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Abstract: In this paper we propose some modifications over the Penniless algo-
rithm. We use an improved measure of information to calculate the error of the
approrimations, what leads to a new way of pruning several values in a probability
tree by a single one, computed from the value stored in the tree being pruned but
taking into account the message stored in the opposite direction. Also, we have con-
sidered the possibility of replacing small probability values by zero. Locally, this is
not an optimal approrimation strateqy, but in this problem a lot of different local
approximations are carried out to obtain a final approzimate value. In some exper-
iments we will show that approrimating by zeros we improve the quality of the final
approximations.
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1 Introduction

Bayesian networks are graphical models for efficiently handling uncertainty in proba-
bilistic expert systems (expert systems where uncertainty is measured in terms of prob-
ability). A Bayesian network is a directed acyclic graph where each node represents
a random variable, and the topology of the graph encodes the independence relations
among the variables, according to the d-separation criterion. Associated with the graph,
there is a probability distribution for each node conditioned on its parents, such that the
joint distribution over all the variables in the network factorizes as the product of those
conditional distributions.

The reasoning task, also called probability propagation, consists in the computation of
the posterior marginals over some variables of interest given that the value of some other
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variables are known. Propagation algorithms have been proposed for computing posterior
conditional probabilities without actually computing the joint distribution; instead, they
operate over an auxiliary structure called join tree by means of local computations [JLO9O0,
She97, MJ99|. However, in large networks the use of these algorithms usually becomes
infeasible.

In order to deal with such large networks, approximate algorithms can be used, that
provide results (though inexact) in a lower time. Some of these methods are based on
Monte Carlo simulation [SCMO00]|, while other are based on deterministic procedures.
One of the more recent contributions within the group of deterministic algorithms is
the so-called Penniless propagation algorithm [CMSO00|, which is based on Shenoy-Shafer
propagation over binary join trees [She97|, but representing probabilistic information by
means of probability trees [SCMO00]. The use of probability trees allows to approximate
big probabilistic potentials by smaller ones, pruning the branches of the tree, making
propagation be feasible even under limited resources (RAM and CPU).

In this paper we propose some modifications over the Penniless propagation algorithm.
We use an improved measure of information to calculate the error of the approximations.
This new measure suggests a novel way of pruning several values in a probability tree by
a single one, computed from the value stored in the tree being pruned but taking into
account the message stored in the opposite direction.

Also, we have considered the possibility of replacing small probability values by zero,
with the aim of speeding up computations and controlling the complexity of the trees
used to represent potentials. We will show a theorem showing that the best approxima-
tion of a potential conditional to other one, is obtained by substituting a node such that
its children are leaves by a weighted average of the values on the leaves. However, here
we will consider a different strategy: making the substitution by zero when the sum of
the values of the children is very low. Though this is not an optimal strategy, it has a
potential advantage. The penniless algorithm carries out several consecutive approxima-
tion steps. Each message is approximated and then it is used for further computations
(multiplications and marginalizations). In these operations the complexity of the results
is in the worst case exponential relative to the complexity of the operands, being the mul-
tiplication operation the main source of more complex potentials (the size of the frame
is increased, whereas in marginalization is decreased). If we approximate a branch by a
zero instead of a number different from zero, then the complexity of the representation
of potentials in the zero parts does not increase by multiplication. The result of the
multiplication by a zero value in a leaf of a tree representing a potential is always zero
for each value of the other potential, and the result can be represented again using the
same node. In this way, though the approximation is not optimal, we obtain simpler
approximation problems in subsequent steps which may be, in some situations, better for
the final approximate value. This fact is corroborated by the experiments in the paper.

We start off with a brief explanation on Shenoy-Shafer propagation in section 2 and
Penniless propagation in section 3, where we also introduce the new contributions in this
paper in subsection 3.2. The experiments carried out with the resulting algorithms are
described in section 4 and the paper ends with conclusions in section 5.
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2 Propagation over join trees

In all of this paper we will consider a Bayesian network defined for a set of variables
X = {Xi,...,X,}, each variable X; taking values on a finite set U; containing |U;|
elements. If I C N = {1,...n} is a set of indices, we will write X; for the set of variables
{X;]i € I}, defined on U; = X;¢;U;. Given x € Uy and J C I, x; will denote the element
of U; obtained from x dropping the coordinates not in .JJ. Given x € U; and J C I, we
will denote by Al the set of values y € U; such that y; = x, i.e. the set of elements in
Ur coinciding with x in the coordinates in J. If ¢ is a potential’ defined on U;, dom(¢)
will denote the set of indices of the variables for which ¢ is defined (i.e. dom(¢) = I).

