recent publications


preprints


  • A. Aptekarev, G. López-Lagomasino, A. Martínez-Finkelshtein, Strong asymptotics for the Pollaczek multiple orthogonal polynomials ensembles, preprint ArXiv math.1410.1261.
  • G. Filipuk, C. Rodríguez-Perales, Generalized Charlier polynomials and iterated regularisation, submitted.
  • J. F. Mañas-Mañas, J. J. Moreno-Balcázar, Asymptotic behavior of the eigenvalues in the context of Sobolev orthogonality, accepted in Springer.
  • A. Martínez-Finkelshtein, R. Morales, Interlacing and monotonicity of zeros of Angelesco-Jacobi polynomials, accepted in "Pure and Applied Functional Analysis". Preprint arXiv.
  • A. Martínez-Finkelshtein, R. Morales, D. Perales, Zeros of generalized hypergeometric polynomials via finite free convolution. Applications to multiple orthogonality, enviado. Preprint arXiv.
  • A. Martínez-Finkelshtein, E. A. Rakhmanov, Flow of the zeros of polynomials under iterated differentiation, submitted. Preprint arXiv.

published papers


2024

  • K. Castillo, D. Mbouna, A counterexample to a conjecture of M. Ismail, J. Math. Phys. 65, (2024) Art. 033507. DOI. Also preprint in arXiv:2206.08375.
  • J. Garay, M. Gámez, Y. Solano-Rojas, I. López, A.B. Castaño-Fernández, Z. Varga, T.F. Mari, V. Csiszár, T. Cabello, Filial cannibalism of Nabis pseudoferus is not evolutionarily optimal foraging strategy, Sci. Rep. 14, (2024) Art. 9022. DOI.
  • J. F. Mañas-Mañas, J. J. Moreno-Balcázar, C. Rodríguez-Perales, Mehler-Heine asymptotics and zeros of some Meijer G-functions. Phys. Scr. 99 (2024) Art. 095221. DOI.
  • A. Martínez-Finkelshtein, R. Morales, D. Perales, Real roots of hypergeometric polynomials via finite free convolution, Int. Math. Res. Not. IMRN. 16 (2024), 11642–11687. DOI. También preprint en arXiv.

2023

  • K. Castillo, D. Mbouna, Proof of two conjectures on Askey-Wilson polynomials. Proc. Amer. Math. Soc. 151(4) (2023), 1655-1661. DOI. Prepint in arXiv:2202.02637.
  • D. Dominici, J. J. Moreno-Balcázar, Asymptotic analysis of a family of Sobolev orthogonal polynomials related to the generalized Charlier polynomials. J. Approx. Theory 293 (2023). Art. 105918. DOI. Preprint en arXiv.2210.00082.
  • G. Filipuk, J. F. Mañas-Mañas, J. J. Moreno-Balcázar, Second–order difference equation for Sobolev–type orthogonal polynomials. Part II: computational tools. East Asian J. Appl. Math. 13(4) (2023), 960--979. DOI.
  • I. López, M. Gámez, A. B. Castaño-Fernández, Z. Varga, (2023). Un modelo de juego para la cooperativa de comercialización en la pesca. In P. Aguilera Aguilera, M.I. Sáez Casado, A. Fernández Cortés, A. Galafat Díaz, A. J. Mendoza Fernández. (Eds.), I Congreso Iberoamericano y IV Congreso Internacional Jóvenes Investigadores del Mar, (2023) 105--106. Universidad de Almería.
  • A. Martínez-Finkelshtein, R. Orive, J. Sánchez-Lara, Electrostatic partners and zeros of orthogonal and multiple orthogonal polynomials. Constr. Approx. 58 (2023), 271--342. DOI. Preprint arXiv math.1410.1261.
  • D. Mbouna, A structure relation for some orthogonal polynomials, Mediterr. J. Math. 20 (2023) Art. 237. DOI. También preprint en arXiv:2206.10308.
  • D. Mbouna, J. F. Mañas-Mañas, J. J. Moreno-Balcázar,  Characterization of Orthogonal Polynomials on lattices. Integral Transforms Spec. Funct. 34(9) (2023), 675--689. DOI. También preprint en arXiv:2204.14098.

