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Abstra
t: In this paper we propose some modi�
ations over the Penniless algo-rithm. We use an improved measure of information to 
al
ulate the error of theapproximations, what leads to a new way of pruning several values in a probabilitytree by a single one, 
omputed from the value stored in the tree being pruned buttaking into a

ount the message stored in the opposite dire
tion. Also, we have 
on-sidered the possibility of repla
ing small probability values by zero. Lo
ally, this isnot an optimal approximation strategy, but in this problem a lot of di�erent lo
alapproximations are 
arried out to obtain a �nal approximate value. In some exper-iments we will show that approximating by zeros we improve the quality of the �nalapproximations.Keywords: Bayesian networks, Penniless propagation, join tree, probability trees.1 Introdu
tionBayesian networks are graphi
al models for e�
iently handling un
ertainty in proba-bilisti
 expert systems (expert systems where un
ertainty is measured in terms of prob-ability). A Bayesian network is a dire
ted a
y
li
 graph where ea
h node representsa random variable, and the topology of the graph en
odes the independen
e relationsamong the variables, a

ording to the d-separation 
riterion. Asso
iated with the graph,there is a probability distribution for ea
h node 
onditioned on its parents, su
h that thejoint distribution over all the variables in the network fa
torizes as the produ
t of those
onditional distributions.The reasoning task, also 
alled probability propagation, 
onsists in the 
omputation ofthe posterior marginals over some variables of interest given that the value of some other�Partially supported by Junta de Andalu
ía, resear
h groups TIC103 and FQM244



A. Cano, S. Moral, A. Salmerónvariables are known. Propagation algorithms have been proposed for 
omputing posterior
onditional probabilities without a
tually 
omputing the joint distribution; instead, theyoperate over an auxiliary stru
ture 
alled join tree by means of lo
al 
omputations [JLO90,She97, MJ99℄. However, in large networks the use of these algorithms usually be
omesinfeasible.In order to deal with su
h large networks, approximate algorithms 
an be used, thatprovide results (though inexa
t) in a lower time. Some of these methods are based onMonte Carlo simulation [SCM00℄, while other are based on deterministi
 pro
edures.One of the more re
ent 
ontributions within the group of deterministi
 algorithms isthe so-
alled Penniless propagation algorithm [CMS00℄, whi
h is based on Shenoy-Shaferpropagation over binary join trees [She97℄, but representing probabilisti
 information bymeans of probability trees [SCM00℄. The use of probability trees allows to approximatebig probabilisti
 potentials by smaller ones, pruning the bran
hes of the tree, makingpropagation be feasible even under limited resour
es (RAM and CPU).In this paper we propose some modi�
ations over the Penniless propagation algorithm.We use an improved measure of information to 
al
ulate the error of the approximations.This new measure suggests a novel way of pruning several values in a probability tree bya single one, 
omputed from the value stored in the tree being pruned but taking intoa

ount the message stored in the opposite dire
tion.Also, we have 
onsidered the possibility of repla
ing small probability values by zero,with the aim of speeding up 
omputations and 
ontrolling the 
omplexity of the treesused to represent potentials. We will show a theorem showing that the best approxima-tion of a potential 
onditional to other one, is obtained by substituting a node su
h thatits 
hildren are leaves by a weighted average of the values on the leaves. However, herewe will 
onsider a di�erent strategy: making the substitution by zero when the sum ofthe values of the 
hildren is very low. Though this is not an optimal strategy, it has apotential advantage. The penniless algorithm 
arries out several 
onse
utive approxima-tion steps. Ea
h message is approximated and then it is used for further 
omputations(multipli
ations and marginalizations). In these operations the 
omplexity of the resultsis in the worst 
ase exponential relative to the 
omplexity of the operands, being the mul-tipli
ation operation the main sour
e of more 
omplex potentials (the size of the frameis in
reased, whereas in marginalization is de
reased). If we approximate a bran
h by azero instead of a number di�erent from zero, then the 
omplexity of the representationof potentials in the zero parts does not in
rease by multipli
ation. The result of themultipli
ation by a zero value in a leaf of a tree representing a potential is always zerofor ea
h value of the other potential, and the result 
an be represented again using thesame node. In this way, though the approximation is not optimal, we obtain simplerapproximation problems in subsequent steps whi
h may be, in some situations, better forthe �nal approximate value. This fa
t is 
orroborated by the experiments in the paper.We start o� with a brief explanation on Shenoy-Shafer propagation in se
tion 2 andPenniless propagation in se
tion 3, where we also introdu
e the new 
ontributions in thispaper in subse
tion 3.2. The experiments 
arried out with the resulting algorithms aredes
ribed in se
tion 4 and the paper ends with 
on
lusions in se
tion 5.CAEPIA 2001



