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2developed by Shafer and Shenoy [14, 15]. Later, Cano, Delgado and Moral[4] expand this scheme introducing some new axioms that allow, for instance,conditioning. Improving the former schemes, Jensen et al. [8] developed anarchitecture, initially restricted to probabilities, that has been implemented inthe expert system shell HUGIN [2]. Recently, Lauritzen and Jensen [11] showedthat HUGIN architecture is also valid for Dempster-Shafer belief functions.In this paper we study the development of a HUGIN like architecture forbelief functions, in which the entire propagation, including divisions, are per-formed over mass functions instead of over commonalities. This scheme is quiteclose to the fast division architecture by Bissig et al. [3].The structure under the computations is the semi lattice representation(SLR), very similar to hierarchical trees [6, 12].The paper begins reviewing the basic concepts concerning multivariate belieffunctions in section 2. Some known belief functions propagation methods aredescribed in section 3, while HUGIN architecture with mass functions is studiedin section 4. Aspects concerning belief functions representation are treated insection 5, taking as a basis Sandri's hierarchical trees [6, 12]. Calculus withbelief functions represented by semi lattices is described in section 6, and thepaper ends with conclusions in section 7.2 Multivariate Belief FunctionsThis section gives a brief overview of multivariate belief functions, that is, be-lief functions de�ned over sets of con�gurations of variables. For a detailedexposition of this theory, see [5, 13].Given a variableX we denote by 
X its state space, i.e. the set of all possiblevalues of X . The elements of a state space 
X are called con�gurations of X. Inall of this paper, we shall consider �nite state spaces. Given a set of variablesV , 
V denotes the Cartesian product of the state spaces of all the variables inV : 
V = QX2V 
X . Assume V1 and V2 are sets of variables, V1 � V2, andx is a con�guration of V2. Then, x#V1 is the projection of x to V1, i.e. thecon�guration of V1 obtained from x by dropping the coordinates correspondingto variables not in V1. If A � 
V2 , the projection of A to V1 is de�ned asA#V1 = fx#V1 jx 2 Ag. Let V1; V2 be sets of variables, V1 � V2, and B � 
V1 theextension of B to V2 is de�ned as its cylinder set: B"V2 = B �
V2nV1 .Given a set of variables V , a Dempster-Shafer belief function is a mappingthat assigns a value between 0 and 1 to every subset of 
V . For any belieffunction, the following three representations are equivalent:De�nition 1 Let V be a set of variables. A mass function on V is a mappingm : 2
V ! [0; 1] verifying m(;) = 0 (1)



3XA�
V m(A) = 1 (2)The set � � 2
V such that m(A) 6= 0 for all A 2 � is called the support of thebelief function represented by m. Each element in � is called a focal element.De�nition 2 Let V be a set of variables. A belief function is a mapping Bel :2
V ! [0; 1] de�ned asBel(A) = XB:B�Am(B) 8A � 
V (3)De�nition 3 Let V be a set of variables. A plausibility function is a mappingP l : 2
V ! [0; 1] de�ned asP l(A) = XB:B\A6=;m(B) 8A � 
V (4)De�nition 4 Let V be a set of variables. A commonality function is a mappingQ : 2
V ! [0; 1] de�ned asQ(A) = XB:B�Am(B) 8A � 
V (5)The conversion from one representation to another is given by the inverseM�obius transform, which is known to be unique for any belief function on a setof variables V : m(A) = XB:B�A(�1)jBnAjQ(B) (6)m(A) = XB:B�A(�1)jAnBjBel(B) (7)From now on we shall talk about belief functions which may be representedas a commonality function, a mass function or whatever. Any of the threerepresentations contains the same information, and is a matter of conveniencewhich one to use. However, mass function representation may be more compact.The extreme case is when Q(A) = 1 for all A 2 � = 2
V , which is representableby a mass function with only one focal element, namely, � = [A2�A = 
V , forwhich m(�) = 1.The information contained in two belief functions m1 and m2 de�ned over aset of variables V can be combined by means of Dempster's rule of combinationas follows:



