Towards an Operational Interpretation of Fuzzy
Measures*

Fernando Reche and Antonio Salmerén
Dpt. Statistics and Applied Mathematics
University of Almeria
La Canada de San Urbano s/n
04120 Almeria (SPAIN)
e-mail: freche@stat.ualm.es, asc@stat.ualm.es

Abstract
In this paper we propose an operational interpretation of general fuzzy
measures. On the basis of this interpretation, we define the concept of
coherence with respect to a partial information, and propose a rule of
inference similar to the natural extension [1].
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1 Introduction

Two main problems arise when applying fuzzy measures in practical applica-
tions. One is the lack of a clear understanding about the meaning of the mea-
sures; until now, no consensus has been reached about what the numbers mean.
The other problem is that typically it is not possible to get a complete specifi-
cation of the value of the measure for all the subsets in the domain, but for a
reduced number of them.

Here we propose an operational interpretation of fuzzy measures in order to
give a clear meaning to the numbers. This interpretation leads to a straightfor-
ward definition of coherence, and to a natural rule of inference that will allow
us to make predictions about the value of the measure in the sets where it is
unknown.

We start off proposing an operational interpretation and an example in sec-
tion 2. In section 3 we define the concept of partial information and coherence,
which will be the basis of an inference rule called extension, analyzed in section
4. An algorithm for computing extension is given in section 5. We have imple-
mented this algorithm to carry out some trials that are described in section 6.
The paper ends with conclusions in section 7.
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2 An Operational Interpretation

A fuzzy measure [2] is a mapping u : Q — [0, 1] verifying the following properties:
1. p(@) =0and u(Q) = 1.
2. ACBCQ= u(A) < u(B).

In all of this paper we shall consider ) to be a finite set of categorical data.

Now, assume an experiment whose possible outcomes are the elements in the
power set of Q, 2. Assume also that number 1.0 represents the total amount
of resources available to the realization of the experiment, and that it coincides
with the amount of resources consumed if the result of the experiment is the
entire set Q. In these conditions, for any A C Q, u(A) can be regarded as the
fraction of resources consumed if the result of the experiment is A.

Let us illustrate it with an example. Imagine there is a vehicle covering the
connection between the harbor and the railway station in a city. This vehicle
has four compartments: one for a car, one for a van, one for a motorbike and
another one for a bike. Assume that the gas tank of this vehicle has exactly the
capacity necessary to carry the vehicle with the four compartments busy from
the harbor to the railway station. Then we can regard this capacity to be equal
to 1 unit. In this example, Q = {c, v, m, b}, where ¢ stands for car compartment
busy, v for van compartment busy, m for motorbike compartment busy and b for
bike compartment busy. Assume also that the vehicle does not start the trip
unless at least one of the compartments is busy. All the possible transportation
situations are then the elements in 2. In these conditions, for every A C Q,
u(A) can be interpreted as the proportion of gas consumed if A happens. Note
that this interpretation avoids ambiguity, since the resources can be exactly and
objectively measured.

3 Partial Information and Coherence

As we pointed out before, in many situations it can be difficult to get a complete
specification of the measure. For instance, in the very small example in the above
section, we would need to specify 14 values. This number grows exponentially
in the size of ().

However, it can be feasible to obtain the measure for some subsets of Q2. In
this case we say that we have a partial information over ). The formal definition
is as follows:

Definition 1 (Partial information) Let  be a finite set of categorical data. A
partial information over Q is a pair (X, o), where X is a proper subset of 29
and o is a mapping o : X — [0, 1].

The following definition imposes a restriction to make a partial information
be coherent with the interpretation of a fuzzy measure.



Definition 2 (Coherent partial information) We say that a partial information
(X, o) over  is coherent if and only if for every A, B € X such that A C B, it
holds that o(A4) < o(B).

In the transportation vehicle example, the concept of coherence means that
the fraction of resources consumed if two compartments are occupied may not
be lower than if just one of them is occupied.

Example 1 . Consider again the transportation vehicle case. The following is
a coherent partial information over Q = {c,v, m,b}:

X = {e} {b} {e, v} {e, 0,03},
o({c}) =0.3, o({b}) =0.1, o({¢c,v}) = 0.6, o({c,v,b}) =0.7 .