Di�erent Strategies to Approximate Probability Trees in Penniless Propagation2 Propagation over join treesIn all of this paper we will 
onsider a Bayesian network de�ned for a set of variablesX = fX1; : : : ; Xng, ea
h variable Xi taking values on a �nite set Ui 
ontaining jUijelements. If I � N = f1; : : : ng is a set of indi
es, we will write XI for the set of variablesfXiji 2 Ig, de�ned on UI = �i2IUi. Given x 2 UI and J � I, xJ will denote the elementof UJ obtained from x dropping the 
oordinates not in J . Given x 2 UJ and J � I, wewill denote by AIx the set of values y 2 UI su
h that yJ = x, i.e. the set of elements inUI 
oin
iding with x in the 
oordinates in J . If � is a potential1 de�ned on UI , dom(�)will denote the set of indi
es of the variables for whi
h � is de�ned (i.e. dom(�) = I).The marginal of a potential � for a set of variables XJ with J � I is denoted by �#Jand it is a fun
tion de�ned for variables XJ as �#J(y) = PxJ=y �(x) for all y 2 UJ .The 
ombination or produ
t of two potentials � and �0 is a new potential � ��0 de�nedfor variables Xdom(�)[dom(�0) and obtained by point-wise multipli
ation.The 
onditional distribution of ea
h variable Xi, i = 1; : : : ; n, given its parents in thenetwork, Xpa(i), is denoted by a potential pi(xijxpa(i)) de�ned over Ufig[pa(i), and the jointprobability distribution for the n-dimensional random variable XN 
an be expressed asp(x) = Yi2N pi(xijxpa(i)) 8x 2 UN : (1)If we denote by e the values of the observed variables, and by E their indi
es, the taskof probability propagation 
an be seen as 
al
ulating the posterior probability fun
tionp(x0kje) = p(x0k; e)=p(e), for every x0k 2 Uk, k 2 f1; : : : ; ng n E.In terms of potential notation, if we 
all H the set of potentials 
orresponding to the
onditional distributions in the network, restri
ted to the observed values e, the goal ofprobability propagation is to obtain, for ea
h variable of interest Xk,�mXk = 0�Y�2H �1A#k ; (2)where supers
ript m indi
ates posterior marginal. Afterwards, the 
onditional distribu-tion 
an be 
omputed by normalizing �mXk .The 
omputation of �mXk 
an be organized in a join tree, whi
h is a tree where ea
hnode V is a subset of XN , and su
h that if a variable is in two distin
t nodes, V1 and V2,then it is also in every node in the path between V1 and V2. A join tree is 
alled binaryif every node has no more than three neighbors. Every potential in the set of initialpotentials, � 2 H, is assigned to a node Vj su
h that Xdom(�) � Vj. In this way, atta
hedto every node Vi there will be a potential �Vi de�ned over the set of variables Vi and that isequal to the produ
t of all the potentials assigned to it. The Penniless algorithm operatesover a binary join tree [CMS00, She97℄, and is based on the Shenoy-Shafer propagationalgorithm, that we brie�y des
ribe now.1A potential is a non negative fun
tion representing a 
onditional, joint, or marginal distributionCAEPIA 2001



