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Abstrat: In this paper we propose some modi�ations over the Penniless algo-rithm. We use an improved measure of information to alulate the error of theapproximations, what leads to a new way of pruning several values in a probabilitytree by a single one, omputed from the value stored in the tree being pruned buttaking into aount the message stored in the opposite diretion. Also, we have on-sidered the possibility of replaing small probability values by zero. Loally, this isnot an optimal approximation strategy, but in this problem a lot of di�erent loalapproximations are arried out to obtain a �nal approximate value. In some exper-iments we will show that approximating by zeros we improve the quality of the �nalapproximations.Keywords: Bayesian networks, Penniless propagation, join tree, probability trees.1 IntrodutionBayesian networks are graphial models for e�iently handling unertainty in proba-bilisti expert systems (expert systems where unertainty is measured in terms of prob-ability). A Bayesian network is a direted ayli graph where eah node representsa random variable, and the topology of the graph enodes the independene relationsamong the variables, aording to the d-separation riterion. Assoiated with the graph,there is a probability distribution for eah node onditioned on its parents, suh that thejoint distribution over all the variables in the network fatorizes as the produt of thoseonditional distributions.The reasoning task, also alled probability propagation, onsists in the omputation ofthe posterior marginals over some variables of interest given that the value of some other�Partially supported by Junta de Andaluía, researh groups TIC103 and FQM244



A. Cano, S. Moral, A. Salmerónvariables are known. Propagation algorithms have been proposed for omputing posterioronditional probabilities without atually omputing the joint distribution; instead, theyoperate over an auxiliary struture alled join tree by means of loal omputations [JLO90,She97, MJ99℄. However, in large networks the use of these algorithms usually beomesinfeasible.In order to deal with suh large networks, approximate algorithms an be used, thatprovide results (though inexat) in a lower time. Some of these methods are based onMonte Carlo simulation [SCM00℄, while other are based on deterministi proedures.One of the more reent ontributions within the group of deterministi algorithms isthe so-alled Penniless propagation algorithm [CMS00℄, whih is based on Shenoy-Shaferpropagation over binary join trees [She97℄, but representing probabilisti information bymeans of probability trees [SCM00℄. The use of probability trees allows to approximatebig probabilisti potentials by smaller ones, pruning the branhes of the tree, makingpropagation be feasible even under limited resoures (RAM and CPU).In this paper we propose some modi�ations over the Penniless propagation algorithm.We use an improved measure of information to alulate the error of the approximations.This new measure suggests a novel way of pruning several values in a probability tree bya single one, omputed from the value stored in the tree being pruned but taking intoaount the message stored in the opposite diretion.Also, we have onsidered the possibility of replaing small probability values by zero,with the aim of speeding up omputations and ontrolling the omplexity of the treesused to represent potentials. We will show a theorem showing that the best approxima-tion of a potential onditional to other one, is obtained by substituting a node suh thatits hildren are leaves by a weighted average of the values on the leaves. However, herewe will onsider a di�erent strategy: making the substitution by zero when the sum ofthe values of the hildren is very low. Though this is not an optimal strategy, it has apotential advantage. The penniless algorithm arries out several onseutive approxima-tion steps. Eah message is approximated and then it is used for further omputations(multipliations and marginalizations). In these operations the omplexity of the resultsis in the worst ase exponential relative to the omplexity of the operands, being the mul-tipliation operation the main soure of more omplex potentials (the size of the frameis inreased, whereas in marginalization is dereased). If we