
Importance Sampling Algorithms for Belief Networks based on
Approximate Computation

L.D. Hernández S. Moral A. Salmerón
Dept. Informatics and Systems Dept. Computer Sciences and A.I. Dept. Statistics and A.M.

University of Murcia University of Granada University of Almeŕıa
30071-Espinardo-Murcia-SPAIN 18071-Granada-SPAIN 04120-Almeŕıa-SPAIN

e-mail: ldaniel@dif.um.es e-mail: smc@robinson.ugr.es e-mail: asc@stat.ualm.es

Abstract

In this paper we study a new general class
of algorithms for the propagation of proba-
bilities on graphical structures based on im-
portance sampling techniques. The idea is to
make an approximate and fast propagation
in order to obtain a sampling distribution as
close as possible to the true one. Our pro-
posal is based on a deletion sequence of the
variables to calculate the ’a posteriori’ prob-
ability in one variable. The deletion proce-
dure is the basis for the exact propagation
algorithms. Here the difference is that some-
times, when the cost of the exact deletion ex-
ceeds a given limit, an approximated deletion
is done. The calculations of the deletion pro-
cedure will be used to obtain in a very fast
way a sample for the simulation. Some ex-
perimental tests are carried out to compare
our procedure with other known methods.

1 INTRODUCTION

Probability propagation in belief networks consists on
updating the probability values of the variables in a
dependence graph, given some variables that have been
observed.

Different exact methods have been developed for this
purpose in the last years [11, 13, 15, 16, 17, 20]. In
general, it can be said that they take advantage of con-
ditional independences among variables expressed by
the graph, to develope a local propagation algorithm.
Shachter, Andersen and Szolovits showed how these
methods can be included inside a global framework
based on the concept of cluster tree [19]. The problem
of these algorithms is that the exact propagation pro-
belm is NP-hard in the worst case [4]. This fact makes
necessary the use of approximate algorithms to be able
to deal with a larger class of problems. Most of these

approximate algorithms try to obtain a good estima-
tion of the ditribution in the network applying Monte
Carlo techniques. Approximate inference is a NP-hard
problem too [5], but the class of solvable problems is
wider.

Two different classes of Monte Carlo algorithms can
be found in the literature about belief networks: those
based on importance sampling and those based on
Markov chains. The problem to solve is the same:
How to obtain samples from a difficult to manage
probability distribution. Importance sampling algo-
rithms use a modified distribution in order to obtain
independent samples, that are weighted to resemble
the original distribution. The first algorithm of this
class, called Probabilistic Logic Sampling, was pro-
posed by Henrion [8]. It works well when no evidences
are given. The Likelihood Weighting algorithm, pro-
posed by Fung and Chang [7] and Shachter and Peot
[18] improves Henrion’s one. This algorithm has a
good performance, but the same problem as in logic
sampling can arise [2]: One can imagine very simple
examples in which all the weights are 0 or 1. Of spe-
cial interest into this group is the class of algorithms
developed by Cano, Hernández and Moral, based on
entropy criteria [2]. They use the functions with less
entropy (the most informative ones) to simulate the
variables, and those with more entropy to weight the
simulation (this solves the problem of 0-1 weights).
The other class of Monte Carlo algorithms is the so
called Markov Chain-Monte Carlo algorithms. In this
case the samples are not independent, but they ver-
ify the Markov property. Pearl’s stochastic simulation
[12] is an example of this technique. One generalized
approach to stochastic simulation was given by Jensen,
Kong and Kjærulff [10], allowing samples to be gener-
ated with a greater degree of independence, but with
a higher computational cost.

In this paper we consider a general class of impor-
tance sampling algorithms. The basic idea is to make a
previous approximated propagation, following the con-

cept of node removal [20], very similar to the symbolic
propagation due to D’Ambrosio [17] (section 2), and
then improve it by sampling the obtained functions.
Node removal is done in two steps: firstly, combin-
ing the functions associated with the node to be re-
moved, and secondly, marginalizing the resulting func-
tion deleting such variable. The main algorithm is pre-
sented in section 2.4. Some variations, defining criteria
about the functions that must be combined before do-
ing the marginalization are considered (section 2.5).
The paper ends with an experimental evaluation of
the algorithms (section 3) comparing them with Like-
lihood Weighting, and conclusions (sect. 4).

2 THE ALGORITHMS

2.1 THE PROBLEM

A belief network is a directed acyclic graph where each
node represents a random variable. Given the indepen-
dences associated to the graph a probability distribu-
tion is specified by giving a distribution for each node
conditioned to its parents.