A. Cano, S. Moral, A. SalmerónThe Shenoy-Shafer propagation algorithm is 
arried out by sending messages in thetwo dire
tions of ea
h edge of the join tree. The messages between two adja
ent nodesVi and Vj are potentials de�ned on Vi \ Vj (see [SS90℄ for the details). The messageVi-outgoing and Vj-in
oming is 
omputed as�Vi!Vj = 8<:�Vi � 0� YVk2ne(Vi)nfVjg�Vk!Vi1A9=;#Vi\Vj ; (3)where �Vi is the initial probability potential on Vi redu
ed to the observations e, �Vk!Viare the messages Vk-outgoing and Vi-in
oming and ne(Vi) are the neighbor nodes of Vi.The propagation is organized in two stages. In the �rst one, messages are sent fromthe leaves to a previously sele
ted root node (upward propagation), and in the se
ondstage, messages are sent from the root to the leaves (downward propagation). After thesetwo stages, in order to 
ompute the posterior marginal for variable Xk, we �rst determinea node Vi 
ontaining Xk and 
ompute �mVi = �Vi � (QVk2ne(Vi) �Vk!Vi) . The 
onditionaldistribution given e for Xk 
an be 
al
ulated marginalizing �mVi down to Xk (obtaining�mXk) and normalizing the result.3 Penniless propagationPenniless propagation [CMS00℄ is a deterministi
 approximate propagation algorithmbased on Shenoy-Shafer's method, whi
h aim is to provide (approximate) results underlimited resour
es. One of the main 
hara
teristi
s of this method is the use of probabilitytrees [BFGK96℄, whi
h allow to represent potentials in an approximate way within a givenmaximum number of values [CM97, Koz98, SCM00℄.Sin
e Penniless algorithm is based on Shenoy-Shafer's, it operates over binary jointrees, sin
e this kind of propagation was shown to be more e�
ient over this stru
ture[She97℄.One of the added features of Penniless is that the messages sent during the propaga-tion are approximated in order to redu
e their size. Another di�eren
e with respe
t toShenoy-Shafer's algorithm is the number of stages of the propagation: Penniless prop-agation may perform more than two stages, in whi
h messages are gradually improvedtaking into a

ount the information �owing a
ross the join tree. Thus, the basis of Pen-niless propagation is the use of probability trees as an approximate representation of themessages, and the in
remental improvement on the quality of the approximations as thenumber of propagations is in
reased.3.1 Probability treesA probability tree [BFGK96, CM97, SCM00℄ is a dire
ted labeled tree, where ea
h internalnode represents a variable and ea
h leaf node represents a probability value. The numberof leaves of a tree T is its size. Ea
h internal node has as many outgoing ar
s as statesthe variable it represents has. CAEPIA 2001



Di�erent Strategies to Approximate Probability Trees in Penniless PropagationA probability tree T on variables XI represents a potential � if for ea
h xI 2 UI thevalue �(xI) is the number stored in the leaf node that is rea
hed starting in the root nodeand sele
ting for ea
h internal node labeled with Xi the 
hild 
orresponding to value xi.Two important features of probability trees are that they 
an represent the sameinformation as a probability table, but using less values, and that they 
an approximatethe original tree by substituting some values by a single one (see �gure 1).
0.25X1X2X3X1 0.5 0.7 0.3 X1X2X30.5 0.7 0.30.21 1 1 0.21 1 2 0.51 2 1 0.71 2 2 0.72 1 2 0.52 2 1 0.32 2 2 0.3

x1 x2 x3 �(x1; x2; x3)
0.32 1 1 0.3
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Figure 1. A potential, a probability tree representing it and an approximation of the exa
ttree. Ar
s outgoing from a variable from left to right 
orrespond to the values of the variable inlexi
ographi
al order.The operations involved in propagation algorithms (
ombination, marginalization andrestri
tion), 
an be 
arried out over the probability tree representation (see [CMS00,SCM00℄ for the details). In the 
ase of Penniless propagation, another operation isparti
ularly important: the approximation operation. So, we will 
on
entrate on it.3.2 Approximate probability treesBy approximating a tree T1 representing a potential � we mean to obtain a tree T smallerthan T1, but trying to keep a 
lose representation of potential �. One way of obtainingthat approximate tree is by pruning the original one. A pruning of a tree 
onsists insele
ting a node su
h that all its 
hildren are leaves and repla
ing it and its 
hildren byone node 
ontaining a number. In the general 
ase, the optimum number to be pla
edin that node is the average of the values of the leaf nodes being removed (this minimizesthe Kullba
k-Leibler divergen
e [KL51℄ between the original tree and the approximateone [CM97, SCM00℄).However, in the Penniless propagation s
heme, trees representing messages throughan edge are approximated taking into a

ount the message (a probability tree) in theopposite dire
tion in the same edge. More pre
isely, the goal is to approximate a potential� represented by a tree T , by another potential �0 represented by another tree T 0 ofsmaller size, 
onditional on another potential  . In this se
tion we will assume all thepotentials to be de�ned on frame UI . For a potential �, let us 
onsider the followingnotation:� sum(�jA) = Px2A �(x), where A � UI .CAEPIA 2001



