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Dempster-Shafer Theory of Evidence [5, 13], provides a framework widely used
nowadays for dealing with uncertainty. This theory can be interpreted as a
more intuitive way of assessing probabilities, assigning masses to subsets of the
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Abstract

In this paper we study the use of a HUGIN like architecture for prop-
agating Dempster-Shafer belief functions. The main issue of the proposed
scheme is that it allows to do the entire propagation with mass function.
To achieve this, an inverse for mass functions is defined.

Introduction

universe instead of elements of that universe [17].

Belief functions propagation in dependence graphs has been studied in an
axiomatic way within the frame of local computation in graphical structures,
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developed by Shafer and Shenoy [14, 15]. Later, Cano, Delgado and Moral
[4] expand this scheme introducing some new axioms that allow, for instance,
conditioning. Improving the former schemes, Jensen et al. [8] developed an
architecture, initially restricted to probabilities, that has been implemented in
the expert system shell HUGIN [2]. Recently, Lauritzen and Jensen [11] showed
that HUGIN architecture is also valid for Dempster-Shafer belief functions.

In this paper we study the development of a HUGIN like architecture for
belief functions, in which the entire propagation, including divisions, are per-
formed over mass functions instead of over commonalities. This scheme is quite
close to the fast division architecture by Bissig et al. [3].

The structure under the computations is the semi lattice representation
(SLR), very similar to hierarchical trees [6, 12].

The paper begins reviewing the basic concepts concerning multivariate belief
functions in section 2. Some known belief functions propagation methods are
described in section 3, while HUGIN architecture with mass functions is studied
in section 4. Aspects concerning belief functions representation are treated in
section 5, taking as a basis Sandri’s hierarchical trees [6, 12]. Calculus with
belief functions represented by semi lattices is described in section 6, and the
paper ends with conclusions in section 7.

2 Multivariate Belief Functions

This section gives a brief overview of multivariate belief functions, that is, be-
lief functions defined over sets of configurations of variables. For a detailed
exposition of this theory, see [5, 13].

Given a variable X we denote by Qx its state space, i.e. the set of all possible
values of X. The elements of a state space Qx are called configurations of X. In
all of this paper, we shall consider finite state spaces. Given a set of variables
V, Qv denotes the Cartesian product of the state spaces of all the variables in
V: Qpy = HXEV Qx. Assume Vi and V5 are sets of variables, V; C V5, and
z is a configuration of V5. Then, z*" is the projection of x to Vi, i.e. the
configuration of V; obtained from z by dropping the coordinates corresponding
to variables not in V5. If A C Qy,, the projection of A to Vi is defined as
AWVt = L2iV1 |z € A}. Let Vi, V5 be sets of variables, Vi C Vs, and B C Qy, the
extension of B to V3 is defined as its cylinder set: B™2 = B x Qy,\y;.

Given a set of variables V., a Dempster-Shafer belief function is a mapping
that assigns a value between 0 and 1 to every subset of Qy. For any belief
function, the following three representations are equivalent:

Definition 1 Let V be a set of variables. A mass function on V' is a mapping
m : 2% — [0, 1] verifying

m@ = 0 (1)



Y omA) = 1 (2)

The set T C 2V such that m(A) # 0 for all A € T is called the support of the
belief function represented by m. FEach element in T is called a focal element.

Definition 2 Let V be a set of variables. A belief function is a mapping Bel :
2 5 [0, 1] defined as

Bel(A)= Y m(B) YACQy (3)
B:BCA

Definition 3 Let V be a set of variables. A plausibility function is a mapping
P1: 2% —[0,1] defined as

Pl(A)= Y  m(B) VACQy (4)
B:BNA#(D

Definition 4 Let V be a set of variables. A commonality function is a mapping
Q : 2% = [0,1] defined as

Q(A)= Y m(B) VACQy (5)

B:BDA

The conversion from one representation to another is given by the inverse
Mobius transform, which is known to be unique for any belief function on a set
of variables V:

m(4) = Y (-1)PQ(B) (6)

B:BDA

m(4) = Y ()" PBel(B) (7)

B:BCA

From now on we shall talk about belief functions which may be represented
as a commonality function, a mass function or whatever. Any of the three
representations contains the same information, and is a matter of convenience
which one to use. However, mass function representation may be more compact.
The extreme case is when Q(A) = 1 for all A € T' = 2V, which is representable
by a mass function with only one focal element, namely, ©® = Ugepr A = Qy, for
which m(©) = 1.