Let X = (X1, . . . , Xn) be the set of variables in the
network. Each variable Xi takes values on a finite
set Ui. We shall denote by UI the cartesian product∏

i∈I Ui. Given x ∈ UI and J ⊆ I, we shall denote by
x↓J the element from UJ obtained from x dropping the
coordinates not in J . Given a function f defined over
UI , s(f) will denote the set of indexes of the variables
for which f is defined (i.e. s(f) = I). Under these
conditions, the conditional distribution of Xi given its
parents in the net, F (i), is denoted by

fi(x) = fi(x↓i, x↓F (i)) ∀i ∈ N ∀x ∈ Us(fi) (1)

where N = {1, . . . , n}, and

∑

xi∈Ui

fi(xi, x) = 1 ∀x ∈ UF (i)

Then, the joint probability distribution for the n-
dimensional random variable X can be calculated as

p(x) =
∏

i∈N

fi(x↓s(fi)) ∀x ∈ UN (2)

When the value of a variable Xi is known, Xi is called
an observation, and its value ei is called evidence. The
set of evidences will be denoted by e and the set of
indexes of the observed variables is denoted by E. One
observation Xi has associated a Dirac function defined
on Ui by

δei
(x) =

{
1 if ei = x
0 if ei 6= x

(3)

Assume that the joint distribution (2) is difficult to
manage and that we want to calculate the ’a poste-
riori’ probability function p(x|e), for every x ∈ UI ,
where I ⊆ N . This probability is equal to p(x∩e)/p(e),
and as p(e) is constant, it is proportional to p(x ∩ e).
So, we can know the ’a posteriori’ probability if we cal-
culate for every x ∈ UI the value p(x∩ e), normalizing
afterwards. p(x ∩ e) can be expressed in the following
way,

p(x ∩ e) =
∑

y↓E=e

y↓I=x

∏

i∈N

fi(y↓s(fi))

=
∑

y↓I=x

(∏

i∈N

fi(y↓s(fi))

)
.


∏

j∈E

δej
(y↓j)


 (4)

2.2 IMPORTANCE SAMPLING

A well known approximate method to calculate the
addition in (4) is the importance sampling technique
[14]. It is a Monte Carlo procedure that uses an aux-
iliary probability distribution P ∗ to obtain a sample
from the space UN . Afterwards, a weight is assigned
to each obtained configuration, x(i) ∈ UN . This weight
is,

wi =
(
∏

i∈N fi(x↓s(fi))).(
∏

j∈E δej (x
↓j))

P ∗(x)
(5)

The only condition for the sampling distribution is
that if p(x↓I ∩ e) > 0, then P ∗(x) > 0. If this is
verified and (x(1), . . . , x(m)) is the sample we have ob-
tained, then an unbiased estimation of p(x∩ e) can be
obtained by calculating,

∑
x(i)↓I=x wi

m
(6)

The optimal selection for P ∗ is equal to P (.|e). That is
P ∗(x) should be proportional to p(x ∩ e). In this way
we obtain constant weights and the variance of the
estimation is minimal [2, 9, 18]. But this selection is
not viable in general, because p is a probability difficult
to handle. What we should do is to select P ∗ in such
a way that we obtain weights which are as constant as
possible, and this is achieved if P ∗ is very similar to
P (.|e). The algorithm is as follows (see [2, 18]):

1. for i = 1 to m

(a) Generate a configuration x(i) according to
P ∗.

(b) Do

wi =
∏

i∈N fi(x↓i, x↓F (i))
P ∗(x)

×
∏

j∈E

δej
(x↓j) (7)

2. For every x ∈ UI

(c) Estimate p(x ∩ e) by using formula (6)

3. Normalize values p(x ∩ e)

2.3 TECHNICAL DEFINITIONS

Given a function f over a set of variables XI and J ⊆
I, we define marginalization of f over a variable XJ

(or the deletion of variables in I−J) as a new function
f↓J defined over the set J given by the expression

f↓J(x) =
∑

y∈UI

y↓J=x

f(y) ∀x ∈ UJ (8)

Given r functions f1, . . . , fr each one defined over the
sets I1, . . . , Ir, a new function, called the combination
of them, is defined over the set I =

⋃r
i=1 Ii as

f(x) =
r⊗

i=1

fi(x↓Ii) =
r∏

i=1

fi(x↓Ii) ∀x ∈ UI (9)

Note that the product above can be done in any or-
dering. Thus, combination is a commutative operator.

