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Naive Bayes models have been successfully used in classification problems where the
class variable is discrete. These models have also been applied to regression or prediction
problems, i.e. classification problems where the class variable is continuous, but usually
under the assumption that the joint distribution of the feature variables and the class
is multivariate Gaussian. In this paper we are interested in regression problems where
some of the feature variables are discrete while the others are continuous. We propose
a Naive Bayes predictor based on the approximation of the joint distribution by a Mix-
ture of Truncated Exponentials (MTE). We have followed a filter-wrapper procedure
for selecting the variables to be used in the construction of the model. This scheme is
based on the mutual information between each of the candidate variables and the class.
Since the mutual information can not be computed exactly for the MTE distribution,
we introduce an unbiased estimator of it, based on Monte Carlo methods. We test the
performance of the proposed model in artificial and real-world datasets.

Keywords: Bayesian networks, mixtures of truncated exponentials, naive Bayes models,
probabilistic prediction, regression.

1. Introduction

The problem of classification consists of determining the class to which an individual

belongs given that some features about that individual are known. In other words,

classification means to predict the value of a class variable given the value of some

other feature variables. Naive Bayes models have been successfully employed in

classification problems where the class variable is discrete.7 A naive Bayes model

is a particular class of Bayesian network. A Bayesian network is a decomposition

of a joint distribution as a product of conditionals, according to the independence
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assumptions induced by the structure of a directed acyclic graph in which each

vertex corresponds to one of the variables in the distribution,14 and attached to

each node there is a conditional distribution for it given its parents. The naive

Bayes structure is obtained as a graph with the class variable as root whose only

arcs are those that aim from the class variable to each one of the features.

When the class variable is continuous, the problem of determining the value

of the class for a given configuration of values of the feature variables is called

regression or prediction rather than classification. Naive Bayes models have been

applied to regression problems under the assumption that the joint distribution of

the feature variables and the class is multivariate Gaussian.9 It implies that the

marginals for all the variables in the model should be Normal as well, and therefore

the model is not valid for discrete variables.

When the normality assumption is not fulfilled, the problem of regression with

naive Bayes models has been approached using kernel densities to model the condi-

tional distributions in the Bayesian network.6 However, in both models (Gaussian

and kernel-based), the results are poor compared to the performance of the M5’

algorithm.27 Furthermore, the use of kernels introduces a high complexity in the

model (there is one term in the density for each sample point), which can be prob-

lematic especially if the regression model is a part of a larger Bayesian network,

because standard algorithms for carrying out the computations in Bayesian net-

works are not directly valid for kernels.

In this paper we are interested in regression problems where some of the feature

variables are discrete or qualitative while the others are continuous. We propose a

Naive Bayes predictor based on the approximation of the joint distribution by a

Mixture of Truncated Exponentials (MTE). The MTE model has been proposed

in the context of Bayesian networks as a solution to the presence of discrete and

continuous variables simultaneously,13 and can perform well as an exact model as

well as an approximation of other probability distributions.2,3

The rest of the paper is organised as follows. In section 2 we review the necessary

concepts of Bayesian networks and explain how they can be used for regression. The

MTE model is introduced in section 3. Section 4 is devoted to the comparison of

the MTE model with other approaches to handle discrete and continuous variables

simultaneously in Bayesian networks. Afterwards, we propose the naive Bayes re-

gression models based on MTEs in section 5, and a variable selection scheme for

it in section 6. The performance of the proposed model is experimentally tested in

section 7. The paper ends with conclusions in section 8.

2. Bayesian networks and regression

Consider a problem defined by a set of variables X = {X1, . . . , Xn}. A Bayesian

network is a directed acyclic graph where each variable is assigned to one node,

which has associated a conditional distribution given its parents.10,14 An arc linking

two variables indicates the existence of probabilistic dependence between them.



October 8, 2007 9:58 WSPC/INSTRUCTION FILE moralesetal

Selective naive Bayes for regression based on mixtures of truncated exponentials 3

An important feature of Bayesian networks is that the joint distribution over X

factorises according to the d-separation criterion as follows:14

p(x1, . . . , xn) =
n
∏

i=1

p(xi|pa(xi)) , (1)

where Pa(Xi) denotes the set of parents of variable Xi and pa(xi) is a configuration

of values of them. Figure 1 shows a Bayesian network which encodes the distribution

p(x1, x2, x3, x4, x5) = p(x1)p(x2|x1)p(x3|x1)p(x5|x3)p(x4|x2, x3) .