4 Extension of a Partial Information

Once we have characterized the coherence of a partial information, it would
be desirable to define a rule to make inferences about the measure in the sets
for which no information is available, that inference being compatible with the
partial information and with the operational interpretation. The key point here
is the concept of compatibility, that we formally define in this way:

Definition 3 (Compatible fuzzy measure) We say that a fuzzy measure yu over
Q is compatible with a coherent partial information (X, o), if for every A € X,

H(A) = o (A).

It is clear that many fuzzy measures can be compatible with a given coherent
partial information.

The concept of compatibility allows to make inferences about the measure
of the sets that are not elements of X . This inference should produce, for each
set not in X, an interval where any measure compatible with (X, o) must lie.
To achieve this, we define the next two measures:

Definition 4 (Lower compatible measure) Let (X, o) be a coherent partial in-
formation. We define the lower compatible measure with respect to (X, o) as

max {o(B)}, if 3B € X suchthat BC A ,
BeX

pa(4)={ PeA (1)
0 otherwise.

for all A C Q.



Definition 5 (Upper compatible measure) Let (X,o) be a coherent partial
information. We define the upper compatible measure with respect to (X, o) as

min {o(B)}, if 3B € X suchthat ACB ,
BeX

Ay =4 AP )
1 otherwise.
for all A C Q.

Observe that if A € X, then p.(4) = p*(4) = o(A).

With this, we can define the concept of eztension of a coherent partial infor-
mation, that will produce the minimum interval for each set where the measure
will lie, with the only restriction of coherence. In other words, extension is
intended to be the maximum inference we can make from a coherent partial
information with the only restriction of coherence.

Definition 6 (Extension) Given a coherent partial information (X, o), we de-

fine its extension as the pair of measures (u., u*), where p, and p* are as defined
above.

Example 2 Consider the coherent partial information in example 1. Apply-
ing extension for making inference about, say {c,b}, would produce the interval
[0.3,0.7]. It means that every measure u compatible with (X,o) must verify
0.3 < u({e,b}) <0.7.

Proposition 1 Given a fuzzy measure p compatible with a coherent partial in-
formation (X, o), then for every A € 22, pu.(A) < u(A) < p*(A).

Proof: We shall distinguish two cases:

e If A € X, by definition of compatible measure, we have that p.(A) =
o(4) = p(A).

e If A ¢ X we have two possibilities:

a) If 3B € X such as B C A, by definition of fuzzy measure u(B) <
u(A) VB C A. By definition of lower compatible measure, p.(A) =
max{o(B) | B C A}, which is equal to max{u(B) | B C A} since u
is compatible with (X, o). Thus, u.(4) < u(A4).
b)TEVE C A, B ¢ X, u(4) = 0 < u(A).

The proof is analogous for upper compatible measures. O

Some interesting cases of fuzzy measures compatible with a coherent partial
information are measures based on averaging operators.
An averaging operator [3] is a function with the following properties:

e Idempotency: T'(z,z) = .



e Monotonicity: If z < 2’ and y < g’ then T'(z,y) < T(z',y").
e Commutativity: T'(z,y) = T(y, ).

Proposition 2 Let (X,0) be a compatible partial information over Q, and
(ps, u*) its extension. Let u be a mapping over (), defined as

H(A) = T(ua(A), p*(4)) ACQ (3)
with T' an averaging operator. Then p is a fuzzy measure compatible with (X, o)

Proof: First we prove that u is a fuzzy measure.

By idempotency, p(0) = T'(u(0), p*(0)) = T(0,0) = 0 and
H(9) = T(pa (), 1*(0)) = T(1,1) = 1.

If B C A, clearly p.(B) < p«(A) and p*(B) < p*(A). This, together with
monotonicity of the averaging operator, implies that u(B) = T'(u«(B), u*(B)) <
T(u«(A), u*(A)) = u(A). Thus, p is a fuzzy measure.

Besides, since T is idempotent, for all A € X, p(A4) = T'(u«(A), p*(A4))
T(c(A),0(A)) = g(A). Thus, pu is compatible with (X, o).

o

As a consequence, this kind of operators can be used to obtain fuzzy measures
compatible with a partial information.

5 An Algorithm for Computing the Extension

In this section we present an algorithm for computing the extension for any
given set A C Q. For a more efficient arrangement of the computations, we
shall make use of the lattice representation of 2. Figure 1 displays the lattice
representation corresponding to the transportation vehicle example.