A. Cano, S. Moral, A. Salmerón� sum(�) = sum(�jUI) = Px2UI �(x).� If sum(�) 6= 0, then N(�) = �=sum(�).We will measure the distan
e between two potentials � and �0 
onditional on  bythe Kullba
k-Leibler divergen
e between the normalized potentials:D(�; �0j ) = Xx2UI N(�(x) (x)) log �(x)sum(�0 �  )�0(x)sum(� �  )! : (4)Sin
e there is no di�eren
e between the distan
esD(�; �0j ) andD(�; �00j ) ifN(�0) =N(�00), i.e. the distan
e is independent of the normalization fa
tor, then �0 will bedetermined up to a normalization value. In [CMS00℄ it was assumed that �0 and � weresu
h that sum(�0) = sum(�), but here we will assume that sum(�0 �  ) = sum(� �  ).The sele
tion of a normalization fa
tor does not have any e�e
t in the quality of theapproximation, but with this assumption the results are simpler to express and prove.As it has been reported in [BFGK96, CM97℄, the di�
ulty of the approximation liesin �nding the stru
ture of the tree, i.e. the same tree without numbers on the leaves. In[CMS00℄ we assumed that given a stru
ture S we 
an build an approximate tree denotedby TS from � by assigning to ea
h leave 
hara
terized by 
on�guration XJ = xJ , theaverage of potential � in points in AIxJ (points in UI for whi
h XJ = xJ). However, thisstrategy is not optimal; it is appropriate when we do not have a 
onditioning potential, , or when this potential is equal to 1, but not with general 
onditional information.This problem 
an be stated in the following general way: we have a potential � de�nedon UI and a partition A of this frame. We want to �nd a potential �0 whi
h is 
onstantin ea
h set A 2 A and su
h that the distan
e of � to �0 
onditioned to  is minimal. Inour 
ase, given a tree stru
ture S the elements of the partition are de�ned by the leavesof the stru
ture. If a leaf is 
hara
terized by 
on�guration XJ = xJ , then this leaf de�nesthe set A = AIxJ . Then we 
an prove the following result, showing that now, the optimalstrategy is to assign to the elements from A the average of � weighted by the values of  .Theorem 1 If � is a potential de�ned on UI and A is a partition of UI , then the potential�0 whi
h is 
onstant in the elements of ea
h set A 2 A, with sum(� � ) = sum(�0 � ) andminimizing the distan
e (4) from � to �0 given  is given by the potential �0 assigning toevery element x 2 A the value �0(x) = sum(� �  jA)sum( jA) : (5)Proof: Let us 
all �0(A) to the 
onstant value of �0 in the elements of A. We have,D(�; �0j ) = Xx2UI N(�(x) (x)) log �(x)sum(�0 �  )�0(x)sum(� �  )! = Xx2UI �(x) (x)sum(� �  ) log �(x)�0(x)!CAEPIA 2001



Di�erent Strategies to Approximate Probability Trees in Penniless Propagation= 1sum(� �  ) XA2A Xx2A�(x) (x) log �(x)�0(A)!= 1sum(� �  ) XA2A Xx2A�(x) (x) log(�(x))� (Xx2A�(x) (x)) log(�0(A))! :Without taking into a

ount 
onstant parts not depending on �0, we have that mini-mizing this quantity is equivalent to maximizingXA2A(Xx2A�(x) (x)) log(�0(A)) = XA2A sum(� �  jA) log(�0(A)) :Adding the 
onstant value PA2A sum(� � jA) log(sum( jA)), whi
h does not dependon �0, we get that we have to maximizeXA2A sum(� �  jA) log(�0(A) � sum( jA)) : (6)Now, we have that being �0 
onstant in A, sum(�0 �  ) = PA2A �0(A)sum( jA), andas PA2A sum(� �  jA) = sum(� �  ), and as sum(� �  ) = sum(�0 �  ), we have thatPA2A sum(� �  jA) = PA2A �0(A)sum( jA), and, by Gibbs' lemma,XA2A sum(� �  jA) log(�0(A) � sum( jA)) � XA2A sum(� �  jA) log(sum(� �  jA)) ;whi
h means that equation (6) is maximized for �0(A) = sum(� �  jA)=sum( jA), andtherefore the distan
e is minimized for this value. 2If we have a stru
ture S 0, S 00 is the stru
ture obtained by pruning S 0 and �0 and �00are the potentials asso
iated to trees TS0 and TS00 respe
tively, then pruning is 
arried outtrying to minimize D(�0; �00j ).It involves the 
omputation of the Kullba
k-Leibler distan
e from � to �0 given a thirdpotential  . The value �0(x) is equal to �(x) in all the points of UI , ex
ept for a subsetA � UI in whi
h �0(x) = sum(� �  jA)=sum( jA). In this 
ase, the set A 
orrespondsto all the values xI 2 UI su
h that following the path asso
iated to it we arrive to thenode after pruning. Making some easy 
al
ulations, this distan
e, D(�; �0j ), 
an be
al
ulated a