X1

X2 X3

X4 X5

Fig. 1. A sample Bayesian network.

A Bayesian network can be used for classification purposes if it consists of a

class variable, C, and a set of feature variables X1, . . . , Xn, so that an individual

with observed features x1, . . . , xn will be classified as a member of class c∗ obtained

as

c∗ = arg max
c∈ΩC

p(c|x1, . . . , xn) , (2)

where ΩC denotes the support of variable C. Similarly, a Bayesian network can be

used for regression, i.e, when C is continuous. However, in this case the goal is to

compute the posterior distribution of the class variable given the observed features

x1, . . . , xn, and once this distribution is computed, a numerical prediction can be

given using some characteristic of the distribution, as the mean or the median.

Note that p(c|x1, . . . , xn) is proportional to p(c)× p(x1, . . . , xn|c), and therefore

solving the regression problem would require specifying an n dimensional distri-

bution for X1, . . . , Xn given the class. Using the factorisation determined by the

Bayesian network, this problem is simplified. The extreme case is the so-called
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naive Bayes structure,4,7 where all the feature variables are considered independent

given the class. An example of naive Bayes structure can be seen in Fig. 2.

Class

Feature 1 Feature 2 Feature n· · ·

Fig. 2. Structure of a Naive Bayes classifier/predictor.

The independence assumption behind naive Bayes models is somehow compen-

sated by the reduction on the number of parameters to be estimated from data,

since in this case, it holds that

p(c|x1, . . . , xn) = p(c)

n
∏

i=1

p(xi|c) , (3)

which means that, instead of one n-dimensional conditional distribution, n one-

dimensional conditional distributions are estimated.

3. The MTE model

Throughout this paper, random variables will be denoted by capital letters, and

their values by lowercase letters. In the multi-dimensional case, boldfaced characters

will be used. The domain of the variable X is denoted by ΩX. The MTE model is

defined by its corresponding potential and density as follows:13

Definition 1. (MTE potential) Let X be a mixed n-dimensional random vector.

Let Y = (Y1, . . . , Yd) and Z = (Z1, . . . , Zc) be the discrete and continuous parts of

X, respectively, with c + d = n. We say that a function f : ΩX 7→ R
+
0 is a Mixture

of Truncated Exponentials potential (MTE potential) if for each fixed value y ∈ ΩY

of the discrete variables Y, the potential over the continuous variables Z is defined

as:

f(z) = a0 +

m
∑

i=1

ai exp







c
∑

j=1

b
(j)
i zj







(4)

for all z ∈ ΩZ, where ai, i = 0, . . . , m and b
(j)
i , i = 1, . . . , m, j = 1, . . . , c are real

numbers. We also say that f is an MTE potential if there is a partition D1, . . . , Dk

of ΩZ into hypercubes and in each Di, f is defined as in Eq. (4).
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Example 1. The function φ defined as

φ(z1, z2) =























2 + e3z1+z2 + ez1+z2 if 0 < z1 ≤ 1, 0 < z2 < 2

1 + ez1+z2 if 0 < z1 ≤ 1, 2 ≤ z2 < 3

0.25 + e2z1+z2 if 1 < z1 < 2, 0 < z2 < 2

0.5 + 5ez1+2z2 if 1 < z1 < 2, 2 ≤ z2 < 3

is an MTE potential since all of its parts are MTE potentials.

Definition 2. (MTE density) An MTE potential f is an MTE density if

∑

y∈ΩY

∫

ΩZ

f(y, z)dz = 1 .

A conditional MTE density can be specified by dividing the domain of the con-

ditioning variables and specifying an MTE density for the conditioned variable for

each configuration of splits of the conditioning variables. Moral et al.13 propose a

data structure to represent MTE potentials based on a mixed tree data structure.

The formal definition of a mixed tree is as follows:

Definition 3. (Mixed tree) We say that a tree T is a mixed tree if it meets the

following conditions:

i. Every internal node represents a random variable (either discrete or continuous).

ii. Every arc outgoing from a continuous variable Z is labeled with an interval of

values of Z, so that the domain of Z is the union of the intervals corresponding

to the arcs emanating from Z.

iii. Every discrete variable has a number of outgoing arcs equal to its number of

states.

iv. Each leaf node contains an MTE potential defined on variables in the path from

the root to that leaf.

Mixed trees can represent MTE potentials defined by parts. Each branch in

the tree determines one sub-region of the space where the potential is defined, and

the function stored in the leaf of a branch is the definition of the potential in the

corresponding sub-region.