2022

  • G. Filipuk, J. F. Mañas-Mañas, J. J. Moreno-Balcázar, Second–order difference equation for Sobolev–type orthogonal polynomials. Part I: theoretical results. J. Differ. Equ. Appl. 28(7) (2022), 971-989. DOI. Preprint arXiv math.2006.14391.
  • J. Garay, A. Kun, Z. Varga, M. Gámez, A.B. Castaño-Fernández, T.F. Móri, State-controlled epidemia in a game against a novel pathogen, Scientific Reports, 12, (2022), Art. 15716. DOI.
  • M. Hunziker, A. Martinez-Finkelshtein, T. Poe, B. Simanek, Poncelet-Darboux, Kippenhahn, and Szegő: interactions between projective geometry, matrices and orthogonal polynomials, J. Math. Anal. Appl. 511, (2022), Art. 126049. DOI. Preprint arXiv math.2101.12165.
  • J. F. Mañas-Mañas, J. J. Moreno-Balcázar,  Sobolev orthogonal polynomials: asymptotics and symbolic computation, East Asian J. Appl. Math. 12(3) (2022), 535–563. DOI. Free software published in Notebook Archive (2022).
  • J. F. Mañas-Mañas, J. J. Moreno-Balcázar,  Asymptotics for some q-hypergeometric polynomials, Results Math. 77(4) (2022), Art. 146, 26 pp. DOI.
  • D. Mbouna, A. Suzuki,  On Another Characterization of Askey-Wilson Polynomials, Results Math. 77(4) (2022), Art. 148, 14 pp. DOI. Preprint  arXiv:2202.10167.

2021

  • G. Castro-Luna, D. Jiménez-Rodríguez, A. B. Castaño-Fernández, A. Pérez-Rueda, Diagnosis of Subclinical Keratoconus Based on Machine Learning Techniques, J. Clin. Med. 10(18) (2021), Art. 4281, DOI.
  • M. Hunziker, A. Martinez-Finkelshtein, T. Poe, B. Simanek, On foci of ellipses inscribed in cyclic polygons, in F. Gesztesy, A. Martinez-Finkelshtein (eds.), "From Operator Theory to Orthogonal Polynomials, Combinatorics, and Number Theory", Operator Theory: Advances and Applications 285, 213–238. DOI. Also preprint math.2101.12638.
  • A. Martínez-Finkelshtein, G. Silva, Spectral curves, variational problems, and the hermitian matrix model with external source, Comm. Math. Physics 383 (2021), 2163–2242, DOI. Also preprint arXiv arXiv:1907.08108.
  • D. Ramos-López, A. D. Maldonado, Cost-Sensitive Variable Selection for Multi-Class Imbalanced Datasets Using Bayesian Networks. Mathematics, 9(2), (2021), Art. 156. DOI.
  • D. Ramos-López, A. D. Maldonado, Analysis of Corneal Data in R with the rPACI Package. The R Journal, 13(2), (2021), 253–265. DOI.

2020

  • G. Castro-Luna, A. Martínez-Finkelshtein, D. Ramos-López, Robust keratoconus detection with Bayesian network classifier for Placido-based corneal indices, Contact Lens & Anterior Eye 43(4) (2020), 366-372. DOI.
  • G. Filipuk, Juan F. Mañas-Mañas, A Differential Equation for Varying Krall--Type Orthogonal Polynomials, Random Matrices Theory Appl. 9(1) (2020), 2040002, 15 pp.  DOI.
  • J. F. Mañas-Mañas, J. J. Moreno-Balcázar, R. Wellman, Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomials, Mathematics 8(2) (2020), Art. 182, 19 pp. DOI.
  • A. Martínez-Finkelshtein, L. L. Silva Ribeiro, A. Sri Ranga, M. Tyaglov, Complementary Romanovski–Routh Polynomials, Orthogonal Polynomials on the Unit Circle, and Extended Coulomb Wave Functions, Results Math. 75, Art. 42, 23 pp. (2020). DOI.
  • A. R. Masegosa, A. M. Martínez, D. Ramos-López, H. Langseth, T. D. Nielsen, A. Salmerón, Analyzing concept drift: a case study in the financial sector, Intelligent Data Analysis 24(3) (2020), 665–688. DOI.
  • A. R. Masegosa, D. Ramos-López, A. Salmerón, H. Langseth, T. D. Nielsen, Variational Inference over Nonstationary Data Streams for Exponential Family Models, Mathematics 8(11) (2020), Art. 1942. DOI.