The information contained in two belief functions m; and ms defined over a
set of variables V' can be combined by means of Dempster’s rule of combination
as follows:



miz(A) = (m1 @ my)(A) = K'Y mi(A)ma(Ay) for § # A €27 (8)

Aq1,Az€l
A1NAs=A

where K15 is a normalization constant,

Ko=) mi(A)ma(4r) (9)
Ay, As€T
A1NA2#0
Note that when computing the combination of two masses, new focal el-
ements may appear, but always into the intersection closure of I'.  We shall
denote by T the closure under intersection of I
If we ignore the normalization constant, and denote by @,,, the commonality
function corresponding to a mass function m, Dempster’s rule can be written
in terms of commonalities as follows [11]:

(Qumy ® Q) (A) = Qu, (A)Qmy (A) for A # D (10)

Now assume we have a set of belief functions my,...,m, defined over the
sets of variables Vi, ..., V,. These sets are organized in a junction tree, that is,
an undirected tree where each node is a set of variables and verifying that if a
variable is contained in two different nodes, V; and Vj, then it is also contained
in every node in the path connecting V; and V;. Every node in a junction
tree is called a cluster. The universal belief function, m, defined over the set
V. =V, U---UYV, is the combination of all the former belief functions, i.e.
m=m; ® -+ ®m,. Our goal is to obtain the marginalization of this universal

belief function to every cluster in the junction tree, namely, m*¥i, i =1,...,n,
where
mVi(4)= Y m(B) forall ACQy, (11)
BCQy
BYVi=A

The process of obtaining the marginals of the universal belief function is
called propagation.

3 Standard Propagation Methods

In all of this section we work with a junction tree 7 representing a set of vari-
ables V = V; U---UV,, each V; carrying a belief function m;. An example of
junction tree may be found in figure 1. The universal belief function over V will
be denoted as m = m; ® --- ® m,,. The task of computing the marginal of this
universal belief function in every set V; is that the set V' may be very large, so



{B,L,E}

Figure 1: Junction tree for a set of variables V. = {4, B,C,D,E,L,S,T}.

that the straight forward computation of the universal function may be difficult
or even impossible, whereas computations concerning with functions over the
sets V; are indeed possible. This last case is known as local computation. In this
section we point out two different but related architectures for obtaining the
marginals of the universal function by local computation. The first one is the
Shafer-Shenoy architecture, that has been studied in a very general setting [15],
and the other one is the HUGIN architecture, first introduced for probability
propagation [8] in the expert system shell HUGIN [2], and recently extended to
a more general setting by Lauritzen and Jensen [11]. Both schemes involve suc-
cessive operations between nodes in the junction tree known as message passing.
The differences lie either in the form of the messages and in the scheduling of
the message passing.

3.1 The Shafer Shenoy architecture

In this scheme, two mailboxes are placed on each edge of the junction tree. Given
an edge connecting nodes V; and Vj, one mailbox is for messages V;-outgoing and
Vj-incoming, and the other mailbox is for the reverse. The messages allocated in
both mailboxes will be belief functions defined on V;NV;. Initially, all mailboxes
are empty, and once a message has been placed on one of them, it is said to be
full.