approximate a branh by azero instead of a number di�erent from zero, then the omplexity of the representationof potentials in the zero parts does not inrease by multipliation. The result of themultipliation by a zero value in a leaf of a tree representing a potential is always zerofor eah value of the other potential, and the result an be represented again using thesame node. In this way, though the approximation is not optimal, we obtain simplerapproximation problems in subsequent steps whih may be, in some situations, better forthe �nal approximate value. This fat is orroborated by the experiments in the paper.We start o� with a brief explanation on Shenoy-Shafer propagation in setion 2 andPenniless propagation in setion 3, where we also introdue the new ontributions in thispaper in subsetion 3.2. The experiments arried out with the resulting algorithms aredesribed in setion 4 and the paper ends with onlusions in setion 5.CAEPIA 2001



Di�erent Strategies to Approximate Probability Trees in Penniless Propagation2 Propagation over join treesIn all of this paper we will onsider a Bayesian network de�ned for a set of variablesX = fX1; : : : ; Xng, eah variable Xi taking values on a �nite set Ui ontaining jUijelements. If I � N = f1; : : : ng is a set of indies, we will write XI for the set of variablesfXiji 2 Ig, de�ned on UI = �i2IUi. Given x 2 UI and J � I, xJ will denote the elementof UJ obtained from x dropping the oordinates not in J . Given x 2 UJ and J � I, wewill denote by AIx the set of values y 2 UI suh that yJ = x, i.e. the set of elements inUI oiniding with x in the oordinates in J . If � is a potential1 de�ned on UI , dom(�)will denote the set of indies of the variables for whih � is de�ned (i.e. dom(�) = I).The marginal of a potential � for a set of variables XJ with J � I is denoted by �#Jand it is a funtion de�ned for variables XJ as �#J(y) = PxJ=y �(x) for all y 2 UJ .The ombination or produt of two potentials � and �0 is a new potential � ��0 de�nedfor variables Xdom(�)[dom(�0) and obtained by point-wise multipliation.The onditional distribution of eah variable Xi, i = 1; : : : ; n, given its parents in thenetwork, Xpa(i), is denoted by a potential pi(xijxpa(i)) de�ned over Ufig[pa(i), and the jointprobability distribution for the n-dimensional random variable XN an be expressed asp(x) = Yi2N pi(xijxpa(i)) 8x 2 UN : (1)If we denote by e the values of the observed variables, and by E their indies, the taskof probability propagation an be seen as alulating the posterior probability funtionp(x0kje) = p(x0k; e)=p(e), for every x0k 2 Uk, k 2 f1; : : : ; ng n E.In terms of potential notation, if we all H the set of potentials orresponding to theonditional distributions in the network, restrited to the observed values e, the goal ofprobability propagation is to obtain, for eah variable of interest Xk,�mXk = 0�Y�2H �1A#k ; (2)where supersript m indiates posterior marginal. Afterwards, the onditional distribu-tion an be omputed by normalizing �mXk .The omputation of �mXk an be organized in a join tree, whih is a tree where eahnode V is a subset of XN , and suh that if a variable is in two distint nodes, V1 and V2,then it is also in every node in the path between V1 and V2. A join tree is alled binaryif every node has no more than three neighbors. Every potential in the set of initialpotentials, � 2 H, is assigned to a node Vj suh that Xdom(�) � Vj. In this way, attahedto every node Vi there will be a potential �Vi de�ned over the set of variables Vi and that isequal to the produt of all the potentials assigned to it. The Penniless algorithm operatesover a binary join tree [CMS00, She97℄, and is based on the Shenoy-Shafer propagationalgorithm, that we brie�y desribe now.1A potential is a non negative funtion representing a onditional, joint, or marginal distributionCAEPIA 2001