2019


  • G. Castro-Luna, D. Ramos-López, A. B. Castaño-Fernández, D. Cuevas Santamaría, Artiflex foldable lens for myopia correction results of 10 years of follow-up, Eye 33 (2019), 1564-1569. DOI.
  • E. Guirado, D. Ramos-López, A.D. Maldonado, Juan J. Moreno-Balcázar, J.M. Calaforra, Modeling carbon dioxide for show cave conservation, Journal for Nature Conservation 49 (2019) 76-84. DOI.
  • A. D. Maldonado, D. Ramos-López, P. A. Aguilera, The Role of Cultural Landscapes in the Delivery of Provisioning Ecosystem Services in Protected Areas. Sustainability, 11(9), 2471 (2019), 18pp. DOI.
  • Juan F. Mañas-Mañas, Juan J. Moreno-Balcázar, Classical Sobolev orthogonal polynomials: Eigenvalue problem, Results Math. 74(4), Art. 144, 12 pp. (2019). DOI. Also preprint arXiv math:1907.13226.
  • A. Martínez-Finkelshtein, G. Silva, Critical measures for vector energy: asymptotics of non-diagonal multiple orthogonal polynomials for a cubic weight, Adv. Math. 349 (2019), 246-315. DOI. Also preprint arXiv math:1805.01748.
  • A. Martínez-Finkelshtein, L. L. Silva Ribeiro, Complementary Romanovski-Routh polynomials: From orthogonal polynomials on the unit circle to Coulomb wave functions, Proc. Amer. Math. Soc. 147(6) (2019), 2625–2640. DOI. Also preprint arXiv math:1806.02232.
  • A. Martínez-Finkelshtein, B. Simanek, B. Simon, Poncelet's Theorem, Paraorthogonal Polynomials and the Numerical Range of Compressed Multiplication Operators, Adv. Math. 349 (2019), 992-1035. DOI. Also preprint arXiv math:1810.13357.
  • A. R. Masegosa, A. M. Martínez, D. Ramos-López, R. Cabañas, A. Salmerón, H. Langseth, T. D. Nielsen, A. L. Madsen, AMIDST: A Java toolbox for scalable probabilistic machine learning, Knowl-Based Syst. 163 (2019) 595-597. DOI.
  • Juan J. Moreno-Balcázar, “Gertrude Blanch, una pionera del análisis numérico”, in Mujeres matemáticas. Trece matemáticas, trece espejos, (Coordinated by Marta Macho), RSME and Ed. SM, Biblioteca de Estímulos Matemáticos (2019), ISBN 978-84-9182-055-0.
  • M. Pinta, A. Montoro, J.J. Moreno-Balcázar, Papel de software en la enseñanza y aprendizaje de los métodos numéricos en la universidad ecuatoriana in Innovación Docente e Investigación en Ciencias, Ingeniería y Arquitectura, F. Egea, J. Gázquez, M. Molero, M. Simón, A. Martos, A. Barragán, N. Oropesa y J. Soriano (Eds.). Dykinson, S.L., 309-320, 2019.

