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2 An Operational InterpretationA fuzzy measure [2℄ is a mapping � : 
! [0; 1℄ verifying the following properties:1. �(;) = 0 and �(
) = 1.2. A � B � 
) �(A) � �(B).In all of this paper we shall onsider 
 to be a �nite set of ategorial data.Now, assume an experiment whose possible outomes are the elements in thepower set of 
, 2
. Assume also that number 1.0 represents the total amountof resoures available to the realization of the experiment, and that it oinideswith the amount of resoures onsumed if the result of the experiment is theentire set 
. In these onditions, for any A � 
, �(A) an be regarded as thefration of resoures onsumed if the result of the experiment is A.Let us illustrate it with an example. Imagine there is a vehile overing theonnetion between the harbor and the railway station in a ity. This vehilehas four ompartments: one for a ar, one for a van, one for a motorbike andanother one for a bike. Assume that the gas tank of this vehile has exatly theapaity neessary to arry the vehile with the four ompartments busy fromthe harbor to the railway station. Then we an regard this apaity to be equalto 1 unit. In this example, 
 = f; v;m; bg, where  stands for ar ompartmentbusy, v for van ompartment busy, m for motorbike ompartment busy and b forbike ompartment busy. Assume also that the vehile does not start the tripunless at least one of the ompartments is busy. All the possible transportationsituations are then the elements in 2
. In these onditions, for every A � 
,�(A) an be interpreted as the proportion of gas onsumed if A happens. Notethat this interpretation avoids ambiguity, sine the resoures an be exatly andobjetively measured.3 Partial Information and CohereneAs we pointed out before, in many situations it an be diÆult to get a ompletespei�ation of the measure. For instane, in the very small example in the abovesetion, we would need to speify 14 values. This number grows exponentiallyin the size of 
.However, it an be feasible to obtain the measure for some subsets of 
. Inthis ase we say that we have a partial information over 
. The formal de�nitionis as follows:De�nition 1 (Partial information) Let 
 be a �nite set of ategorial data. Apartial information over 
 is a pair (X; �), where X is a proper subset of 2
and � is a mapping � : X ! [0; 1℄.The following de�nition imposes a restrition to make a partial informationbe oherent with the interpretation of a fuzzy measure.2