Example 2. Consider a regression model with continuous class variable X , and

with two features Y and Z, where Y is continuous and Z is discrete. One example of

conditional densities for this regression model is given by the following expressions:

f(x) =

{

1.16 − 1.12e−0.02x if 0.4 ≤ x < 4 ,

0.9e−0.35x if 4 ≤ x < 19 .
(5)
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f(y|x) =























1.26 − 1.15e0.006y if 0.4 ≤ x < 5, 0 ≤ y < 13 ,

1.18 − 1.16e0.0002y if 0.4 ≤ x < 5, 13 ≤ y < 43 ,

0.07 − 0.03e−0.4y + 0.0001e0.0004y if 5 ≤ x < 19, 0 ≤ y < 5 ,

−0.99 + 1.03e0.001y if 5 ≤ x < 19, 5 ≤ y < 43 .

(6)

f(z|x) =























0.3 if z = 0, 0.4 ≤ x < 5 ,

0.7 if z = 1, 0.4 ≤ x < 5 ,

0.6 if z = 0, 5 ≤ x < 19 ,

0.4 if z = 1, 5 ≤ x < 19 .

(7)

The representation of the densities in Eq. (5) and (7) can be seen in Figures 3

and 4 respectively. We do not show the representation of the potential in Eq. (6) as

it is analogous to the others.

X

1.16 − 1.12e−0.02x 0.9e−0.35x

0.4 ≤ x < 4 4 ≤ x < 19

Fig. 3. A mixed probability tree representing the density in Eq. (5).

X

Z Z

0.4 ≤ x < 5 5 ≤ x < 19

0.3 0.7 0.6 0.4

0 1 0 1

Fig. 4. A mixed probability tree representing the density in Eq. (7).

4. Comparison with other approaches

As we mentioned in the introduction, we are concerned with problems where contin-

uous and discrete (or even qualitative) variables appear simultaneously. It is possible
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to construct, from a modeling perspective, Bayesian networks where this situation

appears. However, as far as we know there are not many solutions where efficient

reasoning and learning algorithms have been successfully developed (see the works

on MTEs13,22 for a deeper discussion).

The most general solution consists of discretising the continuous variables, so

that the regression problem is transformed into a regular classification problem for

qualitative attributes. The drawback of this approach is that it is a rather rough

approximation, and therefore the accuracy of the obtained models is very domain-

dependent.

A well known model for which efficient learning and inference algorithms exist,

and that does not require any approximation, is the so-called conditional Gaussian

(CG) model,11,12 where the joint distribution over the discrete variables is multi-

nomial, and for each configuration of the discrete variables, the joint distribution

over the continuous ones is multivariate normal. An important limitation of the CG

model is that networks where discrete variables have continuous parents are not

allowed, and therefore, networks with structures like the naive Bayes, where the

class is continuous, are not possible.

If no discrete variables have continuous parents, the Gaussian model is perfectly

valid and has been applied in several settings, including classification.8,9,16 In those

works, the conditional distribution for a continuous variable given its continuous

parents is modeled as a normal distribution where the mean is a linear function of

the parents (this is called the conditional linear Gaussian (CLG) model).

A comparison of the MTE model versus discretisation and the CLG model for

continuous densities can be found in the paper by Cobb et al.2 where it is shown

that the MTE is competitive with the other ones.

An advantage of MTE models with respect to the Gaussian case is that no

restriction on the structure of the network is applied, which means that the naive

Bayes structure is perfectly valid. Furthermore, Cobb et al.3 showed that the MTE

distribution can approximate several well known distributions, including the normal,

very accurately, and they even give the expression for transforming a normal density

into an MTE.

A recent development in the field of Gaussian models was introduced by

Shenoy.25 He developed an efficient and exact algorithm for reasoning in networks

where the conditional distributions are represented as mixtures of Normal densities.

The problem of discrete variables with continuous parents is handled by transform-

ing the structure of the network by means of arc reversal operations, until no discrete

variable has continuous parents. The drawback of this approach is that it is only

valid when we already have the network. If we were learning from data, we would

have to use a different model to learn the distribution of the discrete variables

with continuous parents, and then transform it, after arc reversal, into a mixture of

Gaussians. So far, we are not aware of learning algorithms able to recover network

structures and parameters taking this into account.

Therefore, according to this discussion, and considering the fact that there exist
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efficient algorithms for learning22 and reasoning,21,23 our opinion is that the MTE

approach reaches a compromise between generality and flexibility.