2018


  • C. Beltrán, F. Marcellán, A. Martínez-Finkelshtein, Algunas propiedades extremales de las raíces de polinomios ortogonales, La Gaceta de la RSME 21(2) (2018) 345-366. Also preprint arXiv math.1701.04995.
  • C.F. Bracciali, A. Martínez-Finkelshtein, A. S. Ranga, D. O. Veronese, Christoffel formula for kernel polynomials on the unit circle, J. Approx. Theory 235 (2018) 46-73. Also preprint arXiv math.1701.04995.
  • A.B. Castaño-Fernández, A. Martínez-Finkelshtein y D.R. Iskander, A semi-analytic approach to calculating the Strehl ratio for a circularly symmetric system. Part 1: static wavefront,  Optica Applicata XLVII (2) (2018), 201-210.
  • A.B. Castaño-Fernández, A. Martínez-Finkelshtein y D.R. Iskander, A semi-analytic approach to calculating the Strehl ratio for a circularly symmetric system. Part 2: dynamic wavefront, Optica Applicata XLVII (2) (2018), 211-223.
  • J. S. Dehesa, Juan J. Moreno-Balcázar, I. V. Toranzo, Linearization and Krein-like functionals of hypergeometric orthogonal polynomials, J. Math. Phys. 59 (2018) 123504, 24pp. https://doi.org/10.1063/1.5055299
  • G. Filipuk, Juan F. Mañas-Mañas, Juan J. Moreno-Balcázar, Ladder operators and a differential equation for varying generalized Freud-type orthogonal polynomials, Random Matrices Theory Appl. 7(4) (2018) 1840005, 28pp. https://doi.org/10.1142/S2010326318400051
  • Lance L. Littlejohn, Juan F. Mañas-Mañas, Juan J. Moreno-Balcázar, Richard Wellman, Differential operator for discrete Gegenbauer--Sobolev orthogonal polynomials: Eigenvalues and asymptotics, J. Approx. Theory 230 (2018), 32-49. Also preprint arXiv math.1705.08167.
  • A. D. Maldonado, D. Ramos-López, P. Aguilera, A Comparison of Machine-Learning Methods to Select Socioeconomic Indicators in Cultural Landscapes, Sustainability 10(11) (2018), 4312. DOI.
  • Juan F. Mañas-Mañas, Maritza A. Pinta, “Derivación Numérica”, en Métodos Numéricos para el Análisis Matemático con Matlab, Juan F. Mañas–Mañas, Maritza A. Pinta (editores), Ed. Utmach (Machala) Ecuador (2018), 53–78 y Apéndice C (205-228), ISBN: 978-9942-24-104-7.
  • Juan F. Mañas-Mañas, Maritza A. Pinta, “Integración Numérica: Cuadraturas de Newton-Cotes, Método de Romberg y Cuadraturas adaptativas”, en Métodos Numéricos para el Análisis Matemático con Matlab, Juan F. Mañas–Mañas, Maritza A. Pinta (editores), Ed. Utmach (Machala) Ecuador (2018), 79–106 y Apéndice D (229-250), ISBN: 978-9942-24-104-7.
  • Juan F. Mañas-Mañas, Maritza A. Pinta, “Integración Numérica: Cuadraturas gaussianas”, en Métodos Numéricos para el Análisis Matemático con Matlab, Juan F. Mañas–Mañas, Maritza A. Pinta (editores), Ed. Utmach (Machala) Ecuador (2018), 107–130 y Apéndice E (251-262), ISBN: 978-9942-24-104-7.
  • A. Martínez-Finkelshtein, A. S. Ranga, D. O. Veronese, Extreme zeros in a sequence of para-orthogonal polynomials and bounds for the support of the measure, Mathematics of Computation 87 (309) (2018), 261-288.
  • Juan J. Moreno-Balcázar, “Ecuaciones diferenciales ordinarias”, en Métodos Numéricos para el Análisis Matemático con Matlab, Juan F. Mañas–Mañas, Maritza A. Pinta (editores), Ed. Utmach (Machala) Ecuador (2018), 131–155 y Apéndice F (263-306), ISBN: 978-9942-24-104-7.
  • D. Ramos-López, A. R. Masegosa, A. Salmerón, R. Rumí, H. Langseth, T. D. Nielsen, A. L. Madsen, Scalable importance sampling estimation of Gaussian mixture posteriors in Bayesian networks, Int. J. Approx. Reason. 100 (2018), 115-134. DOI.