A. Cano, S. Moral, A. SalmerónThe Shenoy-Shafer propagation algorithm is arried out by sending messages in thetwo diretions of eah edge of the join tree. The messages between two adjaent nodesVi and Vj are potentials de�ned on Vi \ Vj (see [SS90℄ for the details). The messageVi-outgoing and Vj-inoming is omputed as�Vi!Vj = 8<:�Vi � 0� YVk2ne(Vi)nfVjg�Vk!Vi1A9=;#Vi\Vj ; (3)where �Vi is the initial probability potential on Vi redued to the observations e, �Vk!Viare the messages Vk-outgoing and Vi-inoming and ne(Vi) are the neighbor nodes of Vi.The propagation is organized in two stages. In the �rst one, messages are sent fromthe leaves to a previously seleted root node (upward propagation), and in the seondstage, messages are sent from the root to the leaves (downward propagation). After thesetwo stages, in order to ompute the posterior marginal for variable Xk, we �rst determinea node Vi ontaining Xk and ompute �mVi = �Vi � (QVk2ne(Vi) �Vk!Vi) . The onditionaldistribution given e for Xk an be alulated marginalizing �mVi down to Xk (obtaining�mXk) and normalizing the result.3 Penniless propagationPenniless propagation [CMS00℄ is a deterministi approximate propagation algorithmbased on Shenoy-Shafer's method, whih aim is to provide (approximate) results underlimited resoures. One of the main harateristis of this method is the use of probabilitytrees [BFGK96℄, whih allow to represent potentials in an approximate way within a givenmaximum number of values [CM97, Koz98, SCM00℄.Sine Penniless algorithm is based on Shenoy-Shafer's, it operates over binary jointrees, sine this kind of propagation was shown to be more e�ient over this struture[She97℄.One of the added features of Penniless is that the messages sent during the propaga-tion are approximated in order to redue their size. Another di�erene with respet toShenoy-Shafer's algorithm is the number of stages of the propagation: Penniless prop-agation may perform more than two stages, in whih messages are gradually improvedtaking into aount the information �owing aross the join tree. Thus, the basis of Pen-niless propagation is the use of probability trees as an approximate representation of themessages, and the inremental improvement on the quality of the approximations as thenumber of propagations is inreased.3.1 Probability treesA probability tree [BFGK96, CM97, SCM00℄ is a direted labeled tree, where eah internalnode represents a variable and eah leaf node represents a probability value. The numberof leaves of a tree T is its size. Eah internal node has as many outgoing ars as statesthe variable it represents has. CAEPIA 2001



Di�erent Strategies to Approximate Probability Trees in Penniless PropagationA probability tree T on variables XI represents a potential � if for eah xI 2 UI thevalue �(xI) is the number stored in the leaf node that is reahed starting in the root nodeand seleting for eah internal node labeled with Xi the hild orresponding to value xi.Two important features of probability trees are that they an represent the sameinformation as a probability table, but using less values, and that they an approximatethe original tree by substituting some values by a single one (see �gure 1).
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Figure 1. A potential, a probability tree representing it and an approximation of the exattree. Ars outgoing from a variable from left to right orrespond to the values of the variable inlexiographial order.The operations involved in propagation algorithms (ombination, marginalization andrestrition), an be arried out over the probability tree representation (see [CMS00,SCM00℄ for the details). In the ase of Penniless propagation, another operation ispartiularly important: the approximation operation. So, we will onentrate on it.3.2 Approximate probability treesBy approximating a tree T1 representing a potential � we mean to obtain a tree T smallerthan T1, but trying to keep a lose representation of potential �. One way of obtainingthat approximate tree is by pruning the original one. A pruning of a tree onsists inseleting a node suh that all its hildren are leaves and replaing it and its hildren byone node ontaining a number. In the general ase, the optimum number to be plaedin that node is the average of the values of the leaf nodes being removed (this minimizesthe Kullbak-Leibler divergene [KL51℄ between the original tree and the approximateone [CM97, SCM00℄).However, in the Penniless propagation sheme, trees representing messages throughan edge are approximated taking into aount the message (a probability tree) in theopposite diretion in the same edge. More preisely, the goal is to approximate a potential� represented by a tree T , by another potential �0 represented by another tree T 0 ofsmaller size, onditional on another potential  . In this setion we will assume all thepotentials to be de�ned on frame UI . For a potential �, let us onsider the followingnotation:� sum(�jA) = Px2A �(x), where A � UI .CAEPIA 2001



