the simu-
lation, the sampling distributions are no longer
updated. We have decided this with the aim of
avoiding a high increase in space requirements
during the simulation. Therefore, we only de-
scribe the part of the algorithm devoted to ob-
tain the sampling distribution for a given vari-
able Xi.

Get Sampling Distribution(Xi,H,D,δ)

1. Hi := {f ∈ H|f is defined for Xi}.

2. FOR each f ∈ Hi,

(a) IF there is a context XC for which
the tree corresponding to f is δ-
factorisable with respect to D,

• Decompose f as f1 × f2, where f1

is defined for Xi and f2 is not.

• Hi := (Hi \ {f}) ∪ {f1}.

• H := (H \ {f}) ∪ {f2}.

(b) ELSE

• H := H \ {f}.

3. fi :=
∏

f∈Hi
f .

4. f ′

i :=
∑

x∈ΩXi
fi.

5. H := H ∪ {f ′

i}.

6. RETURN (fi).

According to the algorithm above, the sam-
pling distribution for a variable Xi is computed
by taking all the functions which are defined
for it, but unlike the method in (Moral and
Salmerón, 2005), the product of all those func-
tions is postponed until the possible factorisa-
tions of all the intervening functions are tested.
Therefore, the product in step 3 is carried out
over functions with smaller domains than the
product in step 2 of the algorithm described in
section 2.

The accuracy of the sampling distribution is
controlled by parameter δ, so that higher values
of it result in worse approximations.

5 Experimental evaluation

In this section we describe a set of experiments
carried out to show how approximate factori-
sation can be used to control the level of ap-
proximation in dynamic importance sampling.
We have implemented the algorithm in java,
as a part of the Elvira system (Elvira Con-
sortium, 2002). We have selected three real-
world Bayesian networks borrowed from the
Machine Intelligence group at Aalborg Uni-
versity (www.cs.aau.dk/research/MI/). The



three networks are called Link (Jensen et al.,
1995), Munin1 and Munin2 (Andreassen et al.,
1989). Table 1 displays, for each network, the
number of variables, number of observed vari-
ables (selected at random) and its size. By the
size we mean the sum of the clique sizes that re-
sulted when using HUGIN (Jensen et al., 1990)
for computing the exact posterior distributions
given the observed variables.

Table 1: Statistics about the networks used in
the experiments.

Vars. Obs. vars. Size

Link 441 166 23,983,962
Munin1 189 8 83,735,758
Munin2 1003 15 2,049,942

We have run the importance sam-
pling algorithm with tolerance values
δ = 0.1, 0.05, 0.01, 0.005 and 0.001 and
with different number of simulation iterations:
2000, 3000, 4000 and 5000. Given the random
nature of this algorithm, we have run each
experiment 20 times and the errors have been
averaged. For one variable Xl, the error in
the estimation in its posterior distribution is
measured as (Fertig and Mann, 1980):

G(Xl) =

√

√

√

√

1

|ΩXl
|

∑

al∈ΩXl

(p′(al|e) − p(al|e))2

p(al|e)(1 − p(al|e))

(3)

where p(al|e) is the true a posteriori probability,
p′(al|e) is the estimated value and |ΩXl

| is the
number of cases of variable Xl. For a set of
variables {X1, . . . ,Xn}, the error is:

G({X1, . . . ,Xn}) =

√

√

√

√

n
∑

i=1

G(Xi)
2 (4)

This error measure emphasises the differences
in small probability values, which means that is
more discriminant than other measures like the
mean squared error.

Figure 3: Results for Link with δ =
0.1, 0.05, 0.01, 0.005 and 0.001.

Figure 4: Results for Munin1 with δ =
0.1, 0.05, 0.01, 0.005 and 0.001.

5.1 Results discussion

The results summarised in figures 3, 4 and 5, in-
dicate that the error can be somehow controlled
by means of the δ parameter. There are, how-
ever, irregularities in the graphs, probably due
to the variance associated with the estimations,
due to the stochastic nature of the importance
sampling method.

The best estimations are achieved for the
Munin1 network. This is due to the fact
that few factorisations are actually carried out,
and therefore the number of approximations is
lower, what also decreases the variance of the
estimations.

Factorisation or even approximate factorisa-
tion are difficult to carry out over very extreme
distributions. In the approximate case, a high
value for δ would be necessary. This difficulty



Figure 5: Results for Munin2 with δ =
0.1, 0.05, 0.01, 0.005 and 0.001.

also arises when using tree pruning as approx-
imation method, since this former method is
good to capture uniform regions.

Regarding the high variance associated with
the estimations suggested by the graphs in fig-
ures 3 and 5, it can be caused by multiple fac-
torisations of the same tree: A tree can be fac-
torised for some variable and afterwards, one
of the resulting factors, can be factorised again
when deleting another variable. In this case,
even if the local error is controlled by δ, there is
a global error due to the concatenations of fac-
torisations that is difficult to handle. Perhaps
the solution is to forbid that trees that result
from a factorisations be factorised again.

6 Conclusions

In this paper we have introduced a new version
of the dynamic importance sampling algorithm
proposed in (Moral and Salmerón, 2005). The
novelty consists of using the approximate fac-
torisation of probability trees to control the ap-
proximation of the sampling distributions and,
in consequence, the final approximations.

The experimental results suggest that the
method is valid but perhaps more difficult to
control than tree pruning.

Even though the goal of this paper was to
analyse the performance of tree factorisation as
a stand-alone approximation method, one im-
mediate conclusion that can be drawn from the
work presented here is that the joint use of ap-

proximate factorisation and tree pruning should
be studied. We have carried out some experi-
ment in this direction and the first results are
very promising: the variance in the estimations
and the computing time seems to be signifi-
cantly reduced. The main problem of combin-
ing both methods is that the difficulty of con-
trolling the final error of the estimation through
the parameters of the algorithm increases. We
leave for an extended version of this paper a de-
tailed insight on this issue. The experiments we
are currently carrying out suggest that the most
sensible way of combining both approximation
procedures is to use slight tree pruning and also
low values for the tolerance of the factorisation.
Otherwise, the error introduced by one of the
approximation method can affect the other.

It seems difficult to establish a general rule
for determining which approximation method
is preferable. Depending on the network and
the propagation algorithm, the performance of
both techniques may vary. For instance, ap-
proximate factorisation is appropriate for al-
gorithms that handle factorised potentials, as
Lazy propagation or the dynamic importance
sampling method used in this paper.

Finally, an efficiency comparison between
the resulting algorithm and the dynamic im-
portance sampling algorithm in (Moral and
Salmerón, 2005) will be one of the issues that
we plan to aim at.
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