2017


  • A. Aptekarev, G. López-Lagomasino, A. Martínez-Finkelshtein, On Nikishin systems with discrete components and weak asymptotics of multiple orthogonal polynomials, Uspekhi Mat. Nauk 72: 3(435) (2017), 3--64. English transl. in Russian Math. Surveys 72:3 (2017), 389--449. Also preprint arXiv math.1403.3729.
  • R. Cabañas, A.M. Martínez, A.R. Masegosa, D. Ramos-López, A. Salmerón, T.D. Nielsen, H. Langseth, A.L. Madsen. Financial Data Analysis with PGMs Using AMIDST. 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW). pp. 1284-1287. IEEE Computer Society Conference Publishing Services, ISBN 978-1-5090-5472-5. (2017). http://dx.doi.org/10.1109/ICDMW.2016.0185
  • M. Jaskulski, A. Martinez-Finkelshtein, and N. López-Gil, New Objective Refraction Metric based on Sphere Fitting to the Wavefront, Journal of Ophthalmology, Volume 2017, Article ID 1909348, 9 pages.
  • J. F. Mañas-Mañas, F. Marcellán, J. J. Moreno-Balcázar, Asymptotics for varying discrete Sobolev orthogonal polynomials, Applied Mathematics and Computation, 314(1), 65-79 2017. https://doi.org/10.1016/j.amc.2017.06.020
  • F. Marcellán, Juan J. Moreno-Balcázar, What is... a Sobolev Orthogonal Polynomial?, Notices of the American Mathematical Society, 64(8), 873-875, 2017.
  • A. Martínez-Finkelshtein, D. Ramos-López, D. Robert Iskander, Computation of 2D Fourier transforms and diffraction integrals using Gaussian radial basis functions, Applied and Computational Harmonic Analysis 43 (3) (2017), 424-448, doi 10.1016/j.acha.2016.01.007. Also preprint arXiv math.1506.01670.
  • Andrés R. Masegosa, Ana M. Martínez, Helge Langseth, Thomas D. Nielsen, Antonio Salmerón, Darío Ramos-López, Anders L. Madsen (2017) Scaling up Bayesian variational inference using distributed computing clusters. International Journal of Approximate Reasoning 88, 435-451.
  • A.R. Masegosa, T.D. Nielsen, H. Langseth, D. Ramos-López, A. Salmerón, y A.L. Madsen. Bayesian models of data streams with hierarchical power priors. Proceedings of Machine Learning Research (ISSN: 1938-7228). 70 (2017) 2334-2343. http://proceedings.mlr.press/v70/masegosa17a/masegosa17a.pdf
  • Darío Ramos-López, Andrés R. Masegosa, Ana M. Martínez, Antonio Salmerón, Thomas D. Nielsen, Helge Langseth, Anders L. Madsen, MAP inference in dynamic hybrid Bayesian networks, Prog. Artif. Intell. (2017) 6 (2), 133--144 DOI 10.1007/s13748-017-0115-7.

2016


  • F. Gesztesy, J. Avron, S. Jitomirskaya, D. Damanik, J. Breuer, Y. Last, and A. Martínez-Finkelshtein, From Mathematical Physics to Analysis: A Walk in Barry Simon's Mathematical Garden, II, Notices of the AMS 63 (8), September 2016, 878-889. DOI: http://dx.doi.org/10.1090/noti1412.
  • D. Guinovart-Sanjuán, R. Rodríguez-Ramos, R. Guinovart-Díaz, J. Bravo, A. Martínez-Finkelshtein, A. Conci, F. Lebon and S. Dumont, Average of elastic properties of the cornea, Conference Proceeding, 23rd ABCM International Congress of Mechanical Engineering, COBEM, December 6--11, 2015, Río de Janeiro, Brasil. DOI: 10.20906/CPS/COB-2015-0156.
  • J. F. Mañas-Mañas, F. Marcellán, J.J. Moreno-Balcázar, Asymptotic behavior of varying discrete Jacobi-Sobolev orthogonal polynomials, J. Comput. Appl. Math. 300 (2016), 341-353.
  • A. Martínez-Finkelshtein, P. Martínez-González, F. Thabet, Trajectories of quadratic differentials for Jacobi polynomials with complex parameters, Comput. Methods and Function Theory 16 (3) (2016), 347-364, doi 10.1007/s40315-015-0146-7. Also preprint arXiv math.1506.03434.
  • A. Martínez-Finkelshtein, E. A. Rakhmanov, Do orthogonal polynomials dream of symmetric curves?, aceptado en Foundations of Computational Mathematics (2016) 16:1697--1736, doi: 10.1007/s10208-016-9313-0. Also preprint arXiv math.1511.09175.
  • A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, Asymptotics of type I Hermite--Padé polynomials for semiclassical functions, Contemp. Math. 661 (2016), 199-228. Also preprint arXiv math.1502.01202.
  • A. Martínez-Finkelshtein, G. Silva, Critical measures for vector energy: global structure of trajectories of quadratic differentials, Advances in Mathematics 302 (2016), 1137-1232. Also preprint arXiv math.1509.06704.
  • A. Martínez-Finkelshtein and W. Van Assche, What is... a multiple orthogonal polynomial?, Notices of the AMS, Octubre 2016, 647-649.
  • A.R. Masegosa, A.M. Martínez, H. Langseth, T.D. Nielsen, A. Salmerón, D. Ramos-López y A.L. Madsen. d-VMP: distributed Variational Message Passing. Proceedings of Machine Learning Research (ISSN: 1938-7228). Vol. 52; pp.321-332 (2016). http://www.jmlr.org/proceedings/papers/v52/masegosa16.pdf
  • D. Ramos-López, A. Salmerón, R. Rumí, A.M. Martínez, T.D. Nielsen, A.R. Masegosa, H. Langseth y A.L. Madsen. Scalable MAP inference in Bayesian networks based on a Map-Reduce approach. Proceedings of Machine Learning Research (ISSN: 1938-7228). Vol. 52; pp. 415-425 (2016). http://www.jmlr.org/proceedings/papers/v52/ramos-lopez16.pdf
  • D. Ramos-López, M. A. Sánchez-Granero, M. Fernández-Martínez, A. Martínez-Finkelshtein, Optimal sampling patterns for Zernike polynomials, Applied Mathematics and Computation 274 (2016) 247-257. Also preprint arXiv math.1511.00449.
  • A. Salmerón, A.L. Madsen, F. Jensen, H. Langseth, T.D. Nielsen, D. Ramos-López, A.M. Martínez y A.R. Masegosa. Parallel Filter-Based Feature Selection Based on Balanced Incomplete Block Designs. Frontiers in Artificial Intelligence and Applications. Vol. 285; pp. 743-750. IOS Press Ebooks, ISBN 978-1-61499-671-2 (print) | 978-1-61499-672-9 (online) (2016). http://dx.doi.org/10.3233/978-1-61499-672-9-743
  • I. V. Toranzo , A. Martinez-Finkelshtein , J. S. Dehesa, Heisenberg-like uncertainty measures for D-dimensional hydrogenic systems at large D, Journal of Mathematical Physics 57, 082109 (2016); doi: 10.1063/1.49613222016.