A. Cano, S. Moral, A. Salmerón� sum(�) = sum(�jUI) = Px2UI �(x).� If sum(�) 6= 0, then N(�) = �=sum(�).We will measure the distane between two potentials � and �0 onditional on  bythe Kullbak-Leibler divergene between the normalized potentials:D(�; �0j ) = Xx2UI N(�(x) (x)) log �(x)sum(�0 �  )�0(x)sum(� �  )! : (4)Sine there is no di�erene between the distanesD(�; �0j ) andD(�; �00j ) ifN(�0) =N(�00), i.e. the distane is independent of the normalization fator, then �0 will bedetermined up to a normalization value. In [CMS00℄ it was assumed that �0 and � weresuh that sum(�0) = sum(�), but here we will assume that sum(�0 �  ) = sum(� �  ).The seletion of a normalization fator does not have any e�et in the quality of theapproximation, but with this assumption the results are simpler to express and prove.As it has been reported in [BFGK96, CM97℄, the di�ulty of the approximation liesin �nding the struture of the tree, i.e. the same tree without numbers on the leaves. In[CMS00℄ we assumed that given a struture S we an build an approximate tree denotedby TS from � by assigning to eah leave haraterized by on�guration XJ = xJ , theaverage of potential � in points in AIxJ (points in UI for whih XJ = xJ). However, thisstrategy is not optimal; it is appropriate when we do not have a onditioning potential, , or when this potential is equal to 1, but not with general onditional information.This problem an be stated in the following general way: we have a potential � de�nedon UI and a partition A of this frame. We want to �nd a potential �0 whih is onstantin eah set A 2 A and suh that the distane of � to �0 onditioned to  is minimal. Inour ase, given a tree struture S the elements of the partition are de�ned by the leavesof the struture. If a leaf is haraterized by on�guration XJ = xJ , then this leaf de�nesthe set A = AIxJ . Then we an prove the following result, showing that now, the optimalstrategy is to assign to the elements from A the average of � weighted by the values of  .Theorem 1 If � is a potential de�ned on UI and A is a partition of UI , then the potential�0 whih is onstant in the elements of eah set A 2 A, with sum(� � ) = sum(�0 � ) andminimizing the distane (4) from � to �0 given  is given by the potential �0 assigning toevery element x 2 A the value �0(x) = sum(� �  jA)sum( jA) : (5)Proof: Let us all �0(A) to the onstant value of �0 in the elements of A. We have,D(�; �0j ) = Xx2UI N(�(x) (x)) log �(x)sum(�0 �  )�0(x)sum(� �  )! = Xx2UI �(x) (x)sum(� �  ) log �(x)�0(x)!CAEPIA 2001



Di�erent Strategies to Approximate Probability Trees in Penniless Propagation= 1sum(� �  ) XA2A Xx2A�(x) (x) log �(x)�0(A)!= 1sum(� �  ) XA2A Xx2A�(x) (x) log(�(x))� (Xx2A�(x) (x)) log(�0(A))! :Without taking into aount onstant parts not depending on �0, we have that mini-mizing this quantity is equivalent to maximizingXA2A(Xx2A�(x) (x)) log(�0(A)) = XA2A sum(� �  jA) log(�0(A)) :Adding the onstant value PA2A sum(� � jA) log(sum( jA)), whih does not dependon �0, we get that we have to maximizeXA2A sum(� �  jA) log(�0(A) � sum( jA)) : (6)Now, we have that being �0 onstant in A, sum(�0 �  ) = PA2A �0(A)sum( jA), andas PA2A sum(� �  jA) = sum(� �  ), and as sum(� �  ) = sum(�0 �  ), we have thatPA2A sum(� �  jA) = PA2A �0(A)sum( jA), and, by Gibbs' lemma,XA2A sum(� �  jA) log(�0(A) � sum( jA)) � XA2A sum(� �  jA) log(sum(� �  jA)) ;whih means that equation (6) is maximized for �0(A) = sum(� �  jA)=sum( jA), andtherefore the distane is minimized for this value. 2If we have a struture S 0, S 00 is the struture obtained by pruning S 0 and �0 and �00are the potentials assoiated to trees TS0 and TS00 respetively, then pruning is arried outtrying to minimize D(�0; �00j ).It involves the omputation of the Kullbak-Leibler distane from � to �0 given a thirdpotential  . The value �0(x) is equal to �(x) in all the points of UI , exept for a subsetA � UI in whih �0(x) = sum(� �  jA)=sum( jA). In this ase, the set A orrespondsto all the values xI 2 UI suh that following the path assoiated to it we arrive to thenode after pruning. Making some easy alulations, this distane, D(�; �0j ), an bealulated aording to the following formula:1sum(� �  jA)   Xx2A�(x) (x) log(�(x))!+ sum(� �  jA) + log sum( jA)sum(� �  jA)!! : (7)This new formula is muh easier than the one used in the original Penniless algorithm:(Px2A(�(x) (x) log(�(x)))� sum(� �  jA) log (sum(�jA)=jAj))sum(� �  ) +CAEPIA 2001