4m12(A) = (m1 
m2)(A) = K�112 XA1;A22�A1\A2=Am1(A1)m2(A2) for ; 6= A 2 2
V (8)where K12 is a normalization constant,K12 = XA1;A22�A1\A2 6=; m1(A1)m2(A2) (9)Note that when computing the combination of two masses, new focal el-ements may appear, but always into the intersection closure of �. We shalldenote by ~� the closure under intersection of �.If we ignore the normalization constant, and denote by Qm the commonalityfunction corresponding to a mass function m, Dempster's rule can be writtenin terms of commonalities as follows [11]:(Qm1 
Qm2)(A) = Qm1(A)Qm2(A) for A 6= ; (10)Now assume we have a set of belief functions m1; : : : ;mn de�ned over thesets of variables V1; : : : ; Vn. These sets are organized in a junction tree, that is,an undirected tree where each node is a set of variables and verifying that if avariable is contained in two di�erent nodes, Vi and Vj , then it is also containedin every node in the path connecting Vi and Vj . Every node in a junctiontree is called a cluster. The universal belief function, m, de�ned over the setV = V1 [ � � � [ Vn is the combination of all the former belief functions, i.e.m = m1 
 � � � 
mn. Our goal is to obtain the marginalization of this universalbelief function to every cluster in the junction tree, namely, m#Vi , i = 1; : : : ; n,where m#Vi(A) = XB�
VB#Vi=A m(B) for all A � 
Vi (11)The process of obtaining the marginals of the universal belief function iscalled propagation.3 Standard Propagation MethodsIn all of this section we work with a junction tree T representing a set of vari-ables V = Vi [ � � � [ Vn, each Vi carrying a belief function mi. An example ofjunction tree may be found in �gure 1. The universal belief function over V willbe denoted as m = m1 
 � � � 
mn. The task of computing the marginal of thisuniversal belief function in every set Vi is that the set V may be very large, so
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{T,L,E}

{A,T}

{X,E} {B,C,D} {B,C,E}

{B,L,E}

{B,L,S}

Figure 1: Junction tree for a set of variables V = fA;B;C;D;E; L; S; Tg.that the straight forward computation of the universal function may be di�cultor even impossible, whereas computations concerning with functions over thesets Vi are indeed possible. This last case is known as local computation. In thissection we point out two di�erent but related architectures for obtaining themarginals of the universal function by local computation. The �rst one is theShafer-Shenoy architecture, that has been studied in a very general setting [15],and the other one is the HUGIN architecture, �rst introduced for probabilitypropagation [8] in the expert system shell HUGIN [2], and recently extended toa more general setting by Lauritzen and Jensen [11]. Both schemes involve suc-cessive operations between nodes in the junction tree known as message passing.The di�erences lie either in the form of the messages and in the scheduling ofthe message passing.3.1 The Shafer Shenoy architectureIn this scheme, two mailboxes are placed on each edge of the junction tree. Givenan edge connecting nodes Vi and Vj , one mailbox is for messages Vi-outgoing andVj-incoming, and the other mailbox is for the reverse. The messages allocated inboth mailboxes will be belief functions de�ned on Vi\Vj . Initially, all mailboxesare empty, and once a message has been placed on one of them, it is said to befull.A node Vi in a junction tree is allowed to send a message to its neighbournode Vj if and only if all Vi-incoming mailboxes are full except the one from Vjto Vi. Thus, initially only nodes corresponding to leaves can send messages.Themessage Vi-outgoing and Vj-incoming is computed as