Let f be a function defined over a set I of indexes, and
assume a set of variables XJ , J ⊂ I whose values x↓J

are fixed (x↓J = x0). The restriction of f to the values
x0 is a new function f ′ defined on I − J according to
the following expression:

f ′(x) = f(y) (10)

such that y ∈ UI , y↓I−J = x↓I−J and y↓J = x0.

Reduction can simplify the problem when we have ob-
servations. Note as formula (4) is still valid if we re-
place each function fi by its reduction to the evidence
e. This way we can work with simpler functions.

2.4 THE MAIN ALGORITHM

The key point in an importance sampling algorithm is
to obtain sampling distributions as similar as possible
to the original ones. In a belief network, the original
distribution is presented as a product of conditional

distributions. Thus, algorithms proposed by Shachter
and Peot [18], Cano, Hernández and Moral [2] and
Fung and Chang [7] use sampling distributions close to
the original conditional ones, in order to obtain more
uniform weights in the simulation process.

Here it is proposed the idea of using, in each moment,
all the information available about each variable, that
is, use all the functions in which a variable takes part
in order to sample it. This, obviously, will not be al-
ways possible, because the complexity of this process
would be the same of the exact computation of the
probabilities in the network. However, defining crite-
ria about combination of functions, this operation can
be done in an approximate way, so that calculation
will be faster. Then, weighting the obtained samples
correctly, an importance sampling algorithm that uses
sampling functions very close to the original ones is
obtained. More concretely, the algorithm starts with
a family of functions given by the original set of con-
ditional probabilities and the observations,

H = {f1, . . . , fn} ∪ {δel
}l∈E (11)

Then it considers an ordering of the variables given by
a permutation σ on the set {1, . . . , n} and proceeds by
deleting the variables on the order given by σ. The
deletion of a variable Xσ(i) should be done in the fol-
lowing way (Exact):

– It combines all the functions which are defined for
variable Xσ(i), obtaining a function hi. It deletes
Xσ(i) from the combination, hi, by marginalizing
the result to s(h) − {σ(i)}. The result is added
to H. All the functions which were combined to
obtain hi are removed from H.

If we are able to delete all the variables by repeating
this step from 1 to n, then there is no difficulty in sam-
pling with a probability proportional to p(x ∩ e). In
fact what we are doing is an exact propagation algo-
rithm [20], and the following facts can be proved:

– If hn is the function obtained when we are deleting
Xσ(n) then for all x ∈ Uσ(n), hn(x) is proportional
to p(x|e).

– If hi is the function obtained when we are delet-
ing Xσ(i) (i < n), Σ(i) = {σ(i+1), . . . , σ(n)}, and
x0 ∈ UΣ(i)∩s(hi), then the restriction of hi to x0,
h′i (see equation (10)) is proportional to the prob-
ability p(.|e, x0): ∀x ∈ Uσ(i), h

′
i(x) ∝ p(x|e, x0).

These two properties allow us to simulate a value
x ∈ UN with a probability equal to p(x|e). We only

have to obtain values for the variables in the order,
Xσ(n), . . . , Xσ(1). We only have to use for each Xσ(i)

the function hi, making the restriction of it to the
values already obtained for the other variables, and
normalizing afterwards. The main problem is that not
always the deletion of a variable can be done on an
exact way. In some cases the size of hi would be so
big that this calculation is unfeasible. In this case
this step would have to be approximate. There will
be different types of approximated calculations, but in
general, they will be particular cases of the following
scheme (Approximate):

– Let H(i) = {h ∈ H | σ(i) ∈ s(h)}, the set of func-
tions which are defined for variable Xσ(i). Remove
H(i) from H.

– Transform H(i) by combination. We repeat sev-
eral times the following process: take R ⊂ H(i).
Combine all the functions in R. Add the combi-
nation to H(i). Remove R from H(i).

– Calculate H+(i) from H(i) by deleting Xσ(i) of
all the functions belonging to H(i). Add H+(i)
to H.

If in the second step of the approximated calculation
we combine all the functions in H(i), then we obtain
the exact calculation. The idea of the approximated
calculation is that when this is not possible, we make
only some of the combinations (until a size threshold).
This step is not exact, because we should combine all
of them, but is an approximation, which has an im-
portant property: it does not introduce new 0 values.
That is, if x ∈ UN is such that h(x↓s(h)) 6= 0 for every
h ∈ H, before deleting Xσ(i), this property is verified
after the deletion of the variable. If the algorithm is
used to sample values for the variables XN , and we
are going to obtain a value for the variable Xσ(i), the
process is as follows:

– Let H(i) the set calculated in step 2 of the deletion
procedure.