A. Cano, S. Moral, A. Salmerónlog sum(� �  )� sum(� �  jA) + (sum(�jA)sum( jA))=jAjsum(� �  ) ! : (8)Let � a potential represented by a tree T and assume that we want to make anapproximation onditioned to the values of a potential  . Consider a node in a tree suhthat all its hildren are leaves. Let Xk be the variable stored on it and (XJ = xJ) theon�guration of values de�ning the path from the root to this node. We have onsidereddi�erent ways of atually arrying out the pruning of a probability tree:1. Consider a threshold � > 0 and then approximate the hildren of Xk by its averageif the value of formula (8), with A = AIxJ , is less than �. This is the originalpenniless algorithm, denoted by penni. We have also onsidered the same shemebut replaing by the weighted sum in (5) with A = AIxJ , instead of the average.This algorithm will be denoted by new-penni.2. Consider a value 0 < � < 1 and then prune node Xk if sum(�� jAIxJ ) � ��sum(�� ),i.e. we prune every node suh that beneath it, the proportion of the entire prob-ability mass of the produt of potentials is lower than �. We have onsidered twopossibilities here: replaing the deleted values by the weighted sum in (5), denotedas new-penni-av, or replaing the deleted values by zero, denoted as new-penni-ze.The aim of this way of approximating is to avoid investing muh e�ort on dealingwith not signi�ant values. Replaing by zero in some sense is inspired in simula-tion algorithms, in whih on�gurations with low probability are usually assignedprobability zero, sine they have tendeny not to appear in any sample.Though above riteria are expressed in terms of potentials, the omputations an bearried out diretly in the tree representations of them, being the number of omputationsa funtion of the strutures of the trees and not of the sizes of the frames in whih thepotentials are de�ned.The approximation steps are done in a reursive way, starting in the nodes whosehildren are leaves and going bak to the root node. In this way, if all the hildren of aninternal node are leaves or have been previously pruned to a number, then this node isonsidered again for approximation.4 Experimental workWe have arried out two di�erent experiments. The �rst was devoted to test the appropri-ateness of the new way of omputing the divergene between the exat and approximatepotentials displayed in equation (7), that is, to test penni vs. new-penni. The seondexperiment is designed to ompare the e�ets of replaing small probability values byzero or by the weighted sum in equation (5), i.e. new-penni-av vs. new-penni-ze.In the �rst experiment we have hosen a large pedigree network (441 variables) withmany observed variables (166). The reason to make this hoie is beause in networkswithout many observations, replaing by the average or by the weighted sum does notCAEPIA 2001



Di�erent Strategies to Approximate Probability Trees in Penniless PropagationTable I. Results (time in seonds and K-L divergene) of penni and new-penni for a pedigreenetwork with many observed nodes.� 4 stages 5 stages 6 stagespenni new-penni penni new-penni penni new-penni0.01 1.16 - 0.004434 1.11 - 0.004366 1.18 - 0.003754 1.14 - 0.003609 1.24 - 0.003739 1.17 - 0.0035750.005 1.20 - 0.001004 1.14 - 0.003376 1.21 - 0.001004 1.20 - 0.002932 1.24 - 0.001004 1.18 - 0.0011620.001 1.22 - 1.505E-4 1.18 - 4.375E-5 1.22 - 1.505E-4 1.17 - 4.816E-5 1.24 - 1.505E-4 1.17 - 4.375E-50.0005 1.23 - 4.042E-5 1.19 - 1.978E-5 1.25 - 4.042E-5 1.19 - 1.883E-5 1.28 - 4.042E-5 1.20 - 1.978E-5Table II. Results (time in seonds and K-L divergene) of the seond experiment for the pedigree.