6�Vi!Vj = 8<:mi 
0@ OVk2ne(Vi)nVj �Vk!Vi1A9=;#Vj (12)where mi is the initial belief function on Vi, �Vk!Vi are the messages in themailboxes Vk-outgoing and Vi-incoming and ne(Vi) are the neighbour nodes ofVi. Note that one message contains the information coming from one side of thetree and is sent to the other side of the tree. It can be shown [15] that there isalways at least one node allowed to send a message until all mailboxes are full,and when the message passing ends, for every node Vi 2 T it holds thatm#Vi = mi 
0@ OVk2ne(Vi)�Vk!Vi1A (13)3.2 The HUGIN architectureIn this case, instead of placing mailboxes on the edges of the junction tree,between every pair of neighbour nodes Vi and Vi, a new node is inserted. Suchnode is of the form Sij = Vi \ Vj and is called their separator. The set of allseparators in T is denoted by S. Under these conditions, at every moment theuniversal belief function on V is assumed to factorize asm = Nni=1miNS2SmS (14)where mS stands for the belief function de�ned on S. Initially, the belief func-tions assigned to the separators are the identity belief function, namely thatbelief function whose mass is 1 for 
V and 0 otherwise, or equivalently, whosecommonality is constantly equal to 1. Let this identity be denoted by 1V .Therefore, in this case expression (14) is clearly the universal belief function onV . In the HUGIN scheme, the message passing is performed in two steps. Aroot node is selected in the tree, and then messages are sent starting from theleaves. When a node receives messages from all its neighbour except that onetowards the root, it is allowed to send a message upwards, and so on until theroot node has received messages from all its neighbours. This is called thecollect phase. Now the root node sends a message to all its neighbours, andevery node receiving a message itself, sends another one to all of its neighbourexcept the one from which received the message, and so on until the leaves arereached. This last is called distribute phase. In the HUGIN case, there is onlyone type of message. Whenever a message is sent from Vi to Vj with separatorSij = Vi \ Vj , the concerned belief functions change as



7m�i = mi; m�Sij = m#Siji ; m�j = mj 
 (m�Sij 
m�1Sij )"Vj (15)where m�1Sij stands for the inverse of mSij . It can be seen in the right side of theexpression above, that the last combination is extended to Vj . The extension ofa mass function is de�ned as follows: assume a mass function mi de�ned over aset of variables Vi � Vj , A � 
Vj , thenm"Vji (A) = � mi(B) if A is the cylinder set of B � 
Vi0 otherwise (16)Using the same proofs as in [8], it can be shown that after collect anddistribute phase, each node and each separator contains the marginal of theuniversal belief function over V .4 HUGIN Propagation with Mass FunctionsNote that in expression (15) unlike in the Shafer-Shenoy scheme, a division isperformed, more precisely, a combination by the inverse of a mass function.This inverse is something the is not already de�ned, and this section is devotedto �nd a nice expression of this inverse.One choice one may make is to use commonality functions instead of massfunctions. In this case, there is an easy way of de�ning the inverse of a Dempster-Shafer belief function, namely, given a set of variables V , A � 
V and Q acommonality function on V ,Q�1(A) = 8><>: 1Q(A) if Q(A) 6= 00 otherwise (17)As it is pointed out by Lauritzen and Jensen [11], inverses according tothe former expression may result on functions that are not belief functions,since they may lead to negative masses. However, marginalizations are alwaysperformed over proper belief functions, and it holds that after a full propagation,and using the inverse de�ned in (17), the functions on the nodes as well as onthe separators of T are proper belief functions, and, more precisely, they arethe marginals of the universal belief function m. This ensures the correctnessof HUGIN propagation with belief functions.Nevertheless, as we pointed out before, mass functions are usually more com-pact representations than commonalities. We de�ne now an expression for theinverse of a mass function so that there is no need of translating to commonal-ities before applying the propagation scheme.



