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tionTwo main problems arise when applying fuzzy measures in pra
ti
al appli
a-tions. One is the la
k of a 
lear understanding about the meaning of the mea-sures; until now, no 
onsensus has been rea
hed about what the numbers mean.The other problem is that typi
ally it is not possible to get a 
omplete spe
i�-
ation of the value of the measure for all the subsets in the domain, but for aredu
ed number of them.Here we propose an operational interpretation of fuzzy measures in order togive a 
lear meaning to the numbers. This interpretation leads to a straightfor-ward de�nition of 
oheren
e, and to a natural rule of inferen
e that will allowus to make predi
tions about the value of the measure in the sets where it isunknown.We start o� proposing an operational interpretation and an example in se
-tion 2. In se
tion 3 we de�ne the 
on
ept of partial information and 
oheren
e,whi
h will be the basis of an inferen
e rule 
alled extension, analyzed in se
tion4. An algorithm for 
omputing extension is given in se
tion 5. We have imple-mented this algorithm to 
arry out some trials that are des
ribed in se
tion 6.The paper ends with 
on
lusions in se
tion 7.�This work has been supported by CICYT under proje
t TIC97-1135-C04-02.1



2 An Operational InterpretationA fuzzy measure [2℄ is a mapping � : 
! [0; 1℄ verifying the following properties:1. �(;) = 0 and �(
) = 1.2. A � B � 
) �(A) � �(B).In all of this paper we shall 
onsider 
 to be a �nite set of 
ategori
al data.Now, assume an experiment whose possible out
omes are the elements in thepower set of 
, 2
. Assume also that number 1.0 represents the total amountof resour
es available to the realization of the experiment, and that it 
oin
ideswith the amount of resour
es 
onsumed if the result of the experiment is theentire set 
. In these 
onditions, for any A � 
, �(A) 
an be regarded as thefra
tion of resour
es 
onsumed if the result of the experiment is A.Let us illustrate it with an example. Imagine there is a vehi
le 
overing the
onne
tion between the harbor and the railway station in a 
ity. This vehi
lehas four 
ompartments: one for a 
ar, one for a van, one for a motorbike andanother one for a bike. Assume that the gas tank of this vehi
le has exa
tly the
apa
ity ne
essary to 
arry the vehi
le with the four 
ompartments busy fromthe harbor to the railway station. Then we 
an regard this 
apa
ity to be equalto 1 unit. In this example, 
 = f
; v;m; bg, where 
 stands for 
ar 
ompartmentbusy, v for van 
ompartment busy, m for motorbike 
ompartment busy and b forbike 
ompartment busy. Assume also that the vehi
le does not start the tripunless at least one of the 
ompartments is busy. All the possible transportationsituations are then the elements in 2
. In these 
onditions, for every A � 
,�(A) 
an be interpreted as the proportion of gas 
onsumed if A happens. Notethat this interpretation avoids ambiguity, sin
e the resour
es 
an be exa
tly andobje
tively measured.3 Partial Information and Coheren
eAs we pointed out before, in many situations it 
an be diÆ
ult to get a 
ompletespe
i�
ation of the measure. For instan
e, in the very small example in the abovese
tion, we would need to spe
ify 14 values. This number grows exponentiallyin the size of 
.However, it 
an be feasible to obtain the measure for some subsets of 
. Inthis 
ase we say that we have a partial information over 
. The formal de�nitionis as follows:De�nition 1 (Partial information) Let 
 be a �nite set of 
ategori
al data. Apartial information over 
 is a pair (X; �), where X is a proper subset of 2
and � is a mapping � : X ! [0; 1℄.The following de�nition imposes a restri
tion to make a partial informationbe 
oherent with the interpretation of a fuzzy measure.2



De�nition 2 (Coherent partial information) We say that a partial information(X; �) over 
 is 
oherent if and only if for every A;B 2 X su
h that A � B, itholds that �(A) � �(B).In the transportation vehi
le example, the 
on
ept of 
oheren
e means thatthe fra
tion of resour
es 
onsumed if two 
ompartments are o