De�nition 2 (Coherent partial information) We say that a partial information(X; �) over 
 is oherent if and only if for every A;B 2 X suh that A � B, itholds that �(A) � �(B).In the transportation vehile example, the onept of oherene means thatthe fration of resoures onsumed if two ompartments are oupied may notbe lower than if just one of them is oupied.Example 1 . Consider again the transportation vehile ase. The following isa oherent partial information over 
 = f; v;m; bg:X = ffg; fbg; f; vg; f; v; bgg ;�(fg) = 0:3; �(fbg) = 0:1; �(f; vg) = 0:6; �(f; v; bg) = 0:7 :4 Extension of a Partial InformationOne we have haraterized the oherene of a partial information, it wouldbe desirable to de�ne a rule to make inferenes about the measure in the setsfor whih no information is available, that inferene being ompatible with thepartial information and with the operational interpretation. The key point hereis the onept of ompatibility, that we formally de�ne in this way:De�nition 3 (Compatible fuzzy measure) We say that a fuzzy measure � over
 is ompatible with a oherent partial information (X; �), if for every A 2 X ,�(A) = �(A).It is lear that many fuzzy measures an be ompatible with a given oherentpartial information.The onept of ompatibility allows to make inferenes about the measureof the sets that are not elements of X . This inferene should produe, for eahset not in X , an interval where any measure ompatible with (X; �) must lie.To ahieve this, we de�ne the next two measures:De�nition 4 (Lower ompatible measure) Let (X; �) be a oherent partial in-formation. We de�ne the lower ompatible measure with respet to (X; �) as��(A) = 8>><>>: maxB2XB�A f�(B)g; if 9B 2 X suh that B � A ;0 otherwise: (1)for all A � 
.
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De�nition 5 (Upper ompatible measure) Let (X; �) be a oherent partialinformation. We de�ne the upper ompatible measure with respet to (X; �) as��(A) = 8>><>>: minB2XA�B f�(B)g; if 9B 2 X suh that A � B ;1 otherwise: (2)for all A � 
.Observe that if A 2 X , then ��(A) = ��(A) = �(A).With this, we an de�ne the onept of extension of a oherent partial infor-mation, that will produe the minimum interval for eah set where the measurewill lie, with the only restrition of oherene. In other words, extension isintended to be the maximum inferene we an make from a oherent partialinformation with the only restrition of oherene.De�nition 6 (Extension) Given a oherent partial information (X; �), we de-�ne its extension as the pair of measures (��; ��), where �� and �� are as de�nedabove.Example 2 Consider the oherent partial information in example 1. Apply-ing extension for making inferene about, say f; bg, would produe the interval[0:3; 0:7℄. It means that every measure � ompatible with (X; �) must verify0:3 � �(f; bg) � 0:7.Proposition 1 Given a fuzzy measure � ompatible with a oherent partial in-formation (X; �), then for every A 2 2
, ��(A) � �(A) � ��(A).Proof: We shall distinguish two ases:� If A 2 X , by de�nition of ompatible measure, we have that ��(A) =�(A) = �(A).� If A 62 X we have two possibilities:a) If 9B 2 X suh as B � A, by de�nition of fuzzy measure �(B) ��(A) 8B � A. By de�nition of lower ompatible measure, ��(A) =maxf�(B) j B � Ag, whih is equal to maxf�(B) j B � Ag sine �is ompatible with (X; �). Thus, ��(A) � �(A).b) If 8B � A, B 62 X , ��(A) = 0 � �(A).The proof is analogous for upper ompatible measures. �Some interesting ases of fuzzy measures ompatible with a oherent partialinformation are measures based on averaging operators.An averaging operator [3℄ is a funtion with the following properties:� Idempoteny: T (x; x) = x. 4



� Monotoniity: If x � x0 and y � y0 then T (x; y) � T (x0; y0).� Commutativity: T (x; y) = T (y; x).Proposition 2 Let (X; �) be a ompatible partial information over 
, and(��; ��) its extension. Let � be a mapping over 
, de�ned as�(A) = T (��(A); ��(A)) A � 
 ; (3)with T an averaging operator. Then � is a fuzzy measure ompatible with (X; �)Proof: First we prove that � is a fuzzy measure.By idempoteny, �(;) = T (��(;), ��(;)) = T (0; 0) = 0 and�(
) = T (��(
); ��(
)) = T (1; 1) = 1.If B � A, learly ��(B) � ��(A) and ��(B) � ��(A). This, together withmonotoniity of the averaging operator, implies that �(B) = T (��(B); ��(B)) �T (��(A); ��(A)) = �(A). Thus, � is a fuzzy measure.Besides, sine T is idempotent, for all A 2 X , �(A) = T (��(A); ��(A)) =T (�(A); �(A)) = �(A). Thus, � is ompatible with (X; �). �As a onsequene, this kind of operators an be used to obtain fuzzy measuresompatible with a partial information.5 An Algorithm for Computing the ExtensionIn this setion we present an algorithm for omputing the extension for anygiven set A � 
. For a more eÆient arrangement of the omputations, weshall make use of the lattie representation of 2
. Figure 1 displays the lattierepresentation orresponding to the transportation vehile example.First of all, we must �x some notation. For any A � 
, we shall denote by�(A) the set of diret predeessors of A in the lattie, and by �(A) the set of di-ret suessors of A in the lattie, onsidering that 
 is the top and ; the bottom.For instane, it an be heked in Fig.1 that �(f; vg) = ff; v;mg; f; v; bgg and�(f; vg) = ffg; fvgg.Now assume we want to ompute, for instane, ��(A) for A � 
. It ould bedone by asking to eah set B in �(A) for its value ��(B) and then take ��(A) =minf��(B) j B 2 �(A)g. Analogously, to ompute ��(A) it would be enoughto know ��(B) for every B 2 �(A) and then taking ��(A) = maxf��(B) j B 2�(A)g. This fats allow the spei�ation of a single algorithm to ompute theextension of a set A � 
 based on two reursive proedures. More preisely,the algorithm an be written as follows, where A is a subset of 
 and (X; �) aoherent partial information over 
:EXTENSION(A,
,X,�)��(A) =LOWER(A,
,X,�);��(A) =UPPER(A,
,X,�);Give [��(A); ��(A)℄ as the extension of A.5