A node V; in a junction tree is allowed to send a message to its neighbour
node Vj if and only if all V;-incoming mailboxes are full except the one from V;
to V;. Thus, initially only nodes corresponding to leaves can send messages.The
message V;-outgoing and Vj-incoming is computed as



1V

Pvisy; = Mi ® QR du-v (12)

Vieene(Vi)\V;

where m; is the initial belief function on V;, ¢v, v, are the messages in the
mailboxes Vj-outgoing and Vj-incoming and ne(V;) are the neighbour nodes of
V;. Note that one message contains the information coming from one side of the
tree and is sent to the other side of the tree. It can be shown [15] that there is
always at least one node allowed to send a message until all mailboxes are full,
and when the message passing ends, for every node V; € T it holds that

mYi=mig | Q) dvow (13)
Vi€ne(V;)

3.2 The HUGIN architecture

In this case, instead of placing mailboxes on the edges of the junction tree,
between every pair of neighbour nodes V; and V;, a new node is inserted. Such
node is of the form S;; = V; NV; and is called their separator. The set of all
separators in 7 is denoted by S. Under these conditions, at every moment the
universal belief function on V is assumed to factorize as

_ ®?:1 my; (14)

where mg stands for the belief function defined on S. Initially, the belief func-
tions assigned to the separators are the identity belief function, namely that
belief function whose mass is 1 for Qy and 0 otherwise, or equivalently, whose
commonality is constantly equal to 1. Let this identity be denoted by 1y.
Therefore, in this case expression (14) is clearly the universal belief function on
V.

In the HUGIN scheme, the message passing is performed in two steps. A
root node is selected in the tree, and then messages are sent starting from the
leaves. When a node receives messages from all its neighbour except that one
towards the root, it is allowed to send a message upwards, and so on until the
root node has received messages from all its neighbours. This is called the
COLLECT phase. Now the root node sends a message to all its neighbours, and
every node receiving a message itself, sends another one to all of its neighbour
except the one from which received the message, and so on until the leaves are
reached. This last is called DISTRIBUTE phase. In the HUGIN case, there is only
one type of message. Whenever a message is sent from V; to V; with separator
Si; = Vi NV}, the concerned belief functions change as



my =m;, mg, =m; "7, mj=m;®(mg, ®m§i1j)TVf (15)
where mgilj stands for the inverse of mg,;. It can be seen in the right side of the
expression above, that the last combination is extended to Vj. The extension of
a mass function is defined as follows: assume a mass function m; defined over a
set of variables V; C V;, A C Qy;, then

m (16)

1V m;(B) if A is the cylinder set of B C Qy,
i(4) = !
0 otherwise

Using the same proofs as in [8], it can be shown that after COLLECT and
DISTRIBUTE phase, each node and each separator contains the marginal of the
universal belief function over V.

4 HUGIN Propagation with Mass Functions

Note that in expression (15) unlike in the Shafer-Shenoy scheme, a division is
performed, more precisely, a combination by the inverse of a mass function.
This inverse is something the is not already defined, and this section is devoted
to find a nice expression of this inverse.

One choice one may make is to use commonality functions instead of mass
functions. In this case, there is an easy way of defining the inverse of a Dempster-
Shafer belief function, namely, given a set of variables V', A C Qy and @ a
commonality function on V,

1
L ity #o0
Q) ={ W (17)

0 otherwise

As it is pointed out by Lauritzen and Jensen [11], inverses according to
the former expression may result on functions that are not belief functions,
since they may lead to negative masses. However, marginalizations are always
performed over proper belief functions, and it holds that after a full propagation,
and using the inverse defined in (17), the functions on the nodes as well as on
the separators of 7 are proper belief functions, and, more precisely, they are
the marginals of the universal belief function m. This ensures the correctness
of HUGIN propagation with belief functions.

Nevertheless, as we pointed out before, mass functions are usually more com-
pact representations than commonalities. We define now an expression for the
inverse of a mass function so that there is no need of translating to commonal-
ities before applying the propagation scheme.



Definition 5 Let m be a mass function over a set of variables W, and with
focal elements T C 29" . Let T be the intersection closure of T. We define
the inverse of m as a function m™" with focal elements in T with the following
expression,

' m(B) AeT
S ) =

m~'(A) = BeT B4 (18)

0 IfA¢T

Note that if A is maximal in T, m~"'(4) = 1/m(A).