upied may notbe lower than if just one of them is o

upied.Example 1 . Consider again the transportation vehi
le 
ase. The following isa 
oherent partial information over 
 = f
; v;m; bg:X = ff
g; fbg; f
; vg; f
; v; bgg ;�(f
g) = 0:3; �(fbg) = 0:1; �(f
; vg) = 0:6; �(f
; v; bg) = 0:7 :4 Extension of a Partial InformationOn
e we have 
hara
terized the 
oheren
e of a partial information, it wouldbe desirable to de�ne a rule to make inferen
es about the measure in the setsfor whi
h no information is available, that inferen
e being 
ompatible with thepartial information and with the operational interpretation. The key point hereis the 
on
ept of 
ompatibility, that we formally de�ne in this way:De�nition 3 (Compatible fuzzy measure) We say that a fuzzy measure � over
 is 
ompatible with a 
oherent partial information (X; �), if for every A 2 X ,�(A) = �(A).It is 
lear that many fuzzy measures 
an be 
ompatible with a given 
oherentpartial information.The 
on
ept of 
ompatibility allows to make inferen
es about the measureof the sets that are not elements of X . This inferen
e should produ
e, for ea
hset not in X , an interval where any measure 
ompatible with (X; �) must lie.To a
hieve this, we de�ne the next two measures:De�nition 4 (Lower 
ompatible measure) Let (X; �) be a 
oherent partial in-formation. We de�ne the lower 
ompatible measure with respe
t to (X; �) as��(A) = 8>><>>: maxB2XB�A f�(B)g; if 9B 2 X su
h that B � A ;0 otherwise: (1)for all A � 
.
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De�nition 5 (Upper 
ompatible measure) Let (X; �) be a 
oherent partialinformation. We de�ne the upper 
ompatible measure with respe
t to (X; �) as��(A) = 8>><>>: minB2XA�B f�(B)g; if 9B 2 X su
h that A � B ;1 otherwise: (2)for all A � 
.Observe that if A 2 X , then ��(A) = ��(A) = �(A).With this, we 
an de�ne the 
on
ept of extension of a 
oherent partial infor-mation, that will produ
e the minimum interval for ea
h set where the measurewill lie, with the only restri
tion of 
oheren
e. In other words, extension isintended to be the maximum inferen
e we 
an make from a 
oherent partialinformation with the only restri
tion of 
oheren
e.De�nition 6 (Extension) Given a 
oherent partial information (X; �), we de-�ne its extension as the pair of measures (��; ��), where �� and �� are as de�nedabove.Example 2 Consider the 
oherent partial information in example 1. Apply-ing extension for making inferen
e about, say f
; bg, would produ
e the interval[0:3; 0:7℄. It means that every measure � 
ompatible with (X; �) must verify0:3 � �(f
; bg) � 0:7.Proposition 1 Given a fuzzy measure � 
ompatible with a 
oherent partial in-formation (X; �), then for every A 2 2
, ��(A) � �(A) � ��(A).Proof: We shall distinguish two 
ases:� If A 2 X , by de�nition of 
ompatible measure, we have that ��(A) =�(A) = �(A).� If A 62 X we have two possibilities:a) If 9B 2 X su
h as B � A, by de�nition of fuzzy measure �(B) ��(A) 8B � A. By de�nition of lower 
ompatible measure, ��(A) =maxf�(B) j B � Ag, whi
h is equal to maxf�(B) j B � Ag sin
e �is 
ompatible with (X; �). Thus, ��(A) � �(A).b) If 8B � A, B 62 X , ��(A) = 0 � �(A).The proof is analogous for upper 
ompatible measures. �Some interesting 
ases of fuzzy measures 
ompatible with a 
oherent partialinformation are measures based on averaging operators.An averaging operator [3℄ is a fun
tion with the following properties:� Idempoten
y: T (x; x) = x. 4



� Monotoni
ity: If x � x0 and y � y0 then T (x; y) � T (x0; y0).� Commutativity: T (x; y) = T (y; x).Proposition 2 Let (X; �) be a 
ompatible partial information over 
, and(��; ��) its extension. Let � be a mapping over 
, de�ned as�(A) = T (��(A); ��(A)) A � 
 ; (3)with T an averaging operator. Then � is a fuzzy measure 
ompatible with (X; �)Proof: First we prove that � is a fuzzy measure.By idempoten
y, �(;) = T (��(;), ��(;)) = T (0; 0) = 0 and�(
) = T (��(
); ��(
)) = T (1; 1) = 1.If B � A, 
learly ��(B) � ��(A) and ��(B) � ��(A). This, together withmonotoni
ity of the averaging operator, implies that �(B) = T (��(B); ��(B)) �T (��(A); ��(A)) = �(A). Thus, � is a fuzzy measure.Besides, sin
e T is idempotent, for all A 2 X , �(A) = T (��(A); ��(A)) =T (�(A); �(A)) = �(A). Thus, � is 
ompatible with (X; �). �As a 
onsequen
e, this kind of operators 
an be used to obtain fuzzy measures
ompatible with a partial information.5 An Algorithm for Computing the ExtensionIn this se
tion we present an algorithm for 
omputing the extension for anygiven set A � 
. For a more eÆ
ient arrangement of the 
omputations, weshall make use of the latti
e representation of 2
. Figure 1 displays the latti
erepresentation 
orresponding to the transportation vehi
le example.First of all, we must �x some notation. For any A � 
, we shall denote by�(A) the set of dire
t prede
essors of A in the latti
e, and by �(A) the set of di-re
t su