� 4 stages 5 stages 6 stagesnew-penni-av new-penni-ze new-penni-av new-penni-ze new-penni-av new-penni-ze0.01 1.22 - 1.392E-4 1.16 - 1.742E-4 1.18 - 1.383E-4 1.15 - 1.744E-4 1.18 - 1.392E-4 1.16 - 1.742E-40.006 1.18 - 6.391E-5 1.17 - 2.862E-4 1.17 - 6.310E-5 1.16 - 2.715E-4 1.18 - 6.391E-5 1.18 - 2.862E-40.003 1.20 - 2.959E-5 1.24 - 3.015E-5 1.18 - 2.550E-5 1.19 - 2.749E-5 1.19 - 2.959E-5 1.22 - 3.015E-50.001 1.20 - 1.978E-5 1.20 - 1.914E-5 1.19 - 2.017E-5 1.18 - 1.813E-5 1.20 - 1.978E-5 1.20 - 1.914E-5make a big di�erene, sine in the way Penniless propagation operates, many upwardmessages an be onstantly equal to one, in whih ase both substitution shemes are thesame. We have performed trials with 4, 5 and 6 propagation stages, and the auray ofthe approximations has been ontrolled by parameter �. The results of this experimentare displayed in table I. These results suggest that new-penni usually provides equal orbetter results in lower time.For the seond experiment we have hosen the same network as in the �rst one andalso another network with less variables (189 with 8 observations) but higher omplexity(bigger potential sizes). This new network is alled Munin 1. Both networks have beenborrowed from the Deision Support Systems Group at Aalborg University (Denmark).In this seond experiment we have �xed a value for parameter � = 0:001 and thenthe algorithms have been tested varying the value of parameter �. The results of thisexperiment are displayed in tables II and III. Attending to these results, the use ofnew-penni-ze does not seem to provide any improvement, but in the very omplexnetwork Munin 1, the omputing time is onsiderably redued and the quality of theapproximations improved. We have performed many other experiments that are notreported here, suggesting the same onlusion.The algorithms have been implemented in Java 2 version 1.3 and integrated in theElvira system. Trials have been run on an AMD K7 (800 MHz) omputer with 512MBof RAM and operating system Linux RedHat with kernel 2.2.16.22.Table III. Results (time in seonds and K-L divergene) of the seond experiment for Munin 1.� 4 stages 5 stages 6 stagesnew-penni-av new-penni-ze new-penni-av new-penni-ze new-penni-av new-penni-ze0.01 202.8 - 0.16978 102.1 - 0.1942 204.2 - 0.1782 107.0 - 0.1933 284.4 - 0.1450 139.1 - 0.17660.006 310.4 - 0.1232 167.8 - 0.0857 274.6 - 0.1526 178.5 - 0.0889 403.5 - 0.1390 236.8 - 0.09540.003 440.6 - 0.0849 236.8 - 0.0606 444.4 - 0.0851 233.8 - 0.0647 650.5 - 0.0851 312.4 - 0.08880.001 2436.8 - 0.0375 639.7 - 0.0136 2418.5 - 0.0376 646.4 - 0.0135 3777.0 - 0.0375 920.3 - 0.0664CAEPIA 2001



A. Cano, S. Moral, A. Salmerón5 ConlusionsWe have introdued in this paper new ways of doing approximations in Penniless propaga-tion. Under the assumptions of theorem 1 we have shown that replaing by the weightedsum is optimal. Besides, replaing small probability values by zero allows the Pennilesssheme to aquire a very good feature of Monte Carlo algorithms: speed and low spaerequirements, and in some omplex ases we an also improve the quality of the �nalapproximations.Referenes[BFGK96℄ J. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-spei�independene in Bayesian networks. In E. Horvitz and F.V. Jensen, editors,Proeedings of the 12th Conferene on Unertainty in Arti�ial Intelligene,pages 115�123. Morgan & Kau�man, 1996.[CM97℄ A. Cano and S. Moral. Propagaión exata y aproximada on árboles deprobabilidad. In Atas de la VII Conferenia de la Asoiaión Española parala Inteligenia Arti�ial, pages 635�644, 1997.[CMS00℄ A. Cano, S. Moral, and A. Salmerón. Penniless propagation in join trees. Int.Journal of Intelligent Systems, 15:1027�1059, 2000.[JLO90℄ F.V. Jensen, S.L. Lauritzen, and K.G. Olesen. Bayesian updating in ausalprobabilisti networks by loal omputation. Computational Statistis Quar-terly, 4:269�282, 1990.[KL51℄ S. Kullbak and R. Leibler. On information and su�ieny. Annals of Math-ematial Statistis, 22:76�86, 1951.[Koz98℄ A.V. Kozlov. E�ient inferene in Bayesian networks. PhD thesis, StanfordUniversity, 1998.[MJ99℄ A.L. Madsen and F.V. Jensen. Lazy propagation: a juntion tree inferenealgorithm based on lazy evaluation. Arti�ial Intelligene, 113:203�245, 1999.[SCM00℄ A. Salmerón, A. Cano, and S. Moral. Importane sampling in Bayesian net-works using probability trees. Computational Statistis and Data Analysis,34:387�413, 2000.[She97℄ P.P. Shenoy. Binary join trees for omputing marginals in the Shenoy-Shaferarhiteture. Int. Journal of Approximate Reasoning, 17:239�263, 1997.[SS90℄ P.P. Shenoy and G. Shafer. Axioms for probability and belief funtion propa-gation. In R.D. Shahter, T.S. Levitt, J.F. Lemmer, and L.N. Kanal, editors,Unertainty in Arti�ial Intelligene 4, pages 169�198. North Holland, Ams-terdam, 1990. CAEPIA 2001