8De�nition 5 Let m be a mass function over a set of variables W , and withfocal elements � � 2
W . Let ~� be the intersection closure of �. We de�nethe inverse of m as a function m�1 with focal elements in ~� with the followingexpression,m�1(A) =8>>>>>><>>>>>>: 1XB2�B�A m(B) � XB2~�B)A m�1(B) If A 2 ~�0 If A =2 ~� (18)Note that if A is maximal in ~�, m�1(A) = 1=m(A).The following two results lead to show that the inverse is well de�ned. Firstlywe must �x some notation. By Qm1�m2 we denote the commonality functioncorresponding to the combination of two masses m1 
 m2, i.e., the productQm1 �Qm2 .Proposition 1 Let m be a mass function over a set of variables W , with focalelements �, ~� the intersection closure of � and m�1 as in (18). Then,Qm�1(A) = Q�1m (A) 8A � 
WProof. We will distinguish three cases.� If A 2 ~� is maximal:Qm�1(A) = XB�Am�1(B) = m�1(A)and since A is maximal, this is equal to1m(A) = 1XB�Am(B) = 1Qm(A) = Q�1m (A)where B 2 �.� If A 2 ~� is not maximal:Qm�1(A) = XB�Am�1(B) = m�1(A) + XB)Am�1(B)Where B 2 ~�. Substituting the value of m�1(A) according to equation(18), the expression above can be written as follows,1XB�AB2� m(B) � XB)AB2~� m�1(B) + XB)AB2~� m�1(B) = Q�1m (A)



9� If A =2 ~�, we must consider two cases:1. Assume 9= B 2 ~� such that A � B. Then,Qm�1(A) = XB�Am�1(B) = XB�AB=2~� m�1(B) = 0since m�1(B) = 0 for all B =2 ~�. Also,Qm(A) = XB�Am(B) = XB�AB=2~� m(B) = 0) Q�1m (A) = 0hence, 0 = Qm�1(A) = Q�1m (A).2. Assume 9C 2 ~� such that A � C. Let be B = minfC 2 ~�jA � Cg.Such a B always exists, because otherwise we could �nd two minimal setsB1; B2 2 ~� both containing A and verifying that B1 6� B2 and B2 6� B1which is equivalent to say that A is contained in B1 \ B2 and this is acontradiction with the fact that B1 and B2 are minimal. Then,Qm�1(A) = XC�AC2~� m�1(C) = XC�BC2~� m�1(C) = Qm�1(B) = Q�1m (B)which is true since m�1(A) = 0 and B 2 �. Now, since m(A) = 0, it holdsthat Qm(A) = XC�Am(C) = XC�Bm(C) = Qm(B)which implies that Q�1m (A) = Q�1m (B), thus, Qm�1(A) = Q�1m (B) =Q�1m (A).Theorem 2 Assume the conditions in proposition 1. Then,m
m�1 = 1Wwhere 1W is the identity belief function on the set of variables W .Proof. According to proposition 1, for all A 2 ~�, Qm�m�1(A) =Qm(A) �Qm�1(A) = Qm(A) �Q�1m (A) =1 =Q1W (A) ) m
m�1=1WIn this way we have de�ned the inverse of a mass function, that is not alwaysa mass function. However, as we pointed out before, after a full propagation theresults are proper belief functions. The important advance of this approach isthat no translations between masses and commonalities are necessary to peforma full propagation.



105 Representation of Belief FunctionsThe next step when thinking of designing a system for propagating belief func-tions is to choose an appropriate representation. The key point here is how torepresent the focal elements, i.e. the focal sets. In this section we study the clas-sical bit-string representation (BSR) and propose a new sparse representation,that we call semilattice representation (SLR).5.1 The bit-string representation (BSR)Consider a set of variables W with �nite state space 
W . Let x1; : : : ; xn be anorder of the con�gurations in 
W . Choose any focal element A and de�ne thebit-string index of A, with respect to the order above, asIA = Xxi2A 2i (19)It can be shown that 0 � IA � 2n, where n = j
W j. The index 0 correspondsto the empty set and 2n to 
W . Using this scheme, a mass function can berepresented as an array indexed by the bit-string indices and storing, in eachposition of the array, the mass assign to the set corresponding to that position.This representation has many advantages, namely, set operations as intersectionand union can be done by fast bit-wise operators, and it is quite easy to movefrom masses to commonalities and the reverse (see [16]). However, an importantrestriction arises; this representation is limited to small state spaces. Assume,for instance, that W contains 8 binary variables, then, j
W j = 256 and thenumber of real numbers required to represent a mass function is 2256, which is ahuge number for common computers. However, the number of focal elements ofa belief function is usually small with respect to the size of 
W (see [1]), whatsuggests other sorts of representations taking advantage of this fact. In the nextsection we propose such a representation.5.2 The semilattice representation (SLR)In this section we introduce a graphical sparse representation of real valued setfunctions, thus, valid for any representation of belief functions. The goal is to�nd a computational scheme where the main operations with quasi belief func-tions can be done e�ciently, namely, combination and inverse as well as otheroperations necessary to HUGIN architecture, such as extension and marginal-ization. In this section we are concerned with the de�nition of the structure.De�nition 6 Let 
 be a �nite set, f : 2
 ! IR a real valued set function. Wede�ne the semilattice representation (SLR) of function f as a directed graphG = (V ; E), verifying the following properties:1. The set of nodes V � 2
 is the set of focal elements of f .