Regression problems have been approached from two perspectives using Bayesian

networks. The first one uses a naive Bayes structure, where the conditional densities

and the prior density of the class are modeled using Gaussian kernels.6 This model

allows the presence of discrete feature variables, since the conditional distribution

is obtained as a quotient of kernel densities, using Bayes’ rule. One problem of the

resulting model, as pointed out by the authors,6 is that it is not competitive with

the M5’ algorithm27 for most of the test databases. Another drawback of kernels is

that they are not efficient from the point of view of Bayesian networks, since they

have one term for each sample point. In stand-alone regression models, it is not a

big problem, but if the regression model is a part of a bigger network, it can be

seriously inefficient, especially for reasoning tasks, which involve the multiplication

of densities, whose size would increase exponentially. The MTE framework incor-

porates the good features of kernels without their efficiency problems,18,20 as it is

briefly commented in section 5.

The approach based on the Gaussian model9, has the important restriction

that it is not valid with discrete feature variables. Furthermore, the experiments

reported by Gámez and Salmerón,9 for continuous variables, show that the model

is outperformed also by M5’.

The M5’ algorithm27 is an improved version of the model tree introduced by

Quinlan.17 The model tree is basically a decision tree where the leaves contain a

regression model rather than a single value, and the splitting criterion uses the

variance of the values in the database corresponding to each node rather than the

information gain.

5. The naive Bayes regression model based on MTEs

Our proposal consists of solving the regression problem in which some feature vari-

ables are discrete and some other continuous using a regression model with naive

Bayes structure, and modeling the corresponding conditional distributions as MTEs.

More precisely, we will use a 5-parameter MTE for each split of the support of the

variable, which means that in each split there will be 5 parameters to be estimated

from data:

f(x) = a0 + a1e
a2x + a3e

a4x, α < x < β . (8)

The reason to use the 5-parameter MTE is that it has shown its ability to fit the

most common distributions accurately, while the model complexity and the number

of parameters to estimate is low.3

We follow the estimation procedure developed by Rumı́ et al.,22 using the im-

provements proposed by Romero et al.,18 which has these main steps:

(1) A Gaussian kernel density is fitted to the data.
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(2) The domain of the variable is split according to changes in concavity/convexity

or increase/decrease in the kernel.

(3) In each split, a 5-parameter MTE is fitted to the kernel by least squares esti-

mation.

In this way we get a smoothed estimation of the target density, as using kernels,

but considerably reducing the number of terms necessary to represent the density.20

Once the model is constructed, it can be used to predict the value of the class

variable given that the values of the feature variables are observed. The forecasting

is carried out by computing the posterior distribution of the class given the observed

values for the features. A numerical prediction for the class value can be obtained

from the posterior distribution, through its mean or its median. The choice of the

mean or the median is problem-dependent. A situation in which the median can

be more robust is when the training data contains outliers, and therefore the mean

can be very biased towards the outliers. In this paper we have computed the pos-

terior distribution using the Shenoy-Shafer algorithm24 for probability updating in

Bayesian networks, but adapted to the MTE case.21,23 However, any other inference

algorithm that does not require divisions would be valid.13

The expected value of a random variable X with a density defined as in Eq. (8)

is computed as

E[X ] =

∫ ∞

−∞

xf(x)dx =

∫ β

α

x(a0 + a1e
a2x + a3e

a4x)dx

= a0
β2 − α2

2
+

a1

a2
2

(

(a2β − 1)ea2β − (a2α − 1)ea2α
)

+

a3

a2
4

(

(a4β − 1)ea4β − (a4α − 1)ea4α
)

.

If the density is defined by parts, the expected value would be the sum of the

expression above in each one of the parts.

The expression of the median, however, cannot be obtained in closed form, since

the corresponding distribution function cannot be inverted. Therefore, we have de-

cided to estimate it using the search procedure described below, which approximates

the median with an error lower than 10−3 in terms of probability. The input pa-

rameter for the algorithm is the n-part density function, i.e.,

f(x) = fi(x) αi < x < βi, i = 1, . . . , n ,

where each fi is defined as in (8).
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Algorithm MEDIAN

INPUT:

• A density f over interval (αi, βi).

OUTPUT:

• An estimation of the median of a random variable with density f , with error

lower that 10−3 in terms of probability.

(1) found := false; accum := 0.0; i := 0.

(2) While ((found == false) and (i ≤ n))

(a) m :=

∫ βi

αi

fi(x)dx.

(b) If (accum + m) ≥ 0.5, found := true.

(c) Else

• i := i + 1.

• accum := accum + m.

(3) max := βi; min := αi; found := false.