The following two results lead to show that the inverse is well defined. Firstly
we must fix some notation. By Qp;,.m, we denote the commonality function
corresponding to the combination of two masses m; ® may, i.e., the product

Qm1 ) ng-

Proposition 1 Let m be a mass function over a set of variables W, with focal
elements T, T the intersection closure of T and m™' as in (18). Then,

Qu- (4) = Q1 (A) VA C Qu
Proof. We will distinguish three cases.
o If A €T is maximal:
Qi (A) = S m'(B) =m~" (4)
BDA
and since A is maximal, this is equal to
1 1 1

m@d) S m(B) Qu(d)

BDA

= Q' (4)

where B € T.

e If A €T isnot maximal:

Q)= m (B =m A+ 3 m (B)

BDA BDA

Where B € T. Substituting the value of m~!(A) according to equation
(18), the expression above can be written as follows,

Z m(B) 34 B2A
BDA Bel Bel



o If A¢ T, we must consider two cases:
1. Assume 7 B € I" such that A C B. Then,

Qu-1(4) =Y m™'(B)= > m(B)=0

BDA BDA

since m~'(B) =0 for all B ¢ T. Also,

Qm(4)=> mB)= > mB)=0=Q,'(4) =0
B2A BDA
BgT
hence, 0 = Q,,-1(4) = Q' (A).

2. Assume 3C € T such that A C C. Let be B = min{C € T'|A C C}.
Such a B always exists, because otherwise we could find two minimal sets
B, B; € T both containing A and verifying that By € By and By € By
which is equivalent to say that A is contained in By N By and this is a
contradiction with the fact that B; and Bs are minimal. Then,

Qu-1(A)= > m ()= Y m™(C)=Qu-(B) =Q,'(B)
c2A C2B
cef Ccef

which is true since m~1(A4) = 0 and B € . Now, since m(A4) = 0, it holds

that
Qm(4) =Y m(C) =Y m(C) = Qu(B)
DA C2B
which implies that Q,'(A) = Q,,'(B), thus, Q,,-1(4) = Q,}(B) =
Q' (A)-

Theorem 2 Assume the conditions in proposition 1. Then,

m®m*1=1W

where Ly is the identity belief function on the set of variables W.

Proof. According to proposition 1, for all A € f, Qmom-1(A) =Qm(A) -

In this way we have defined the inverse of a mass function, that is not always
a mass function. However, as we pointed out before, after a full propagation the
results are proper belief functions. The important advance of this approach is
that no translations between masses and commonalities are necessary to peform
a full propagation.
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5 Representation of Belief Functions

The next step when thinking of designing a system for propagating belief func-
tions is to choose an appropriate representation. The key point here is how to
represent the focal elements, i.e. the focal sets. In this section we study the clas-
sical bit-string representation (BSR) and propose a new sparse representation,
that we call semilattice representation (SLR).

5.1 The bit-string representation (BSR)

Consider a set of variables W with finite state space Q. Let x1,...,2, be an
order of the configurations in Q. Choose any focal element A and define the
bit-string index of A, with respect to the order above, as

Iy= ) 2 (19)
z;EA

It can be shown that 0 < I4 < 2", where n = [Qw|. The index 0 corresponds
to the empty set and 2" to Q. Using this scheme, a mass function can be
represented as an array indexed by the bit-string indices and storing, in each
position of the array, the mass assign to the set corresponding to that position.
This representation has many advantages, namely, set operations as intersection
and union can be done by fast bit-wise operators, and it is quite easy to move
from masses to commonalities and the reverse (see [16]). However, an important
restriction arises; this representation is limited to small state spaces. Assume,
for instance, that W contains 8 binary variables, then, |Quw| = 256 and the
number of real numbers required to represent a mass function is 226, which is a
huge number for common computers. However, the number of focal elements of
a belief function is usually small with respect to the size of Qw (see [1]), what
suggests other sorts of representations taking advantage of this fact. In the next

section we propose such a representation.