112. Attached to each node X 2 V , there is a real number corresponding tof(X).3. If there is an edge (X;Y ) 2 E, it means that X ( Y and there is notanother Z 2 V such that X ( Z ( Y .Example 1 Let f be a function de�ned over a space 
 = fa1; a2; a3; a4g,and whose focal elements are X1 = fa1g, X2 = fa4g, X3 = fa2; a4g, X4 =fa1; a2; a3g. Assume the values for those focal elements are f(X1) = 0:1,f(X2) = 0:1, f(X3) = 0:2, f(X4) = 0:3. A SLR for f is displayed in �g-ure 2. Notice that node X5 is not a focal element (its value is actually 0). Ithas been added to the diagram when computing the intersection closure of thefocal elements.Now we want to add a new focal element, say X6 = fa1; a3; a4g with f(X6) =0:3. We start examining the root nodes in the SLR to �nd out which of them aresubsets of X6 if any. We �nd that X1; X2 ( X6. Hence, X6 must be insertedin the part of the lattice formed by the descendants of both X1 and X2, whichin this example are none. So, we must connect X6 to X1 and X2, obtaining thediagram in �gure 3.
X1:{a1, 0.1} X2:{a4, 0.1}

X4:{a1,a2,a3,0.3} X3:{a2,a4,0.2}Figure 2: A SLR for f .
X1:{a1, 0.1} X2:{a4, 0.1}

X4:{a1,a2,a3,0.3} X3:{a2,a4,0.2}

X6:{a1,a3,a4,0.3}Figure 3: The SLR after inserting X6.When constructing the semi lattice, the sets should be inserted in such a waythat if a given set X is inserted after any other set Y , then X * Y . In this way,



12it is avoided to check at every insertion which ones should be the descendants ofthe new node. To achieve this, it is enough to settle an ordering for the elementsto be inserted verifying that for any two sets Xi, Xj , if jXij � jXj j then i � j.The algorithm below describes the insertion procedure, where G = (V ; E) isthe semi lattice, Xi is the set to be added and f(Xi) is the value attached tothe set. INSERT(G,Xi,f(Xi))1. Start with an empty set I .2. For all Xj such that Xj is a root and Xj � Xi, do I = I [ fjg.3. Let H be the set of children of those nodes whose indices are in I and aresubsets of Xi. Remove from I those indices corresponding to parents ofthe nodes in H .4. If H 6= ; do� For each Xj 2 H , let I = I [ fjg.� Go to step 3.5. Add Xi to V and connect Xj to Xi for all j 2 I .6. Attach to node Xi the pair fXi; f(Xi)gThe set I is intended to contain the indices of the nodes that will be connectedto Xi.In step 2, the algorithm starts exploring the root nodes to �nd out which ofthem are subsets of Xi. If any one is found, set I is updated.Then, in step 3, the idea is to seek within the descendants of the nodes whoseindices are in I , those being subsets of Xi.Notice that when a new set is indexed in I , its parents must be removedfrom I , to keep condition 3 in de�nition 6.Making use of the algorithm above, it is easy to specify the way of constructingthe SLR corresponding to any real valued set function with �nite support.Let 
 be a �nite set, f : 2
 ! IR a real valued set function. Let � =fX1; : : : ; Xng be the support of f . Assume it holds that jXij � jXj j ) i � j.The following algorithm builds a SLR G = (V ; E) for f .
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SLR(G,f ,�)1. For i = 1 to n(a) INSERT(G,Xi,f(Xi))The following example illustrates the construction of a SLR.Example 2 Let f be a real valued set function de�ned over the power set of
 = fa1; a2; a3; a4g with focal elements X1 = fa1g, X2 = fa4g, X3 = fa2; a4g,X4 = fa1; a2; a3g, X5 = 
. Let the values for these focal elements be f(X1) =0:1, F (X2) = 0:1, f(X3) = 0:2, f(X4) = 0:3, f(X5) = 0:3. The algorithm startsinserting X1 and X2. The insertion is straightforward and no connections haveto be made between them. The following set to be inserted is X3. Then we lookat the root nodes, �nding X2 to be the one contained in X3. Thus, X3 will beconnected to X2 (see �gure 4). In the same fashion, X4 is added, resulting on theSLR in �gure 5. Now we proceed to include X5. First we explore the root nodes,realizing that both are subsets of X5. Thus, the exploration is continued fromthe children of X1 and X2, namely, X3 and X4. These ones are also subsets ofX5 and, since there are no more nodes to explore, X5 will be connected to theyboth. The resulting SLR is displayed in �gure 6.