The marginal of a potential ¢ for a set of variables X ; with J C I is denoted by ¢+’
and it is a function defined for variables X as ¢*/(y) = 3, ,—, ¢(x) for ally € U,.

The combination or product of two potentials ¢ and ¢ is a new potential ¢ - ¢' defined
for variables X om(¢)udom(g) and obtained by point-wise multiplication.

The conditional distribution of each variable X;, i = 1,...,n, given its parents in the
network, X4, is denoted by a potential p;(x;|Xpq(;)) defined over Ug;yipaci), and the joint
probability distribution for the n-dimensional random variable Xy can be expressed as

p(x) = [] pi(@i|xpay) Vx €Uy . (1)
ieN
If we denote by e the values of the observed variables, and by F their indices, the task
of probability propagation can be seen as calculating the posterior probability function
p(z,le) = p(x},e)/p(e), for every ) € Uy, k € {1,...,n}\ E.
In terms of potential notation, if we call H the set of potentials corresponding to the
conditional distributions in the network, restricted to the observed values e, the goal of
probability propagation is to obtain, for each variable of interest Xy,

Lk
0%, = (H ¢>) : (2)

peH
where superscript m indicates posterior marginal. Afterwards, the conditional distribu-
tion can be computed by normalizing ¢, .

The computation of ¢ can be organized in a join tree, which is a tree where each
node V' is a subset of X, and such that if a variable is in two distinct nodes, V; and V5,
then it is also in every node in the path between V; and V5. A join tree is called binary
if every node has no more than three neighbors. Every potential in the set of initial
potentials, ¢ € H, is assigned to a node Vj such that X4om(g) € V;. In this way, attached
to every node V; there will be a potential ¢y; defined over the set of variables V; and that is
equal to the product of all the potentials assigned to it. The Penniless algorithm operates
over a binary join tree [CMS00, She97|, and is based on the Shenoy-Shafer propagation
algorithm, that we briefly describe now.

LA potential is a non negative function representing a conditional, joint, or marginal distribution
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The Shenoy-Shafer propagation algorithm is carried out by sending messages in the
two directions of each edge of the join tree. The messages between two adjacent nodes
V; and V; are potentials defined on V; NV} (see [SS90] for the details). The message
Vi-outgoing and Vj-incoming is computed as

winy;
v,y = {¢w : ( 11 ¢Vk—>w> } ; (3)
Vi€ne(Vi)\{V;}

where ¢y; is the initial probability potential on V; reduced to the observations e, ¢y, v,
are the messages Vj-outgoing and V;-incoming and ne(V;) are the neighbor nodes of V;.

The propagation is organized in two stages. In the first one, messages are sent from
the leaves to a previously selected root node (upward propagation), and in the second
stage, messages are sent from the root to the leaves (downward propagation). After these
two stages, in order to compute the posterior marginal for variable X, we first determine
a node V; containing X}, and compute ¢7} = ¢v; - (Ilv,ene(v) ¢vi»v;) - The conditional
distribution given e for X can be calculated marginalizing ¢7} down to X} (obtaining
¢%.) and normalizing the result.

3 Penniless propagation

Penniless propagation [CMS00] is a deterministic approximate propagation algorithm
based on Shenoy-Shafer’s method, which aim is to provide (approximate) results under
limited resources. One of the main characteristics of this method is the use of probability
trees IBEGKO96|, which allow to represent potentials in an approximate way within a given
maximum number of values [CM97, Ko0z98, SCM00|.

Since Penniless algorithm is based on Shenoy-Shafer’s, it operates over binary join
trees, since this kind of propagation was shown to be more efficient over this structure
[She97].

One of the added features of Penniless is that the messages sent during the propaga-
tion are approximated in order to reduce their size. Another difference with respect to
Shenoy-Shafer’s algorithm is the number of stages of the propagation: Penniless prop-
agation may perform more than two stages, in which messages are gradually improved
taking into account the information flowing across the join tree. Thus, the basis of Pen-
niless propagation is the use of probability trees as an approximate representation of the
messages, and the incremental improvement on the quality of the approximations as the
number of propagations is increased.

3.1 Probability trees

A probability tree [ BFGK96, CM97, SCMO00] is a directed labeled tree, where each internal
node represents a variable and each leaf node represents a probability value. The number
of leaves of a tree 7T is its size. Each internal node has as many outgoing arcs as states
the variable it represents has.
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A probability tree 7 on variables X; represents a potential ¢ if for each x; € U; the
value ¢(x;) is the number stored in the leaf node that is reached starting in the root node
and selecting for each internal node labeled with X; the child corresponding to value x;.