(4) While (found == false)

(a) mid := (max + min)/2

(b) p := acum +

∫ mid

min

fi(x)dx

(c) If (⌊0.5 ∗ 1000⌋ == ⌊p ∗ 1000⌋), found := true.

(d) Else

• If (p > 0.5) max := mid

• Else min := mid.

(5) Return mid.

6. Selecting the feature variables

An important issue to address in any classification or regression problem is to choose

the feature variables to be included in the model. In general, it is not true that

including more variables increases the accuracy of the model. It can happen that

some variables are not informative for the class and therefore including them in the

model provides noise to the predictor. Additionally, unnecessary variables cause an

increase in the number of parameters that need to be determined from data.

There are different approaches to the problem of selecting variables in regression

and classification problems:

• The filter approach, which in its simplest formulation consists of establishing a

ranking of the variables according to some measure of relevance respect to the

class variable, usually called filter measure. Then a threshold for the ranking is

selected and variables below that threshold are discarded.



October 8, 2007 9:58 WSPC/INSTRUCTION FILE moralesetal

Selective naive Bayes for regression based on mixtures of truncated exponentials 11

• The wrapper approach proceeds by constructing several models with different

sets of feature variables, and finally the model with higher accuracy is selected.

• The filter-wrapper approach is a mixture of the former ones.19 First of all, the

variables are ordered using a filter measure and then they are incrementally

included or excluded from the model according to that order, so that a variable

is included whenever it increases the accuracy of the model.

We measure the accuracy of a model in this way:

(1) The database containing the information for the feature variables and the class

is divided into two parts, Dl and Dt.

(2) The model is estimated using database Dl.

(3) The accuracy of the model is measured using database Dt, by measuring the

root mean squared error between the actual values of the class and those ones

predicted by the model for the records in database Dt. If we call c1, . . . , cm

the values of the class for the registers in database Dt and ĉ1, . . . , ĉm the cor-

responding estimates provided by the model, the root mean squared error is

obtained as28

rmse =

√

√

√

√

1

m

m
∑

i=1

(ci − ĉi)2 . (9)

As the wrapper approach may be too costly, in this paper we have followed a

filter-wrapper approach, based on the one proposed by Ruiz et al.,19 using as filter

measure the mutual information between each variable and the class. The mutual

information has been successfully applied as filter measure in classification problems

with continuous features.15 The mutual information between two random variables

X and Y is defined as

I(X, Y ) =

∫ ∞

−∞

∫ ∞

−∞

fXY (x, y) log2

fXY (x, y)

fX(x)fY (y)
dydx , (10)

where fXY is the joint density for X and Y , fX is the marginal density for X and

fY is the marginal for Y .

In the case of MTE potentials, where each density is expressed as in Eq. (8), the

integral in Eq. (10) cannot be obtained in closed form. Therefore, we have chosen

to estimate the value of the mutual information. The estimation procedure that we

have designed is based on the following results.

Proposition 1. Let X and Y be two continuous random variables with densities fX

and fY respectively, and joint density fXY . Let fX|Y denote the conditional density

of X given Y . Let Y1, . . . , Yn be a sample drawn independently from distribution

fY (y). Let X1, . . . , Xn be a sample such that each Xi, i = 1, . . . , n is drawn from
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distribution fX|Y (x|Yi). Then,

Î(X, Y ) =
1

n

n
∑

i=1

(

log2 fX|Y (Xi|Yi) − log2 fX(Xi)
)

(11)

is an unbiased estimator of I(X, Y ).

Proof. According to the way in which samples X1, . . . , Xn and Y1, . . . , Yn are ob-

tained, it follows that the joint sample of bivariate points (X1, Y1),. . ., (Xn, Yn) is

actually drawn from the distribution fXY (x, y). Therefore, if we denote by EfXY

the expected value with respect to density fXY , we have that

E[Î(X, Y )] = EfXY

[

1

n

n
∑

i=1

(

log2 fX|Y (Xi|Yi) − log2 fX(Xi)
)

]

=
1

n

n
∑

i=1

EfXY

[

log2 fX|Y (Xi|Yi) − log2 fX(Xi)
]

=
1

n

n
∑

i=1

EfXY

[

log2

fX|Y (Xi|Yi)

fX(Xi)

]

= EfXY

[

log2

fX|Y (X |Y )

fX(X)

]

=

∫ ∞

−∞

∫ ∞

−∞

fXY (x, y) log2

fX|Y (x|y)

fX(x)
dydx

=

∫ ∞

−∞

∫ ∞

−∞

fXY (x, y) log2

fXY (x, y)

fX(x)fY (y)
dydx

= I(X, Y ) .