X1:{a1, 0.1} X2:{a4, 0.1}

X3:{a2,a4,0.2}Figure 4: State of the diagram after inserting X3.Now, the SLR must be extended to deal with sets of con�gurations of vari-ables. Each con�guration can be represented as a string of characters. Forinstance, assume we have two variables X1 and X2, and a con�guration consist-ing ofX1 taking its �rst value andX2 taking its second value. This con�gurationcan be represented as the string X101X202. Instead of repeating a con�guration
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X1:{a1, 0.1} X2:{a4, 0.1}

X4:{a1,a2,
a3,0.3}

X3:{a3,a4,0.2}Figure 5: State of the diagram after inserting X4.

X1:{a1, 0.1} X2:{a4, 0.1}

X4:{a1,a2, X3:{a2,a4,0.2}

X5:{a1,a2,
a3,a4,0.3}

a3,0.3}

Figure 6: State of the diagram after inserting X5.



15each time it appears in a focal set, all the con�gurations should be stored ina general table, and then referenced from any set in the system. The generaltable can be implemented as a hash table. From now on we shall denote by Hsuch table.The following step is to de�ne how to represent each focal element in a SLR.There are e�cient representations of sets, for instance, balanced binary searchtrees, which provides e�cient ways of inserting elements and checking for mem-bership, through functions with complexity O(logn) where n is the number ofelements in the set. Each element of the set is just an integer referencing acon�guration in H. The correspondence between that number and a con�gura-tion is de�ned as follows: Let N be the number of cells in H, and let x be acon�guration stored in the j-th position of the i-th cell. Then, the identi�er ofthat con�guration is the integer resulting from concatenating the two numbersi and j resulting in a number ji. Note that if N is close to the total numberof con�gurations in the system, look-up operations in H are done in a constanttime. A detailed explanation of these types of structures can be found in [9].5.2.1 Computing the Intersection Closure of a SLRIn some cases, it is necessary to add a new feature to the SLR, namely, it mustbe closed for intersections. The reason is that the inverse of a mass functionis de�ned over the intersection closure of its support, as described in equation(18). Here we explain how to compute the intersection closure of a SLR.Taking into account the two following facts, the task can be simpli�ed.Firstly, the intersection of a given set with any of its subsets is the subset itself.Secondly, for any two sets A and B, and C � B, it holds that A \ C � A \ Band, furthermore, A \ C = (A \B) \ C.Then, the strategy to obtain the closure is to divide the nodes in the SLRinto di�erent levels. The �rst one would be the set of all nodes that are leaves(i.e. they have no descendants). Then compute the pairwise intersections forthose sets in the �rst level and insert the new sets into the SLR. The followinglevel would be that consisting of the nodes that are direct predecessors of thosein the �rst level. Again the intersections are computed and the procedure isrepeated until there are no more nodes to be explored.As we said before, whenever a new intersection is calculated, it must beinserted into the SLR. Notice, however, that algorithm INSERT, is not ap-plicable since it is designed to insert maximal sets. Here we have to modify itto allow insertions of non maximal sets. Thus, some additional tasks must becarried out. The detailed algorithm is as follows.Let G = (V ; E) be a SLR, and C = A \B the element to be inserted.
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INSERT2(G,C,A,B)1. Start with an empty set I .2. For all Xj such that Xj is a root and Xj � C, do I = I [ fjg.3. Let H be the set of children of those nodes whose indices are in I , and thatare subsets of C. If any of them is equal to C, go to step 7. Otherwise,remove from I those indices corresponding to parents of the nodes in H .4. If H 6= ; do� For each Xj 2 H , let I = I [ fjg.� Go to step 3.5. Add C to V .6. For each Xk such that k 2 I , substitute every link (Xk; Y ) 2 E such thatC � Y , by the pair of links (Xk; C) and (C; Y ).7. If A is not reachable from C, add the link (C;A).8. If B is not reachable from C, add the link (C;B).9. Attach to node C the value 0:0Now that insertion is de�ned, it is quite easy to specify an algorithm for com-puting the intersection closure: CLOSE(G)1. Let L = fX1; : : : ; Xng be the set of leaves in G.2. Do while L 6= ;(a) For i = 1 to n� 1 doi. For j = i+ 1 to n do