Two important features of probability trees are that they can represent the same
information as a probability table, but using less values, and that they can approximate
the original tree by substituting some values by a single one (see figure 1).

z1 z2 x3| ¢(z1,72,23) X X
2 2
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Figure 1. A potential, a probability tree representing it and an approximation of the exact
tree. Arcs outgoing from a variable from left to right correspond to the values of the variable in
lexicographical order.

The operations involved in propagation algorithms (combination, marginalization and
restriction), can be carried out over the probability tree representation (see [CMS00,
SCMO00] for the details). In the case of Penniless propagation, another operation is
particularly important: the approximation operation. So, we will concentrate on it.

3.2 Approximate probability trees

By approximating a tree 7; representing a potential ¢ we mean to obtain a tree 7 smaller
than 77, but trying to keep a close representation of potential ¢. One way of obtaining
that approximate tree is by pruning the original one. A pruning of a tree consists in
selecting a node such that all its children are leaves and replacing it and its children by
one node containing a number. In the general case, the optimum number to be placed
in that node is the average of the values of the leaf nodes being removed (this minimizes
the Kullback-Leibler divergence [KL51] between the original tree and the approximate
one [CM97, SCMO00]).

However, in the Penniless propagation scheme, trees representing messages through
an edge are approximated taking into account the message (a probability tree) in the
opposite direction in the same edge. More precisely, the goal is to approximate a potential
¢ represented by a tree T, by another potential ¢’ represented by another tree 7' of
smaller size, conditional on another potential ¢). In this section we will assume all the
potentials to be defined on frame U;. For a potential ¢, let us consider the following
notation:

o sum(p|A) = Yyea &(x), where A C Uy.
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o sum(¢) = sum(¢|Ur) = Yxer, ¢(x).
e If sum(¢) # 0, then N(¢) = ¢/sum(¢).

We will measure the distance between two potentials ¢ and ¢’ conditional on v by
the Kullback-Leibler divergence between the normalized potentials:

: ¢(x)sum(¢’ - ¥)
Dl6.¢14) = T Mot los (St (@)
Since there is no difference between the distances D (¢, ¢'|¢)) and D(¢, ¢" ) if N(¢') =
N(¢"), i.e. the distance is independent of the normalization factor, then ¢' will be
determined up to a normalization value. In [CMS00] it was assumed that ¢' and ¢ were
such that sum(¢') = sum(¢), but here we will assume that sum(¢’' - ¢)) = sum(¢ - ¢).
The selection of a normalization factor does not have any effect in the quality of the
approximation, but with this assumption the results are simpler to express and prove.
As it has been reported in [BFGK96, CM97|, the difficulty of the approximation lies
in finding the structure of the tree, i.e. the same tree without numbers on the leaves. In
[CMS00] we assumed that given a structure S we can build an approximate tree denoted
by Ts from ¢ by assigning to each leave characterized by configuration X; = x;, the
average of potential ¢ in points in AiJ (points in U; for which X; = x;). However, this
strategy is not optimal; it is appropriate when we do not have a conditioning potential,
1, or when this potential is equal to 1, but not with general conditional information.
This problem can be stated in the following general way: we have a potential ¢ defined
on U; and a partition A of this frame. We want to find a potential ¢’ which is constant
in each set A € A and such that the distance of ¢ to ¢’ conditioned to v is minimal. In
our case, given a tree structure S the elements of the partition are defined by the leaves
of the structure. If a leaf is characterized by configuration X ; = x;, then this leaf defines
the set A = AiJ. Then we can prove the following result, showing that now, the optimal
strategy is to assign to the elements from A the average of ¢ weighted by the values of ).

Theorem 1 If ¢ is a potential defined on Uy and A is a partition of Uy, then the potential
@' which is constant in the elements of each set A € A, with sum(¢-1) = sum(¢'- 1)) and
minimizing the distance (4) from ¢ to ¢' given 1 is given by the potential ¢' assigning to
every element x € A the value

sum(6 - v[4)

¢'(x) = sum(v]A)

(5)

Proof: Let us call ¢'(A) to the constant value of ¢’ in the elements of A. We have,

D(¢.¢'lv) = > N(ox)v(x))log

xeUy

(Zfi‘iis‘LZ(Z : Zi) =% ¢5§f2$ F}:Z) 8 (j(&)))
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= ) S 5 log@((z)))

AcAxcA
1
- T (z o000 3 108(60) — (5 )0 (e (A)))

Without taking into account constant parts not depending on ¢’, we have that mini-
mizing this quantity is equivalent to maximizing

> (D0 d(x)¥(x))log(¢'(A)) = D sum(¢ - y[A) log(¢'(4)) .