ording to the following formula:1sum(� �  jA)   Xx2A�(x) (x) log(�(x))!+ sum(� �  jA) + log sum( jA)sum(� �  jA)!! : (7)This new formula is mu
h easier than the one used in the original Penniless algorithm:(Px2A(�(x) (x) log(�(x)))� sum(� �  jA) log (sum(�jA)=jAj))sum(� �  ) +CAEPIA 2001



A. Cano, S. Moral, A. Salmerónlog sum(� �  )� sum(� �  jA) + (sum(�jA)sum( jA))=jAjsum(� �  ) ! : (8)Let � a potential represented by a tree T and assume that we want to make anapproximation 
onditioned to the values of a potential  . Consider a node in a tree su
hthat all its 
hildren are leaves. Let Xk be the variable stored on it and (XJ = xJ) the
on�guration of values de�ning the path from the root to this node. We have 
onsidereddi�erent ways of a
tually 
arrying out the pruning of a probability tree:1. Consider a threshold � > 0 and then approximate the 
hildren of Xk by its averageif the value of formula (8), with A = AIxJ , is less than �. This is the originalpenniless algorithm, denoted by penni. We have also 
onsidered the same s
hemebut repla
ing by the weighted sum in (5) with A = AIxJ , instead of the average.This algorithm will be denoted by new-penni.2. Consider a value 0 < � < 1 and then prune node Xk if sum(�� jAIxJ ) � ��sum(�� ),i.e. we prune every node su
h that beneath it, the proportion of the entire prob-ability mass of the produ
t of potentials is lower than �. We have 
onsidered twopossibilities here: repla
ing the deleted values by the weighted sum in (5), denotedas new-penni-av, or repla
ing the deleted values by zero, denoted as new-penni-ze.The aim of this way of approximating is to avoid investing mu
h e�ort on dealingwith not signi�
ant values. Repla
ing by zero in some sense is inspired in simula-tion algorithms, in whi
h 
on�gurations with low probability are usually assignedprobability zero, sin
e they have tenden
y not to appear in any sample.Though above 
riteria are expressed in terms of potentials, the 
omputations 
an be
arried out dire
tly in the tree representations of them, being the number of 
omputationsa fun
tion of the stru
tures of the trees and not of the sizes of the frames in whi
h thepotentials are de�ned.The approximation steps are done in a re
ursive way, starting in the nodes whose
hildren are leaves and going ba
k to the root node. In this way, if all the 
hildren of aninternal node are leaves or have been previously pruned to a number, then this node is
onsidered again for approximation.4 Experimental workWe have 
arried out two di�erent experiments. The �rst was devoted to test the appropri-ateness of the new way of 
omputing the divergen
e between the exa
t and approximatepotentials displayed in equation (7), that is, to test penni vs. new-penni. The se
ondexperiment is designed to 
ompare the e�e
ts of repla
ing small probability values byzero or by the weighted sum in equation (5), i.e. new-penni-av vs. new-penni-ze.In the �rst experiment we have 
hosen a large pedigree network (441 variables) withmany observed variables (166). The reason to make this 
hoi
e is be
ause in networkswithout many observations, repla
ing by the average or by the weighted sum does notCAEPIA 2001