17� Let be X = Xi \Xj .� If X 6= ;, INSERT2(G,X,Xi,Xj).(b) Replace L by the sets of direct predecessors of its elements. LetL = fX1; : : : ; Xng be the resulting set. Go to step 2.Example 3 Assume the SLR in �gure 6. We want to close it for intersectionsusing the algorithm above. We start up from the leaves, taking L = fX5g. Sincethere is only one element in L we go to step 2.(b), obtaining L = fX4; X3g. Nowwe must compute X4 \X3 resulting in X6 = fa2g. Inserting this set accordingto algorithm INSERT2 we obtain the SLR in �gure 7. Now we replace L byL = fX1; X2; X6g, �nding out that all the intersections are empty, thus, no newelements must be inserted, and, since there are no direct predecessors of nodesin L, the algorithm is �nished and the SLR is closed for intersections.
X1:{a1, 0.1} X2:{a4, 0.1}

X4:{a1,a2, X3:{a2,a4,0.2}

X5:{a1,a2,
a3,a4,0.3}

a3,0.3}

X6:{a2,0.0}

Figure 7: A SLR closed for intersections.6 Belief Functions Operations on the SLRAssume the masses are represented by SLRs. We shall describe how the op-erations in expression (15) should be done over that structure. Namely, theseoperations are marginalization, inverse, combination and extension.We start up with marginalization. Assume we have a mass function mVover a set of variables V , represented by a SLR GV , and we want to computemS = m#SV for S � A. The procedure is quite simple: for each focal element ofmV , compute its projection to S and update its mass. The following algorithmcomputes GS , a SLR for mS .
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MARGINAL(GV ,S)1. Select an ancestral order1 of the sets in the SLR GV . That is, performa width �rst traversal over the lattice. Let fA1; : : : ; Ang be the resultingorder.2. For i = 1 to n(a) INSERT(GS,A#Si ,mV (Ai))Note that an ancestral order always veri�es the property required for applyingalgorithm INSERT, that is, if Ai � Aj then i < j. If that property holds inGV , it is clear that if A#Si � A#Sj then i < j, thus, the ordering in GV is stillvalid for GS .There is a fact to be considered here. If the set being inserted in GS isalready an element Ai of GS then, instead of assigning the mass mV (A"Vi ), theprocedure must be to increase its old mass in an amount of mV (A"Vi ).The following operation is the inverse. We have a mass mV represented bya SLR GV = (VV ; EV ), and the goal is to compute m�1V . According to (18), if� is the set of focal elements of mV , those of m�1V are also in �. Hence, thereis no need to construct a new SLR for the inverse, but the old one can be usedjust updating the masses. But it will be necessary to store two values at eachnode instead of one: the value of mV and of m�1V , in order to facilitate thecomputations.Equation (18) shows a way of computing the inverse, in which, for each node,the sum of the inverses and the masses in all the nodes containing it is required.Notice, however, that before computing the inverse, its attached SLR has to beclosed for intersections. An algorithmic expression for equation (18) could beas follows.