– Restrict each function in H(i) to the previously
obtained values for other variables. Combine all
the functions in H(i), obtaining a function h′i de-
fined on Uσ(i).

– If N(h′i) is the normalization of h′i, obtain a value
for Xσ(i) following the probability distribution
N(h′i).

With all these elements a global view of the algorithm
is as follows:

1. Let H = {fi | i = 1, . . . , n}.

2. Select an ordering σ for the variables in G.

3. Incorporate observations:

(a) Restrict all the functions in H to the evi-
dences {el}l∈E according to equation (10).

(b) For every observed variable Xl, l ∈ E do

H = H ∪ {δel
}

4. for i = 1 to n do

(a) Delete Xσ(i) by the approximated procedure1

5. for j = 1 to m do

(a) wj = 1.0
(b) for i = n downto 1 do

i. Obtain a value for Xσ(i), x
(j)
i , according

to N(h′i).
ii. Do

wj =
wj

N(h′i)(x
(j)
i)

(c) Do

wj = wj ×
n∏

i=1

fi(x
(j)
i)× δei(x

(j)
i)

6. Estimate desired probabilities according to equa-
tion (6).

Note that at the end of loop 5.(b), the weight wj takes
the value

wj = 1/P ∗(x(j)
i)

and after step 5.(c) the resulting weight is the correct
one for importance sampling (equation (7)). Observe
that the efficiency of the algorithm depends on the
ordering of the variables at step 2.

2.5 PARTICULAR CASES

Here we shall study different criteria to select the sub-
sets R of H(i) that will be combined before marginaliz-
ing (calculating H+(i)). If we take R = H(i), then we
are following the exact deletion algorithm. This pro-
cedure, as it was commented early, has not too much
interest, because if one has been able to delete all the
variables on an exact way, then a propagation will cal-
culate the marginal probabilities for each single vari-
able without simulation, by using only an additional
time similar to the time of deleting all the variables.
The only situation in which this can be useful is when

1remember that the exact calculation is a particular
case of this step; so the exact deletion is also possible

we want to know a probability involving several vari-
ables, for example a logical combination of events as-
sociated to several variables [3]. Then the complexity
of the exact procedures increases, while simulation can
be addatep to make the calculations keeping the same
complexity.

Next criterium we will consider is to do everything ap-
proximated without combining. That is, H(i) does not
change in the second step of the approximated calcu-
lation. This is the faster procedure, because combina-
tion costs are avoided. On the contrary, the process
is less exact than any other, because we are loosing
information in each deletion. Also, simulation time
grows because each time a variable is being simulated,
it is necessary to combine all the functions for that
variable. We call this criterium 1.

Another idea (crit. 2) is to combine all the functions
concerning a variable only if the size of the resulting
function does not exceed the size of the largest func-
tion existing in the original network. That is, we make
an exact deletion if the size of the combination is not
bigger than the size of the larger potential in the initial
graph, and as in criterium 1 otherwise. This way we
avoid adding complexity to the original network. By
the size of a function we understand the product of the
number of cases of all the variables for which the func-
tion is defined. This method seems good, but can be
improved considering that maybe we cannot combine
all the functions, but perhaps we can combine some of
them. That is, we select R in the approximated dele-
tion by including functions until the resulting combi-
nation does not surpass the limit. In that case, the
ordering in which the functions to be combined are
selected becomes important. We shall consider two
options here: combine all functions in sequence while
maximum size is not exceeded (crit. 3) or combine first
those functions whose domains are less different, that
is, those that are defined over sets of variables with
the highest number of coincident variables (crit. 4).

There is another question to establish about the main
algorithm: the treatment of observed variables. We
have decided to incorporate them before sampling dis-
tributions are calculated. This option has the follow-
ing advantages: first, the functions are restricted to
the observed values, so that the size of some functions
will be reduced. Moreover, it is avoided distinguishing
between observed or not observed variables in simula-
tion time. This fact reduces the possibility of obtaining
0 weights, because the simulation is done with func-
tions already reduced to the observed values. Thus,
any sample obtained will be coherent with the obser-
vations. An important cause of 0 in existing simulation
algorithms is the discordance of the simulated values
for the variables and the observations. The trouble-

some is that the dinamical inclusion of new evidences
would produce a new calculation of sampling distribu-
tions. The second option is not to restrict the func-
tions to the observations. In this case, the simulation
process changes. When one observed variable is to be
simulated, then it takes the observed value directly,
without simulating. This idea is followed in the Like-
lihood Weighting algorithm. The troublesome is that
we increase the possibility of obtaining 0 weights. The
advantage is that evidences can be easily updated.