5.2 The semilattice representation (SLR)

In this section we introduce a graphical sparse representation of real valued set
functions, thus, valid for any representation of belief functions. The goal is to
find a computational scheme where the main operations with quasi belief func-
tions can be done efficiently, namely, combination and inverse as well as other
operations necessary to HUGIN architecture, such as extension and marginal-
ization. In this section we are concerned with the definition of the structure.

Definition 6 Let Q be a finite set, f : 2% — IR a real valued set function. We
define the semilattice representation (SLR) of function f as a directed graph
G = (V, &), verifying the following properties:

1. The set of nodes V' C 2% is the set of focal elements of f.
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2. Attached to each node X € V, there is a real number corresponding to

f(X).

3. If there is an edge (X,Y) € E, it means that X C Y and there is not
another Z € V such that X C Z C Y.

Example 1 Let f be a function defined over a space Q = {aj,as,a3,a4},
and whose focal elements are X1 = {a1}, Xo = {as}, X5 = {as,a4}, X4 =
{a1,a2,a3}. Assume the values for those focal elements are f(X;) = 0.1,

f(X2) = 0.1, f(X3) = 0.2, f(X4) = 03. A SLR for [ is displayed in fig-
ure 2. Notice that node X5 is not a focal element (its value is actually 0). It
has been added to the diagram when computing the intersection closure of the
focal elements.

Now we want to add a new focal element, say X¢ = {a1, as,as} with f(Xs) =
0.3. We start examining the root nodes in the SLR to find out which of them are
subsets of X¢ if any. We find that X1, Xo C Xg. Hence, X¢ must be inserted
in the part of the lattice formed by the descendants of both X1 and X5, which
in this example are none. So, we must connect Xg to X1 and Xs, obtaining the
diagram in figure 3.

X1{al, 0.1} X2:{a4, 0.1}

[x4:{ al,a2,a3,0.3}} [ X3:{a2,a4,0.2} }

Figure 2: A SLR for f.

[x4:{ al,a2,£,0.3}} [ X3:{a2,a4,0.2} }

X6:{al,a3,24,0.3}

Figure 3: The SLR after inserting Xg.

When constructing the semi lattice, the sets should be inserted in such a way
that if a given set X is inserted after any other set Y, then X ¢ Y. In this way,
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it is avoided to check at every insertion which ones should be the descendants of
the new node. To achieve this, it is enough to settle an ordering for the elements
to be inserted verifying that for any two sets X;, X, if | X;| <|X;| then i < j.

The algorithm below describes the insertion procedure, where G = (V,€) is
the semi lattice, X; is the set to be added and f(X;) is the value attached to
the set.

INSERT(G,X;,f(X:))

1. Start with an empty set I.
2. For all X; such that X; is a root and X; C X;, do I = I U {j}.

3. Let H be the set of children of those nodes whose indices are in I and are
subsets of X;. Remove from I those indices corresponding to parents of
the nodes in H.

4. 1f H # 0 do

e For each X; € H,let I =TU{j}.
e Go to step 3.

5. Add X; to V and connect X; to X; for all j € I.
6. Attach to node X; the pair {X;, f(X;)}

The set I is intended to contain the indices of the nodes that will be connected
to X,

In step 2, the algorithm starts exploring the root nodes to find out which of
them are subsets of X;. If any one is found, set I is updated.

Then, in step 3, the idea is to seek within the descendants of the nodes whose
indices are in I, those being subsets of Xj.

Notice that when a new set is indexed in I, its parents must be removed
from I, to keep condition 3 in definition 6.

Making use of the algorithm above, it is easy to specify the way of constructing
the SLR corresponding to any real valued set function with finite support.

Let Q be a finite set, f : 2 — IR a real valued set function. Let T =
{X1,...,X,} be the support of f. Assume it holds that | X;| < |X;| =i < j.
The following algorithm builds a SLR G = (V, &) for f.
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SLR(G,f,T)

1. Fori=1ton

(a) INSERT(G,X;,f(X3))

The following example illustrates the construction of a SLR.