Therefore, in order to estimate the mutual information between two variables X

and Y , it is required to generate a sample of pairs (Xi, Yi) and then apply formula

(11). The way to sample from an MTE density is described in Moral et al.13

The consistency of estimator Î(X, Y ) is guaranteed by the next proposition.

Proposition 2. Let În(X, Y ) denote estimator Î(X, Y ) when it is computed from

a sample of size n. The succession {În(X, Y )}∞n=1 is consistent.

Proof. It is enough to show that

(i) lim
n→∞

E[În(X, Y )] = I(X, Y ) and

(ii) lim
n→∞

Var(În(X, Y )) = 0.

The proof of (i) is trivial, since according to theorem 1, E[În(X, Y )] = I(X, Y )

for all n > 0 and therefore the limit is equal to I(X, Y ) as well.

In order to prove (ii), we need the expression of the variance of the estimator.
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Var(În(X, Y )) = Var

(

1

n

n
∑

i=1

(

log2 fX|Y (Xi|Yi) − log2 fX(Xi)
)

)

=
1

n2
Var

(

n
∑

i=1

(

log2 fX|Y (Xi|Yi) − log2 fX(Xi)
)

)

=
1

n2

n
∑

i=1

Var
(

log2 fX|Y (Xi|Yi) − log2 fX(Xi)
)

=
1

n2
nVar

(

log2 fX|Y (X |Y ) − log2 fX(X)
)

=
1

n
Var

(

log2 fX|Y (X |Y ) − log2 fX(X)
)

where Var
(

log2 fX|Y (X |Y ) − log2 fX(X)
)

does not depend on n and is finite when-

ever distributions fX|Y and fX are positive. Therefore, we can conclude that

lim
n→∞

Var(În(X, Y )) = 0 .

Notice that the consistency is guaranteed only if the sample used to estimate

the mutual information is taken from the actual density fXY . In our setting we are

learning from data, and therefore we do not know any exact density. Instead we

use MTE estimates, which rely on the behaviour of the estimation procedure of the

parameters of the MTE density, which is based on least squares estimation. In any

case, as consistency is a limit issue, it is not problematic, as we can rely on the

estimations of the MTE densities for large samples.22

Now we have the necessary tools for giving a detailed algorithm for constructing

the selective naive Bayes regression model. The idea of the algorithm is to start with

a model containing only one feature variable, namely the one with highest mutual

information with the class. Afterwards, the rest of the variables are included in

the model in sequence, according to their mutual information with the class. In

each step, if the included variable increases the accuracy of the model, it is kept.

Otherwise, it is discarded.

Algorithm Selective naive Bayes regression model

INPUT:

• The class variable C.

• The feature variables X1, . . . , Xn.

• A database D for variables X1, . . . , Xn, C.

OUTPUT:

• The selective naive Bayes predictor for variable C.

(1) For i := 1 to n
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• Compute Î(Xi, C).

(2) Let X(1), . . . , X(n) be a decreasing order of the feature variables according to

Î(X(i), C).

(3) Divide the database into two sets, one for learning the model (Dl) and the other

for testing the accuracy of the learnt model (Dt).

(4) Construct a naive Bayes predictor, M , for variables C and X(1):

(a) Estimate a marginal MTE density for C, fC , from database Dl.

(b) Estimate a conditional MTE density for X(1) given C, fX(1)|C , from

database Dl.

(c) Let rmse(M) be the estimated accuracy of model M using database Dt,

according to formula (9).

(5) For i := 2 to n

(a) Let Mi be the naive Bayes predictor obtained from M by adding variable

X(i), i.e., by estimating a conditional density for X(i) given C, fX(i)|C , from

database Dl.

(b) Let rmse(Mi) be the estimated accuracy of model Mi using database Dt,

according to formula (9).

(c) If (rmse(Mi) ≤ rmse(M))

• M := Mi.

(6) Return (M)

7. Experimental evaluation

In order to test the performance of the naive Bayes regression model, we used ten

databases, one of them artificial and the rest corresponding to real-world problems.

For all the databases, we compared the following models:

• NB(mean): Naive Bayes regression model including all the feature variables

and predicting with the mean of the posterior distribution.

• NB(median): Naive Bayes regression model including all the feature variables

and predicting with the median of the posterior distribution.

• SNB(mean): Selective naive Bayes regression model and predicting with the

mean of the posterior distribution.