1An order of the vertices in a graph is said to be ancestral if every node is placed beforeall its descendants.
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INVERSE(GV )1. CLOSE(GV ).2. Select an ancestral order for the sets in VV . Let fA1; : : : ; Ang be suchorder.3. For i = n downto 1 do(a) a = 0, b = mV (Ai).(b) For each node B 2 VV in any path from Ai upwards (i.e. Ai ( B),doi. a = a+m�1V (B)ii. b = b+mV (B)(c) m�1V (Ai) = 1b � aNotice that in this way, when we are going to calculate one inverse, all therequired information is known, because we have computed previously the inversefor every superset of the current set in the lattice.The next operation is extension. Assume we have a SLR for a mass functionmi over a set of variables Vi, and we want to obtain a SLR for m"Vji , whereVi � Vj . According to equation (16), the focal elements of m"Vji are just thecylinder sets of the focal elements of mi, that is, for each A focal element of mi,its cylinder set, A"Vj , will be a focal element of m"Vji , and there are no morefocal elements. Besides, m"Vji (A"Vj ) = mi(A). Hence, we can get the SLR forthe extension by changing each set in the SLR for mi by its cylinder set.Finally, we must de�ne an algorithm for combination. More precisely, wewant to perform the combination m�S 
m�1S in expression (15).Assume we have two mass functions, mi and mj , de�ned over the sets ofvariables V . Let Gi = (Vi; Ei) be the SLR associated to mi and Gj = (Vj ; Ej) theSLR associated tomj . The following algorithm computes the SLR Gk = (Vk; Ek)corresponding to mk = mi 
mj :
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COMBINE(Gi,Gj)1. Assume Vi = fA1; : : : ; Ang and Vj = fB1; : : : ; Bmg.2. Compute every nonempty intersection S = Ai [ Bj , i = 1; : : : ; n, j =1; : : : ;m and store it in a list L together with the value f(S) = mi(Ai) �mj(Bj).3. Sort L according to the cardinal of the sets on it. Let fC1; : : : ; Cpg bethat order.4. For i = 1 to p(a) INSERT(Gk,Ci,f(Ci)). If Ci is already in the SLR Gk, instead ofassigning it a mass f(Ci), just update its old mass in an amount off(Ci).

6.1 Computing Bel and Q on the SLRIn this section we deal with the following task: given a set of variables V , abelief function mV on V and a SLR GV , for any set A � 
V , what is the valueof Bel(A) and Q(A)?The SLR provides an easy way of answering these questions, just performinggraph traversals over the structure. The following algorithm computes Bel(A):BEL(GV ,A)1. Let R be the set of nodes in GV which are direct predecessors of A.2. Bel(A) = mV (A) + XB2R bPROP(GV ,B,A)where bPROP(GV ,B,A) is a function returning a real value and de�ned as
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bPROP(GV ,B,A)1. s = mV (B).2. Mark B as visited.3. For each node C parent of B in GV such that C has not been alreadyvisited,(a) s = s+bPROP(GV ,C,A)4. return (s)The way of computing the commonality of a given set is completely analogous,but instead of starting from the roots, the procedure must start from the leavesand perform a traversal to the roots:Q(GV ,A)1. Let L be the set of nodes in GV which are direct successors of A.2. Q(A) = XA�B2LqPROP(GV ,B,A)where qPROP(GV ,B,A) is a function returning a real value and de�ned asqPROP(GV ,B,A)1. s = mV (B).2. Mark B as visited.3. For each node C child of B in GV such that C has not been already visited,
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