f; v;mg f; v; bg fv;m; bg f;m; bgf;mg f; bg fv;mg fv; bg fm; bgfg fvg fmg fbg;
f; vg

Figure 1: Lattie representation of the power set of 
 = f; v;m; bg.In the algorithm above, LOWER and UPPER are the next two reursiveproedures:LOWER(A,
,X,�)if A = ; then return 0;elseif A 2 X then return �(A);elseM := 0;for eah B in �(A) doN :=LOWER(B,
,X,�);if N > M then M := N ;return M ;whih returns the value of the lower ompatible measure of A, andUPPER(A,
,X,�)if A = 
 then return 0;elseif A 2 X then return �(A);elseM := 1;for eah B in �(A) doN :=UPPER(B,
,X,�);if N < M then M := N ;return M ;whih returns the upper ompatible measure of A.6



6 Experimental EvaluationIn this setion we present the results of an experimental evaluation of the al-gorithm. The aim of this experimentation is to show the amplitudes of theintervals produed by the extension algorithm for some randomly generatedpartial informations.We have onsidered four experiments: the �rst one with 7 elements in 
and the other ones with 8, 9 and 10 respetively. In eah experiment, we haverandomly generated 500 partial informations with jX j = 0:1 � j2
j (i.e. theardinal of X being a 10 perent of the ardinal of 2
), 500 with jX j = 0:2�j2
j,500 with jX j = 0:3 � j2
j and 500 with jX j = 0:4 � j2
j. For eah partialinformation, we have omputed its extension and the average amplitude of theintervals produed.The results of the experiments are displayed in table 1 and in �gures 2 and3. Perentage of subsets in Xj
j 10% 20% 30% 40%10 0.2607108 0.1600303 0.1121037 0.080763939 0.2940818 0.1795447 0.1250788 0.089864698 0.3372416 0.2080419 0.1397554 0.10085867 0.3900888 0.2403648 0.1649506 0.118424Table 1: Experimental results.
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Figure 2: Average amplitude vs. perentage of subsets in X .We an see in �gure 2 how the average amplitude quikly dereases as theperentage of sets for whih some information is provided grows. Also, the7
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Figure 3: Average amplitude vs. j
j.average amplitude dereases as the number of elements in 
 inreases (see �gure3) for a �xed perentage of sets in X , but not so quikly as in the previous ase.7 ConlusionsIn this paper we have proposed an operational interpretation of general fuzzymeasures. The aim is to provide a lear meaning to the numbers, being thismeaning ompletely objetive. We think that this interpretation an avoid mis-understandings that are quite frequent in the use of fuzzy measures.On the basis of this interpretation, a onept of oherene an be de�ned.By oherene we understand the minimum restrition that one must impose toevery partial information in suh a way that it does not violate the interpretationwe formulate. This omes up to math with the onept of monotoniity of afuzzy measure.About the extension of a partial information, it is the maximum inferenewe an do based only in the restrition of oherene. In that sense, it is similarto the onept of natural extension [1℄.Many more onepts are to be studied in further works. For instane, howthe ombination of some measures an be performed under the restrition ofoherene.AknowledgmentsWe want to thank Professors M. Jorge Bola~nos and Seraf��n Moral for theirvaluable omments on this paper. 8
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