• SNB(median): Selective naive Bayes regression model and predicting with the

median of the posterior distribution.

• LM: A linear regression model with variable selection, as implemented in Weka

3.4.11.28

• M5’: A model tree27 using the implementation in Weka 3.4.11.28

The regression models proposed in this paper have been included in the Elvira

system,5 available at leo.ugr.es/elvira. We did not include in the experiments

the regression model based on kernels developed by Frank et al.6, since it is outper-

formed by M5’. Regarding the Gaussian regression model, we did not consider it
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Table 1. Description of the databases used in the experiments.

Database # of records # of discr. and qualit. vars. # of cont. vars.

artificial1 50 1 3

artificial2 50 1 2

performance 101 3 8

success 101 3 8

students 354 4 9

abalone 4176 1 8

bodyfat 251 0 15

cloud 107 2 6

pollution 59 0 16

strikes 624 1 6

veteran 136 4 4

for the experiments because of the presence of discrete or qualitative variables with

continuous parents (see the discussion in section 4), since most of the databases

considered contain discrete or qualitative variables. In any case, even if all the vari-

ables are continuous, the M5’ was reported to outperform the Gaussian regression

model.9

A description of the databases used in this section can be found in Table 1.

Databases bodyfat, cloud, pollution, strikes and veteran are taken from the

StatLib repository,26 and abalone from the UCI repository.1

The artificial1 dataset consists of a random sample of 50 records drawn from

a Bayesian network with naive Bayes structure and MTE distributions. The aim of

this network is to represent a situation which is handled in a natural way by the

MTE model, while other models like the Gaussian or a linear regression model are

less natural, at least a priori. In order to obtain this network, we first simulated

a database with 500 records for variables X , Y , Z and W , where X follows a χ2

distribution with 5 degrees of freedom, Y follows a negative exponential distribution

with mean 1/X , Z = ⌊X/2⌋, where ⌊·⌋ stands for the integer part function, and W

is a random variable with Beta distribution with parameters p = 1/X an q = 1/X .

Out of that database, a naive Bayes regression model was constructed. The obtained

MTE Bayesian network is depicted in Fig. 5, where each box represents the prior

MTE density for each variable. It can be seen that the model does not correspond

with a CG one, because there is a discrete variable with continuous parent, and

also because the marginals of the continuous variables are clearly not normal. A

similar procedure has been followed to generate database artificial2, where we

first simulated a database with 500 records for variables X , Y and Z, where X

follows a standard normal distribution, Y follows a uniform distribution with lower

limit equal to X − 1 and upper limit equal to X + 1, and Z = ⌊X + 2⌋.

Databases performance, success and students correspond to three problems
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Fig. 5. An artificial MTE network.

related to higher education management. More precisely, they contain data regard-

ing academic performance at the University of Almeŕıa (Spain).

Databases performance and success are aimed at the prediction of the perfor-

mance rate and success rate, respectively, for a given degree program, and collect

information about all the degree programs in the University of Almeŕıa in years

2001 to 2004.

The performance rate is defined as

pr =
no

ns

(12)

where ns is the number of credits1 of all the subjects selected by the students in

a given year, and no is the number of credits actually obtained by the students at

the end of the same year.

The success rate is defined as

sr =
no

ne

(13)

where no is as defined above and ne is the number of credits for which the students

actually showed up at the final exam.

1Spanish university subjects are measured in credits. One credit corresponds to ten hours of
confrontation lectures.
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Table 2. Performance of the different models in terms of root mean squared error. The best result
for each database is marked in boldface, and the worst is underlined.

Database NB(mean) NB(median) SNB(mean) SNB(median) LM M5’
artificial1 1.8855 1.9372 1.7073 1.5734 2.5681 2.4718
artificial2 0.7234 0.6907 0.6914 0.6625 0.8243 0.8312
performance 0.088 0.0906 0.0813 0.0764 0.1045 0.0651

success 0.0432 0.0457 0.0374 0.0363 0.0467 0.0359

students 34.4036 35.0895 21.85 23.2301 17.9776 17.7609

abalone 2.7305 2.5806 2.5135 2.4609 2.2147 2.1296

bodyfat 4.9387 4.8694 2.5698 2.7193 24.8814 25.6409
cloud 0.5392 0.5382 0.4799 0.5186 0.3792 0.3764

pollution 42.0957 43.2251 28.9971 30.7210 42.7162 39.9143
strikes 473.9729 510.9138 446.9318 508.8195 532.666 518.6453
veteran 117.3975 115.4447 112.9308 114.4078 155.7577 155.8373

Table 3. Performance of the different models in terms of linear correlation coefficient. The best
result for each database is marked in boldface, and the worst is underlined.