3 EXPERIMENTAL EVALUATION

In this section we carry out an empirical test of the
performance of the algorithms. For this purpose we
construct one graph with 40 variables. The structure
of this graph consists of both dense and sparse zones.
The number of possible values for the variables is be-
tween 2 and 4. Three different experiments have been
carried out.

In the first one, the conditional distributions have been
randomly generated following an uniform distribution.
No observations are considered. In the second experi-
ment, the conditional distributions are constructed as
in the first one, but four varibles have been instanci-
ated, always to its first value. In the third experiment,
four observed variables are considered, and the condi-
tional distributions are randomly generated for all the
variables except for one observed variable: the condi-
tional probability of obtaining the observed value given
the parents of the variable has been set to 0, except for
one configuration of the parents for which it is equal
to 1. This way we try to reproduce the problems of
Logic Sampling in the Likelihood Weighting algorithm
(see [2]). In all the experiments, five algorithms have
been compared:

ALG 1 Likelihood Weighting
ALG 2 Importance sampling, criterium 1
ALG 3 Importance sampling, criterium 2
ALG 4 Importance sampling, criterium 3
ALG 5 Importance sampling, criterium 4

The limit of the combinations of functions in R has
been set to the size of the larger potential in the origi-
nal graph. When evidences are given, they are instan-
tiated before obtaining the sampling distributions in
importance sampling algortihms (see section 2.5). The
ordering considered for the variables is the same they
have in the network. The number of runs of the sim-
ulation algorithms has been set to 3000, and the run
time and error of the estimations have been calculated.
For one variable Xl, the goodness of the estimation is
measured as [6]:

G(Xl) =

√√√√ 1
|Ul|

∑

al∈Ul

(p′(al|E)− p(al|E))2

p(al|E)(1− p(al|E))

where p(al|E) is the true a posteriori probability,
p′(al|E) is the estimated value and |Ul| is the number
of cases of variable Xl. For a set of variables (Xi)i∈I ,
the goodness of the estimation is:

G((Xi)i∈I) =
√∑

i∈I

G(Xi)2

Each algorithm has been executed 100 times, and the
mean time and error have been calculated. Results
are shown in tables 1,2, 3, for experiments 1,2 and 3
respectively.

Table 1: Results for experiment 1.

Time (seconds) Error
ALG 1 13.62 0.116171
ALG 2 25.66 0.114686
ALG 3 24.43 0.113296
ALG 4 23.95 0.116629
ALG 5 23.56 0.114554

Table 2: Results for experiment 2.

Time (seconds) Error
ALG 1 13.84 0.127102
ALG 2 25.55 0.114576
ALG 3 24.37 0.112247
ALG 4 23.05 0.109560
ALG 5 22.11 0.107585

Table 3: Results for experiment 3.

Time (seconds) Error
ALG 1 13.8 U
ALG 2 25.75 0.053266
ALG 3 24.63 0.058059
ALG 4 23.51 0.044827
ALG 5 23.21 0.048057

The letter U in table (3) for Likelihood Weighting al-
gorithm means that it has been unable to obtain an
estimation of the probabilities because all weights have
resulted to be 0. Attending the experimental results,
the following can be said:

• The performance of algorithm 1 (Likelihood
Weighting) decreases when evidences are given.
The extreme case is when values 0 are introduced
(experiment 3). In this case no estimation is given
because all weights are 0. However, algorithms
2-5 do not have this problem. Estimations for
these algorithms are even better for experiment
3. When there are no observed variables (experi-
ment 1) all methods provide similar results.

• There are no substantial diferences among ALG
2-5 for the graph considered, except for the third
experiment, where the two last criteria give better
results. This was expectable, because in this case
making the propagation requieres more precission
in the calculations.

• There is no important differences between the dif-
ferent criteria to select R (Algorithms 4 and 5).
This does not mean that they will have always the
same performance. We are conscious that this
experimention is really limited and more exten-
sive tests should be made to asses the differences
among the different algorithms.

4 CONCLUSIONS

A new class of algorithms for probability propagation
in causal belief networks has been presented in this pa-
per. The new algorithms are more robust than Like-
lihood Weighting in the general case (when there are
observations). With no observations they all have a
similar preformance. One important advantage of our
procedures is that it is detected when an exact prop-
agation can be done. In this case, we could give exact
results.