First of all, we must fix some notation. For any A C Q, we shall denote by
II(A) the set of direct predecessors of A in the lattice, and by A(A) the set of di-
rect successors of A in the lattice, considering that Q is the top and @) the bottom.
For instance, it can be checked in Fig.1 that II({c,v}) = {{c,v,m}, {¢,v,b}} and
A({e,v}) = {{c}, {v}}

Now assume we want to compute, for instance, u*(A) for A C Q. It could be
done by asking to each set B in II(A) for its value p*(B) and then take p*(A) =
min{p*(B) | B € II(A)}. Analogously, to compute u.(A4) it would be enough
to know . (B) for every B € A(A) and then taking u,(A) = max{u.(B) | B €
A(A)}. This facts allow the specification of a single algorithm to compute the
extension of a set A C Q based on two recursive procedures. More precisely,
the algorithm can be written as follows, where A is a subset of Q and (X,0) a
coherent partial information over 2:

EXTENSION(4,0,X,0)
7« (4) =ELOWER(4,0,X,0);
7*(A) =UPPER(A4,Q,X,0);
Give [m.(A), n*(A)] as the extension of A.
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Figure 1: Lattice representation of the power set of Q = {c,v, m,b}.

In the algorithm above, LOWER and UPPER are the next two recursive
procedures:

LOWER(4,02,X,0)
if A =0 then return 0;
else
if A € X then return o(A);
else
M :=0;
for each B in A(A) do
N :=LOWER(B,Q,X,0);
if N > M then M := N;
return M;
which returns the value of the lower compatible measure of A, and

UPPER(4,0,X,0)
if A = then return 0;
else
if A € X then return o(A);
else
M :.=1;
for each B in II(A) do
N :=UPPER(B,,X,0);
if N < M then M := N;,
return M;
which returns the upper compatible measure of A.



6 Experimental Evaluation

In this section we present the results of an experimental evaluation of the al-
gorithm. The aim of this experimentation is to show the amplitudes of the
intervals produced by the extension algorithm for some randomly generated
partial informations.

We have considered four experiments: the first one with 7 elements in Q
and the other ones with 8, 9 and 10 respectively. In each experiment, we have
randomly generated 500 partial informations with |X| = 0.1 x [29| (i.e. the
cardinal of X being a 10 percent of the cardinal of 2¢?), 500 with | X| = 0.2x |29,
500 with |X| = 0.3 x |29] and 500 with |X| = 0.4 x [2}|. For each partial
information, we have computed its extension and the average amplitude of the
intervals produced.

The results of the experiments are displayed in table 1 and in figures 2 and
3.

Percentage of subsets in X

1Y 10% 20% 30% 40%

10 | 0.2607108 0.1600303 0.1121037 0.08076393
9 | 0.2940818 0.1795447 0.1250788 0.08986469
8 | 0.3372416 0.2080419 0.1397554  0.1008586
7 | 0.3900888 0.2403648 0.1649506  0.118424

Table 1: Experimental results.

=7
38
| v
b 4 10
T -
0.1 s
X
0.05
0t
10% 20% 30% 40%

Figure 2: Average amplitude vs. percentage of subsets in X.

We can see in figure 2 how the average amplitude quickly decreases as the
percentage of sets for which some information is provided grows. Also, the
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Figure 3: Average amplitude vs. |Q].

average amplitude decreases as the number of elements in  increases (see figure
3) for a fixed percentage of sets in X, but not so quickly as in the previous case.

7 Conclusions

In this paper we have proposed an operational interpretation of general fuzzy
measures. The aim is to provide a clear meaning to the numbers, being this
meaning completely objective. We think that this interpretation can avoid mis-
understandings that are quite frequent in the use of fuzzy measures.

On the basis of this interpretation, a concept of coherence can be defined.
By coherence we understand the minimum restriction that one must impose to
every partial information in such a way that it does not violate the interpretation
we formulate. This comes up to match with the concept of monotonicity of a
fuzzy measure.

About the extension of a partial information, it is the maximum inference
we can do based only in the restriction of coherence. In that sense, it is similar
to the concept of natural extension [1].

Many more concepts are to be studied in further works. For instance, how
the combination of some measures can be performed under the restriction of
coherence.
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