Database NB(mean) NB(median) SNB(mean) SNB(median) LM M5’
artificial1 0.6623 0.564 0.798 0.7757 0.579 0.6027
artificial2 0.7727 0.7932 0.8026 0.8047 0.6326 0.6217
performance 0.527 0.4851 0.6225 0.6509 0.5703 0.8549

success 0.5403 0.5142 0.6817 0.6864 0.5609 0.7678

students 0.8719 0.8595 0.9368 0.9313 0.9733 0.9734

abalone 0.6952 0.6981 0.6996 0.7020 0.7268 0.7511

bodyfat 0.7975 0.797 0.939 0.9418 0.4311 0.4568
cloud 0.8671 0.8641 0.8847 0.883 0.9354 0.9364

pollution 0.7243 0.7154 0.8502 0.816 0.7423 0.7641
strikes 0.5448 0.5599 0.5997 0.6149 0.3111 0.4233
veteran 0.5019 0.5152 0.5787 0.5938 0.2358 0.2354

Database students was used for predicting the number of students in a given

subject. In this case, the database contained information about all the subjects

offered at the University of Almeŕıa from years 2001 to 2004.

In order to measure the accuracy of the different models tested, we have com-

puted, through a 10-fold cross validation process, the root mean squared error

(rmse), as in Eq. (9), and the linear correlation coefficient between the predicted

values of each model for the test part in each fold of the cross validation, and the

exact values (in the ideal case, if the predictions matched the exact values, the linear

correlation coefficient would be equal to 1). Table 2 shows the results obtained in

terms of rmse and Table 3 the results in terms of linear correlation coefficient.

7.1. Results discussion

Out of the eleven databases, M5’ gets the best performance in five cases, and in

the other six the best model is the selective naive Bayes regression model. The

differences are small in general, except for the case of database bodyfat in favour

of SNB. We think that the poor behaviour of M5’ in this database is due to the

fact that the actual model is far from being linear (notice that the linear model in

this problem is also little accurate). In order to determine whether the differences
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between SNB and M5’ can be considered statistically significant, we carried out a

Wilcoxon signed rank test, due to the lack of normality of the samples, using as

paired samples the rmse provided by each method. The result of the test provides

no significant differences between both methods with a p-value of 0.2061.

It can be noticed that SNB never provides the worst result, while M5’ is the

worst in three cases. Regarding the linear model, it usually behaves more poorly

than SNB, reaching the worst results in four tests.

Regarding the comparison between SNB and NB, the Wilcoxon signed rank test

reports significant differences between them, favourable to SNB, with a p-value of

0.0004. Actually, for all the tested datasets the variable selection procedure always

provides lower error. It can also be noticed that using the mean instead of the median

for the numerical prediction gives more accurate estimations for the considered

databases. However, the differences between both alternatives are minimal.

An added value of NB and SNB with respect to LM and M5’ is that they do

not only provide numerical prediction, but they also give the posterior distribution

of the class variable, which allows to make other types of inferences like answering

queries as what is the probability of the number of students being between 100 and

150. For instance, the regression model in Fig. 5 could be used for computing the

probability P{a ≤ X ≤ b} by calculating the area below the curve of the density

of X between points a and b. Another important advantage is that the regression

model represented by NB and SNB is a Bayesian network, and therefore it can be

straightforwardly included as a part of a bigger Bayesian network that integrates

knowledge from different sources.

8. Conclusions

In this paper we have introduced a framework for approaching regression problems

with a mixture of discrete and continuous variables, based on the Bayesian network

methodology using mixtures of truncated exponentials as underlying probabilistic

model. We have also proposed a variable selection scheme according to the mutual

information, and adopting a filter-wrapper strategy.19

The performance of the proposed model was tested in eleven databases, that

correspond to artificial settings, practical applications related to higher education

management, and standard databases commonly used as benchmark for regression

problems. Out of the experimental results, the proposed model is competitive with

the state-of-the-art method, the so-called M5’.

In future works, we plan to test the models in more real-world and synthetic

datasets, and compare the performance of the selective naive Bayes predictor versus

the Gaussian model developed by Gámez and Salmerón.9 In order to carry out this

comparison, it is necessary to solve the problem of incorporating discrete variables

in a Gaussian regression model. Furthermore, more sophisticated variable selection

strategies can be considered, as well as more complex network structures as the tree

augmented naive Bayes (TAN) structure.7
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