Example 2 Let f be a real valued set function defined over the power set of
O = {ay,as,as,a4} with focal elements X1 = {a1}, Xo = {as}, X3 = {as,a4},
Xy ={a1,a0,a3}, X5 = Q. Let the values for these focal elements be f(X;) =
0.1, F(X,2) = 0.1, f(X5) = 0.2, f(X4) =0.3, f(X5) =0.3. The algorithm starts
inserting X1 and Xo. The insertion is straightforward and no connections have
to be made between them. The following set to be inserted is X3. Then we look
at the root nodes, finding Xo to be the one contained in X3. Thus, X3 will be
connected to Xy (see figure 4). In the same fashion, X4 is added, resulting on the
SLR in figure 5. Now we proceed to include X5. First we explore the root nodes,
realizing that both are subsets of X5. Thus, the exploration is continued from
the children of X1 and Xo, namely, X3 and X4. These ones are also subsets of
X5 and, since there are no more nodes to explore, X5 will be connected to they
both. The resulting SLR is displayed in figure 6.

X3:{a2,a4,0.2}

Figure 4: State of the diagram after inserting X3.

Now, the SLR must be extended to deal with sets of configurations of vari-
ables. Each configuration can be represented as a string of characters. For
instance, assume we have two variables X; and X5, and a configuration consist-
ing of X taking its first value and X, taking its second value. This configuration
can be represented as the string X101X202. Instead of repeating a configuration



X1:{al, 0.1} X2:{ad, 0.1}
X4:{al,a2, X3:{a3,a4,0.2}
a3,0.3}

Figure 5: State of the diagram after inserting Xjy.

- -
X1:{al, 0.1} X2:{a4, 0.1}
- -
Y Y
X4:{al,a2, X3:{a2,4,0.2}
a3,0.3}

X5:{al,a2,
a3,a4,0.3}

Figure 6: State of the diagram after inserting X5.

14
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each time it appears in a focal set, all the configurations should be stored in
a general table, and then referenced from any set in the system. The general
table can be implemented as a hash table. From now on we shall denote by H
such table.

The following step is to define how to represent each focal element in a SLR.
There are efficient representations of sets, for instance, balanced binary search
trees, which provides efficient ways of inserting elements and checking for mem-
bership, through functions with complexity O(logn) where n is the number of
elements in the set. Each element of the set is just an integer referencing a
configuration in 7. The correspondence between that number and a configura-
tion is defined as follows: Let N be the number of cells in H, and let = be a
configuration stored in the j-th position of the i-th cell. Then, the identifier of
that configuration is the integer resulting from concatenating the two numbers
i and j resulting in a number ji. Note that if N is close to the total number
of configurations in the system, look-up operations in H are done in a constant
time. A detailed explanation of these types of structures can be found in [9].

5.2.1 Computing the Intersection Closure of a SLR

In some cases, it is necessary to add a new feature to the SLR, namely, it must
be closed for intersections. The reason is that the inverse of a mass function
is defined over the intersection closure of its support, as described in equation
(18). Here we explain how to compute the intersection closure of a SLR.

Taking into account the two following facts, the task can be simplified.
Firstly, the intersection of a given set with any of its subsets is the subset itself.
Secondly, for any two sets A and B, and C C B, it holds that ANC C AN B
and, furthermore, ANC = (ANB)NC.

Then, the strategy to obtain the closure is to divide the nodes in the SLR
into different levels. The first one would be the set of all nodes that are leaves
(i.e. they have no descendants). Then compute the pairwise intersections for
those sets in the first level and insert the new sets into the SLR. The following
level would be that consisting of the nodes that are direct predecessors of those
in the first level. Again the intersections are computed and the procedure is
repeated until there are no more nodes to be explored.

As we said before, whenever a new intersection is calculated, it must be
inserted into the SLR. Notice, however, that algorithm INSERT, is not ap-
plicable since it is designed to insert maximal sets. Here we have to modify it
to allow insertions of non maximal sets. Thus, some additional tasks must be
carried out. The detailed algorithm is as follows.