Many aspects of these algorithms are to be studied in
future works. For example, new criteria for selecting
what functions are to be combined. The initial or-
dering of the variables is another point to study. Or-
derings resulting of graph-triangulation processes can
be considered. Moreover, other simulation techniques
can be related with those proposed in this paper, as it
could be stratified sampling [1]. Now, we are applying
stratified sampling to these new algorithms.

References

[1] R.R. Bouckaert, E. Castillo, J.M. Gutiérrez
(1995) A modified simulation scheme for inference
in bayesian networks. To appear in: International
Journal of Approximate Reasoning.

[2] J.E. Cano, L.D. Hernández, S. Moral (1995) Im-
portance sampling algorithms for belief networks.
To appear in: International Journal of Approxi-
mate Reasoning.

[3] G.F. Cooper (1989) An algorithm for comput-
ing probabilistic propositions. In: Uncertainty in
Artificial Intelligence, 3 (L.N. Kanal, T.S. Levitt,
J.F. Lemmer, eds.) North-Holland (Amsterdam)
3-14.

[4] G.F. Cooper (1990) The computational complex-
ity of probabilistic inference using Bayesian belief
networks. Artificial Intelligence 42, 393-405.

[5] P. Dagum, M. Luby (1993) Approximating proba-
bilistic inference in Bayesian networks is NP-hard.
Artificial Intelligence 60, 141-153.

[6] K.W. Fertig, N.R. Mann (1980) An accurate ap-
proximation to the sampling distribution of the
studentized extreme-valued statistic. Technomet-
rics 22, 83-90.

[7] R. Fung, K.C. Chang (1990) Weighting and in-
tegrating evidence for stochastic simulation in
Bayesian networks. In: Uncertainty in Artificial
Intelligence, 5 (M. Henrion, R.D. Shachter, L.N.
Kanal, J.F. Lemmer, eds.) North-Holland (Ams-
terdam) 209-220.

[8] M. Henrion (1988) Propagating uncertainty by
logic sampling in Bayes’ networks. In: Uncer-
tainty in Artificial Intelligence, 2 (J.F. Lemmer,
L.N. Kanal, eds.) Norht-Holland (Amsterdam)
317-324.

[9] L.D. Hernández, S. Moral (1995) Mixing exact
and importance sampling propagation algorithms
in dependence graphs. Submitted to: Interna-
tional Journal of Intelligent Systems.

[10] C.S. Jensen, A. Kong, U. Kjærulff (1993) Block-
ing Gibbs sampling in very large probabilistic ex-
pert systems. Technical Report R-93-2031. Insti-
tute for Electronic Systems, Aalborg University.

[11] S.L. Lauritzen, D.J. Spiegelhalter (1988) Lo-
cal computations with probabilities on graphical
structures and their application to expert sys-
tems. Journal of the Royal Statistical Society, B
50, 157-224.

[12] J. Pearl (1987) Evidential reasoning using
stochastic simulation of causal models. Artificial
Intelligence 32, 247-257.

[13] J. Pearl (1988) Probabilistic Reasoning in Intelli-
gent Systems. Morgan-Kauffman (San Mateo).

[14] R.Y. Rubinstein (1981) Simulation and the Monte
Carlo Method. Wiley (New York).

[15] R.D. Shachter (1986) Evaluating influence dia-
grams. Operations Research 34, 871-882.

[16] R.D. Shachter (1988) Probabilistic inference and
influence diagrams. Operations Research 36, 589-
605.

[17] R.D. Shachter, B. D’Ambrosio, B.A. Del Favero
(1990) Symbolic probabilistic inference in belief
networks. Proceedings of the AAAI’90 Confer-
ence, Vol.1, 126-131.

[18] R.D. Shachter, M.A. Peot (1990) Simulation ap-
proaches to general probabilistic inference on be-
lief networks. In: Uncertainty in Artificial Intelli-
gence, 5 (M. Henrion, R.D. Shachter, L.N. Kanal,
J.F. Lemmer, eds.) North Holland (Amsterdam)
221-231.

[19] R.D. Shachter, S.K. Andersen, P. Szolovits (1991)
The equivalence of exact methods for probabilistic
inference on belief networks. Submitted to Arti-
ficial Intelligence.

[20] G. Shafer, P.P. Shenoy (1990) Probability prop-
agation. Annals of Mathematical and Artificial
Intelligence 2, 327-351.