A€A x€A AcA

Adding the constant value Y 4o 4 sum(¢ - 9|A) log(sum(t|A)), which does not depend
on ¢', we get that we have to maximize

> sum(¢ - )| A) log(¢(A) - sum(¢)[A)) . (6)
AeA
Now, we have that being ¢’ constant in A, sum(¢' - ) = 3 4c 4 ¢'(A)sum(¢)|A), and
as Y qcqsum(e - |A) = sum(¢ - 1), and as sum(¢ - ¢») = sum(¢’ - ¢), we have that
5 aeastm(p - U] A) = 5 4eq o (A)sum(y] A), and, by Gibbs' lemma,

3 sum (6 16[4) log(¢'(A) - sum(¥]A)) < 3 sum( - ¥/ A) log(sum(é - $|4)) .

AcA AcA

which means that equation (6) is maximized for ¢'(A) = sum(¢ - ¢»|A)/sum(¢)|A), and
therefore the distance is minimized for this value. O

If we have a structure S§’, §” is the structure obtained by pruning S’ and ¢’ and ¢"
are the potentials associated to trees 7sr and Ts» respectively, then pruning is carried out
trying to minimize D(¢', ¢"|1)).

It involves the computation of the Kullback-Leibler distance from ¢ to ¢’ given a third
potential ¢). The value ¢'(x) is equal to ¢(x) in all the points of U;, except for a subset
A C Uy in which ¢'(x) = sum(¢ - |A)/sum(e|A). In this case, the set A corresponds
to all the values x; € U; such that following the path associated to it we arrive to the
node after pruning. Making some easy calculations, this distance, D(¢, ¢'|1)), can be
calculated according to the following formula:

1 sum ()| A)
_ d(x)1(x) log(¢ >+sum¢-¢A +10g<— (7
o ([ 96000t ) + s - o1.4) + 1o (D)) o

This new formula is much easier than the one used in the original Penniless algorithm:

(Exea(@(x)v(x) log(¢(x))) — sum(¢ - ¢|A) log (sum(g|4)/|A]))
sum(¢ - )
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sum(6 - ) — sum(@ - | 4) + (sum(g| A)sum( 4))/| ]
o8 ( sam (3 ) ) | ®)

Let ¢ a potential represented by a tree 7 and assume that we want to make an
approximation conditioned to the values of a potential ). Consider a node in a tree such
that all its children are leaves. Let X} be the variable stored on it and (X, = x;) the
configuration of values defining the path from the root to this node. We have considered
different ways of actually carrying out the pruning of a probability tree:

1. Consider a threshold A > 0 and then approximate the children of X by its average
if the value of formula (8), with A = AL . is less than A. This is the original
penniless algorithm, denoted by penni. We have also considered the same scheme
but replacing by the weighted sum in (5) with A = AL | instead of the average.
This algorithm will be denoted by new-penni.

2. Consider a value 0 < € < 1 and then prune node Xy, if sum(¢-| AL ) < e-sum(¢-1)),
i.e. we prune every node such that beneath it, the proportion of the entire prob-
ability mass of the product of potentials is lower than . We have considered two
possibilities here: replacing the deleted values by the weighted sum in (5), denoted
as new-penni-av, or replacing the deleted values by zero, denoted as new-penni-ze.
The aim of this way of approximating is to avoid investing much effort on dealing
with not significant values. Replacing by zero in some sense is inspired in simula-
tion algorithms, in which configurations with low probability are usually assigned
probability zero, since they have tendency not to appear in any sample.

Though above criteria are expressed in terms of potentials, the computations can be
carried out directly in the tree representations of them, being the number of computations
a function of the structures of the trees and not of the sizes of the frames in which the
potentials are defined.

The approximation steps are done in a recursive way, starting in the nodes whose
children are leaves and going back to the root node. In this way, if all the children of an
internal node are leaves or have been previously pruned to a number, then this node is
considered again for approximation.

4 Experimental work

We have carried out two different experiments. The first was devoted to test the appropri-
ateness of the new way of computing the divergence between the exact and approximate
potentials displayed in equation (7), that is, to test penni vs. new-penni. The second
experiment is designed to compare the effects of replacing small probability values by
zero or by the weighted sum in equation (5), i.e. new-penni-av vs. new-penni-ze.

In the first experiment we have chosen a large pedigree network (441 variables) with
many observed variables (166). The reason to make this choice is because in networks
without many observations, replacing by the average or by the weighted sum does not
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Table I. Results (time in seconds and K-L divergence) of penni and new-penni for a pedigree

network with many observed nodes.