Let G = (V,€) be a SLR, and C = AN B the element to be inserted.
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INSERT2(G,C,A,B)

1. Start with an empty set I.
2. For all X; such that X; is aroot and X; CC,do I =1U {j}.

3. Let H be the set of children of those nodes whose indices are in I, and that
are subsets of C'. If any of them is equal to C, go to step 7. Otherwise,
remove from I those indices corresponding to parents of the nodes in H.

4. 1f H # 0 do

e For each X; € H,let I =TU{j}.
e Go to step 3.

5. Add C to V.

6. For each X such that k € I, substitute every link (X,Y) € £ such that
C C Y, by the pair of links (X}, C) and (C,Y).

7. If A is not reachable from C, add the link (C, A).
8. If B is not reachable from C, add the link (C, B).

9. Attach to node C the value 0.0

Now that insertion is defined, it is quite easy to specify an algorithm for com-
puting the intersection closure:

CLOSE(G)

1. Let £ ={Xy,..., Xy} be the set of leaves in G.
2. Do while £ # 0

(a) Fori=1ton—1do
i. Forj=i+1tondo
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e Let be X ZXZﬂX]
e If X # (), INSERT2(G,X,X,,X;).

(b) Replace £ by the sets of direct predecessors of its elements. Let
L ={Xy,...,X,} be the resulting set. Go to step 2.

Example 3 Assume the SLR in figure 6. We want to close it for intersections
using the algorithm above. We start up from the leaves, taking L = {X5}. Since
there is only one element in L we go to step 2.(b), obtaining L = {X4, X3}. Now
we must compute X4 N X3 resulting in X¢ = {az}. Inserting this set according
to algorithm INSERT2 we obtain the SLR in figure 7. Now we replace L by
L ={X1, X2, Xg}, finding out that all the intersections are empty, thus, no new
elements must be inserted, and, since there are no direct predecessors of nodes
in L, the algorithm is finished and the SLR is closed for intersections.

£x1:{a1, 0.1} ] E X6:{a2,0.0} ] X2:{ad, 0.1}

X3:{a2,84,0.2}

X5:{al,a2,
a3,a4,0.3}

Figure 7: A SLR closed for intersections.

6 Belief Functions Operations on the SLR

Agsume the masses are represented by SLRs. We shall describe how the op-
erations in expression (15) should be done over that structure. Namely, these
operations are marginalization, inverse, combination and extension.

We start up with marginalization. Assume we have a mass function my
over a set of variables V', represented by a SLR Gy, and we want to compute
mg = m%,s for S C A. The procedure is quite simple: for each focal element of
my, compute its projection to S and update its mass. The following algorithm
computes Gg, a SLR for mg.
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MARGINAL(Gy,S)

1. Select an ancestral order! of the sets in the SLR Gy. That is, perform
a width first traversal over the lattice. Let {A4,..., A, } be the resulting
order.

2. Fori=1ton

(a) INSERT(Gs,Ar" my (4)))

(3

Note that an ancestral order always verifies the property required for applying
algorithm INSERT, that is, if A; C A; then ¢ < j. If that property holds in
Gy, it is clear that if A%S C Ajs then i < j, thus, the ordering in Gy is still
valid for Gg.

There is a fact to be considered here. If the set being inserted in Gg is
already an element A; of Gg then, instead of assigning the mass mV(AZTV), the

procedure must be to increase its old mass in an amount of mV(AZTV).

The following operation is the inverse. We have a mass my represented by
a SLR Gy = (Vy,€v), and the goal is to compute my,'. According to (18), if
T" is the set of focal elements of my, those of m‘_/1 are also in I'. Hence, there
is no need to construct a new SLR for the inverse, but the old one can be used
just updating the masses. But it will be necessary to store two values at each
node instead of one: the value of my and of m(/l, in order to facilitate the
computations.

Equation (18) shows a way of computing the inverse, in which, for each node,
the sum of the inverses and the masses in all the nodes containing it is required.
Notice, however, that before computing the inverse, its attached SLR has to be
closed for intersections. An algorithmic expression for equation (18) could be
as follows.