essors of A in the latti
e, 
onsidering that 
 is the top and ; the bottom.For instan
e, it 
an be 
he
ked in Fig.1 that �(f
; vg) = ff
; v;mg; f
; v; bgg and�(f
; vg) = ff
g; fvgg.Now assume we want to 
ompute, for instan
e, ��(A) for A � 
. It 
ould bedone by asking to ea
h set B in �(A) for its value ��(B) and then take ��(A) =minf��(B) j B 2 �(A)g. Analogously, to 
ompute ��(A) it would be enoughto know ��(B) for every B 2 �(A) and then taking ��(A) = maxf��(B) j B 2�(A)g. This fa
ts allow the spe
i�
ation of a single algorithm to 
ompute theextension of a set A � 
 based on two re
ursive pro
edures. More pre
isely,the algorithm 
an be written as follows, where A is a subset of 
 and (X; �) a
oherent partial information over 
:EXTENSION(A,
,X,�)��(A) =LOWER(A,
,X,�);��(A) =UPPER(A,
,X,�);Give [��(A); ��(A)℄ as the extension of A.5




f
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Figure 1: Latti
e representation of the power set of 
 = f
; v;m; bg.In the algorithm above, LOWER and UPPER are the next two re
ursivepro
edures:LOWER(A,
,X,�)if A = ; then return 0;elseif A 2 X then return �(A);elseM := 0;for ea
h B in �(A) doN :=LOWER(B,
,X,�);if N > M then M := N ;return M ;whi
h returns the value of the lower 
ompatible measure of A, andUPPER(A,
,X,�)if A = 
 then return 0;elseif A 2 X then return �(A);elseM := 1;for ea
h B in �(A) doN :=UPPER(B,
,X,�);if N < M then M := N ;return M ;whi
h returns the upper 
ompatible measure of A.6



6 Experimental EvaluationIn this se
tion we present the results of an experimental evaluation of the al-gorithm. The aim of this experimentation is to show the amplitudes of theintervals produ
ed by the extension algorithm for some randomly generatedpartial informations.We have 
onsidered four experiments: the �rst one with 7 elements in 
and the other ones with 8, 9 and 10 respe
tively. In ea
h experiment, we haverandomly generated 500 partial informations with jX j = 0:1 � j2
j (i.e. the
ardinal of X being a 10 per
ent of the 
ardinal of 2
), 500 with jX j = 0:2�j2
j,500 with jX j = 0:3 � j2
j and 500 with jX j = 0:4 � j2
j. For ea
h partialinformation, we have 
omputed its extension and the average amplitude of theintervals produ
ed.The results of the experiments are displayed in table 1 and in �gures 2 and3. Per
entage of subsets in Xj
j 10% 20% 30% 40%10 0.2607108 0.1600303 0.1121037 0.080763939 0.2940818 0.1795447 0.1250788 0.089864698 0.3372416 0.2080419 0.1397554 0.10085867 0.3900888 0.2403648 0.1649506 0.118424Table 1: Experimental results.
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Figure 2: Average amplitude vs. per
entage of subsets in X .We 
an see in �gure 2 how the average amplitude qui
kly de
reases as theper
entage of sets for whi
h some information is provided grows. Also, the7
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Figure 3: Average amplitude vs. j
j.average amplitude de
reases as the number of elements in 
 in
reases (see �gure3) for a �xed per
entage of sets in X , but not so qui
kly as in the previous 
ase.7 Con
lusionsIn this paper we have proposed an operational interpretation of general fuzzymeasures. The aim is to provide a 
lear meaning to the numbers, being thismeaning 
ompletely obje
tive. We think that this interpretation 
an avoid mis-understandings that are quite frequent in the use of fuzzy measures.On the basis of this interpretation, a 
on
ept of 
oheren
e 
an be de�ned.By 
oheren
e we understand the minimum restri
tion that one must impose toevery partial information in su
h a way that it does not violate the interpretationwe formulate. This 
omes up to mat
h with the 
on
ept of monotoni
ity of afuzzy measure.About the extension of a partial information, it is the maximum inferen
ewe 
an do based only in the restri
tion of 
oheren
e. In that sense, it is similarto the 
on
ept of natural extension [1℄.Many more 
on
epts are to be studied in further works. For instan
e, howthe 
ombination of some measures 
an be performed under the restri
tion of
oheren
e.A
knowledgmentsWe want to thank Professors M. Jorge Bola~nos and Seraf��n Moral for theirvaluable 
omments on this paper. 8
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