Di�erent Strategies to Approximate Probability Trees in Penniless PropagationTable I. Results (time in se
onds and K-L divergen
e) of penni and new-penni for a pedigreenetwork with many observed nodes.� 4 stages 5 stages 6 stagespenni new-penni penni new-penni penni new-penni0.01 1.16 - 0.004434 1.11 - 0.004366 1.18 - 0.003754 1.14 - 0.003609 1.24 - 0.003739 1.17 - 0.0035750.005 1.20 - 0.001004 1.14 - 0.003376 1.21 - 0.001004 1.20 - 0.002932 1.24 - 0.001004 1.18 - 0.0011620.001 1.22 - 1.505E-4 1.18 - 4.375E-5 1.22 - 1.505E-4 1.17 - 4.816E-5 1.24 - 1.505E-4 1.17 - 4.375E-50.0005 1.23 - 4.042E-5 1.19 - 1.978E-5 1.25 - 4.042E-5 1.19 - 1.883E-5 1.28 - 4.042E-5 1.20 - 1.978E-5Table II. Results (time in se
onds and K-L divergen
e) of the se
ond experiment for the pedigree.� 4 stages 5 stages 6 stagesnew-penni-av new-penni-ze new-penni-av new-penni-ze new-penni-av new-penni-ze0.01 1.22 - 1.392E-4 1.16 - 1.742E-4 1.18 - 1.383E-4 1.15 - 1.744E-4 1.18 - 1.392E-4 1.16 - 1.742E-40.006 1.18 - 6.391E-5 1.17 - 2.862E-4 1.17 - 6.310E-5 1.16 - 2.715E-4 1.18 - 6.391E-5 1.18 - 2.862E-40.003 1.20 - 2.959E-5 1.24 - 3.015E-5 1.18 - 2.550E-5 1.19 - 2.749E-5 1.19 - 2.959E-5 1.22 - 3.015E-50.001 1.20 - 1.978E-5 1.20 - 1.914E-5 1.19 - 2.017E-5 1.18 - 1.813E-5 1.20 - 1.978E-5 1.20 - 1.914E-5make a big di�eren
e, sin
e in the way Penniless propagation operates, many upwardmessages 
an be 
onstantly equal to one, in whi
h 
ase both substitution s
hemes are thesame. We have performed trials with 4, 5 and 6 propagation stages, and the a

ura
y ofthe approximations has been 
ontrolled by parameter �. The results of this experimentare displayed in table I. These results suggest that new-penni usually provides equal orbetter results in lower time.For the se
ond experiment we have 
hosen the same network as in the �rst one andalso another network with less variables (189 with 8 observations) but higher 
omplexity(bigger potential sizes). This new network is 
alled Munin 1. Both networks have beenborrowed from the De
ision Support Systems Group at Aalborg University (Denmark).In this se
ond experiment we have �xed a value for parameter � = 0:001 and thenthe algorithms have been tested varying the value of parameter �. The results of thisexperiment are displayed in tables II and III. Attending to these results, the use ofnew-penni-ze does not seem to provide any improvement, but in the very 
omplexnetwork Munin 1, the 
omputing time is 
onsiderably redu
ed and the quality of theapproximations improved. We have performed many other experiments that are notreported here, suggesting the same 
on
lusion.The algorithms have been implemented in Java 2 version 1.3 and integrated in theElvira system. Trials have been run on an AMD K7 (800 MHz) 
omputer with 512MBof RAM and operating system Linux RedHat with kernel 2.2.16.22.Table III. Results (time in se
onds and K-L divergen
e) of the se
ond experiment for Munin 1.� 4 stages 5 stages 6 stagesnew-penni-av new-penni-ze new-penni-av new-penni-ze new-penni-av new-penni-ze0.01 202.8 - 0.16978 102.1 - 0.1942 204.2 - 0.1782 107.0 - 0.1933 284.4 - 0.1450 139.1 - 0.17660.006 310.4 - 0.1232 167.8 - 0.0857 274.6 - 0.1526 178.5 - 0.0889 403.5 - 0.1390 236.8 - 0.09540.003 440.6 - 0.0849 236.8 - 0.0606 444.4 - 0.0851 233.8 - 0.0647 650.5 - 0.0851 312.4 - 0.08880.001 2436.8 - 0.0375 639.7 - 0.0136 2418.5 - 0.0376 646.4 - 0.0135 3777.0 - 0.0375 920.3 - 0.0664CAEPIA 2001



A. Cano, S. Moral, A. Salmerón5 Con
lusionsWe have introdu
ed in this paper new ways of doing approximations in Penniless propaga-tion. Under the assumptions of theorem 1 we have shown that repla
ing by the weightedsum is optimal. Besides, repla
ing small probability values by zero allows the Pennilesss
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