L An order of the vertices in a graph is said to be ancestral if every node is placed before
all its descendants.
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INVERSE (Gy)

1. CLOSE(Gy).

2. Select an ancestral order for the sets in Vy. Let {A;,...,A,} be such
order.

3. For i = n downto 1 do

(a) a=0,b=my(4;).
(b) For each node B € Vy in any path from A; upwards (i.e. A; C B)
do
i. a=a+my'(B)
ii. b=0b+ mv(B)
. 1

(©) mi'(4) = 5 —a

Notice that in this way, when we are going to calculate one inverse, all the
required information is known, because we have computed previously the inverse
for every superset of the current set in the lattice.

The next operation is extension. Assume we have a SLR for a mass function
m; over a set of variables V;, and we want to obtain a SLR for mTVj, where

(3
Vi C V;. According to equation (16), the focal elements of mZTVj are just the
cylinder sets of the focal elements of m;, that is, for each A focal element of m;,
its cylinder set, A™5, will be a focal element of szVj
focal elements. Besides, m '’ (ATV5) = m;(A). Hence, we can get the SLR for
the extension by changing each set in the SLR for m; by its cylinder set.
Finally, we must define an algorithm for combination. More precisely, we
want to perform the combination m§ ® mgl in expression (15).
Assume we have two mass functions, m; and mj, defined over the sets of
variables V. Let G; = (V;,&;) be the SLR associated to m; and G; = (V;, ;) the
SLR associated to m;. The following algorithm computes the SLR Gy, = (Vi, &)

corresponding to my = m; ® m;:

, and there are no more
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COMBINE(G;,G;)

. Assume Vi = {Al ..... An} and V]‘ = {Bl, .. .,Bm}.

. Compute every nonempty intersection S = A;UB;, i =1,...,n, j =
1,...,m and store it in a list £ together with the value f(S) = m;(4;) -

m;(B;).

. Sort £ according to the cardinal of the sets on it. Let {C4,...,C,} be
that order.

.Fori=1top

(a) INSERT(Gx,Ci,f(C;)). If C; is already in the SLR Gy, instead of
assigning it a mass f(C;), just update its old mass in an amount of

f(Cy).

Computing Bel and () on the SLR

In this section we deal with the following task: given a set of variables V', a
belief function my on V and a SLR Gy, for any set A C Qy, what is the value
of Bel(A) and Q(A)T

The SLR provides an easy way of answering these questions, just performing

graph traversals over the structure. The following algorithm computes Bel(A):

BEL(Gv,A)

1. Let R be the set of nodes in Gy which are direct predecessors of A.

2. Bel(A) =my(4)+ Y _ bPROP(Gy,B,A)
BER

where bPROP(Gy,B,A) is a function returning a real value and defined as
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bPROP (Gy,B,A)

1. s =my(B).
2. Mark B as visited.

3. For each node C parent of B in Gy such that C' has not been already
visited,

(a) s =s+bPROP(Gy,C,A)

4. return (s)

The way of computing the commonality of a given set is completely analogous,
but instead of starting from the roots, the procedure must start from the leaves
and perform a traversal to the roots:

Q(gV,A)

1. Let £ be the set of nodes in Gy which are direct successors of A.

2. Q(A)= > qPROP(Gy,B,A)
ACBeL

where qPROP (Gy,B,A) is a function returning a real value and defined as

qPROP (Gy,B,A)

1. s =my(B).
2. Mark B as visited.

3. For each node C child of B in Gy such that C has not been already visited,
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(a) s = s+qPROP(Gy,C,A)

4. return (s)

7 Conclusions

In this paper we have studied a graphical structure for performing a HUGIN
like propagation for Dempster-Shafer belief functions. This structure is based in
hierarchical trees [6, 12], and adding the feature that it is closed for intersections
in some cases where it is necessary (when computing the inverse of a mass
function).

Besides, a definition for the inverse of a mass function is proposed. This does
not always result in a proper belief function, but it allows to perform an entire
propagation with no need of translating into commonalities before computing
divisions and then translating back to masses again. It can be shown that, after
a full propagation, the result is a proper belief function [11].
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