A 4 stages 5 stages 6 stages
penni new-penni penni new-penni penni new-penni
0.01 1.16 - 0.004434  1.11 - 0.004366  1.18 - 0.003754  1.14 - 0.003609  1.24 - 0.003739  1.17 - 0.003575
0.005 1.20 - 0.001004 1.14 - 0.003376  1.21 - 0.001004  1.20 - 0.002932  1.24 - 0.001004  1.18 - 0.001162
0.001 1.22 - 1.505E-4  1.18 - 4.375E-5  1.22 - 1.505E-4  1.17 - 4.816E-5  1.24 - 1.505E-4  1.17 - 4.375E-5
0.0005 1.23 - 4.042E-5 1.19 - 1.978E-5 1.25- 4.042E-5 1.19 - 1.883E-5 1.28 - 4.042E-5 1.20 - 1.978E-5

Table II. Results (time in seconds and K-L divergence) of the second experiment for the pedigree.

€ 4 stages 5 stages 6 stages
new-penni-av new-penni-ze new-penni-av new-penni-ze new-penni-av new-penni-ze
0.01 1.22 - 1.392E-4  1.16 - 1.742E-4  1.18 - 1.383E-4 1.15- 1.744E-4 1.18 - 1.392E-4  1.16 - 1.742E-4
0.006 1.18 - 6.391E-5 1.17 - 2.862E-4 1.17 - 6.310E-5 1.16 - 2.715E-4  1.18 - 6.391E-5 1.18 - 2.862E-4
0.003  1.20 - 2.959E-5 1.24 - 3.015E-5 1.18 - 2.550E-5 1.19 - 2.749E-5 1.19 - 2.959E-5 1.22 - 3.015E-5
0.001 1.20- 1.978E-5 1.20 - 1.914E-5 1.19 - 2.017E-5 1.18 - 1.813E-5 1.20 - 1.978E-5 1.20 - 1.914E-5

make a big difference, since in the way Penniless propagation operates, many upward
messages can be constantly equal to one, in which case both substitution schemes are the
same. We have performed trials with 4, 5 and 6 propagation stages, and the accuracy of
the approximations has been controlled by parameter A. The results of this experiment
are displayed in table I. These results suggest that new-penni usually provides equal or
better results in lower time.

For the second experiment we have chosen the same network as in the first one and
also another network with less variables (189 with 8 observations) but higher complexity
(bigger potential sizes). This new network is called Munin 1. Both networks have been
borrowed from the Decision Support Systems Group at Aalborg University (Denmark).

In this second experiment we have fixed a value for parameter A = 0.001 and then
the algorithms have been tested varying the value of parameter €. The results of this
experiment are displayed in tables II and III. Attending to these results, the use of
new-penni-ze does not seem to provide any improvement, but in the very complex
network Munin 1, the computing time is considerably reduced and the quality of the
approximations improved. We have performed many other experiments that are not
reported here, suggesting the same conclusion.

The algorithms have been implemented in Java 2 version 1.3 and integrated in the
Elvira system. Trials have been run on an AMD K7 (800 MHz) computer with 512MB
of RAM and operating system Linux RedHat with kernel 2.2.16.22.

Table III. Results (time in seconds and K-L divergence) of the second experiment for Munin 1.

€ 4 stages 5 stages 6 stages

new-penni-av

new-penni-ze

new-penni-av

new-penni-ze

new-penni-av

new-penni-ze

0.01 202.8 - 0.16978  102.1 - 0.1942 204.2 - 0.1782 107.0 - 0.1933 284.4 - 0.1450 139.1 - 0.1766
0.006 310.4 - 0.1232 167.8 - 0.0857 274.6 - 0.1526 178.5 - 0.0889 403.5 - 0.1390 236.8 - 0.0954
0.003 440.6 - 0.0849 236.8 - 0.0606 444.4 - 0.0851 233.8 - 0.0647  650.5 - 0.0851 312.4 - 0.0888
0.001  2436.8 - 0.0375 639.7 - 0.0136  2418.5 - 0.0376  646.4 - 0.0135  3777.0 - 0.0375 920.3 - 0.0664
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5 Conclusions

We have introduced in this paper new ways of doing approximations in Penniless propaga-
tion. Under the assumptions of theorem 1 we have shown that replacing by the weighted
sum is optimal. Besides, replacing small probability values by zero allows the Penniless
scheme to acquire a very good feature of Monte Carlo algorithms: speed and low space
requirements, and in some complex cases we can also improve the quality of the final
approximations.
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