2015


  • Alfaro, M., Moreno-Balcázar, J. J., Peña, A., Rezola, M. L. Asymptotic formulae for generalized Freud polynomials, J. Math. Anal. Appl. 421 (2015), no. 1, 474--488. MR3250491
  • A. Aptekarev, G. López-Lagomasino, A. Martínez-Finkelshtein, Strong asymptotics for the Pollaczek multiple orthogonal polynomials, Doklady Akademii Nauk, 2015, Vol. 465, No. 4, pp. 393--397; English transl. in Doklady Mathematics, 2015, Vol. 92, No. 3, pp. 709--713.
  • C.F. Bracciali, J.J. Moreno-Balcázar, On the zeros of a class of generalized hypergeometric polynomials. Applied Mathematics and Computation 253 (2015), 151-158. DOI: http://www.sciencedirect.com/science/article/pii/S0096300314017378. MR3312706
  • Dueñas, Herbert; Garza, Luis; Piñar, Miguel A. A higher order Sobolev-type inner product for orthogonal polynomials in several variables, Numer. Algorithms 68 (2015), 35-46.
    doi:10.1007/s11075-014-9836-x
  • A. Martínez-Finkelshtein, P. Nevai, A. Peña, Discrete entropy of generalized Jacobi polynomials, J. Math. Annal. Apppl. 431 (2015), 99-110. Also preprint arXiv math.1410.2286.
  • A. Martínez-Finkelshtein, E. A. Rakhmanov, R. Orive, Phase transitions and equilibrium measures in random matrix models, Comm. Math. Physics 333 (3) (2015), 1109-1173. doi 10.1007/s00220-014-2261-0. Also preprint arXiv math.1302.3647, and in American Institute of Mathematics preprint 2013-20.
  • J.J. Moreno-Balcázar, Δ-Meixner-Sobolev orthogonal polynomials: Mehler-Heine type formula and zeros. Journal of Computational and Applied Mathematics 284 (2015), 228-234. DOI: http://www.sciencedirect.com/science/article/pii/S037704271400497X. MR3319506
  • A. Salmerón, D. Ramos-López, et al. Parallel importance sampling in conditional linear gaussian networks. Advances in Artificial Intelligence. Lecture Notes in Computer Science. (2015).

2014


  • M. Alfaro, A. Peña, T. E. Pérez, M. L. Rezola, On linearly related orthogonal polynomials in several variables. Numer. Algorithms 66 (2014), 537-553. MR3225001
  • M. J. Atia, A. Martínez-Finkelshtein, P. Martínez-Gonzalez, F. Thabet, Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters, J. Math. Anal. Appl. 416 (2014), 52-80. Also preprint arXiv math.1311.0372. MR3182748
  • D. Ramos-López, A. Martínez-Finkelshtein, and D. Robert Iskander, Computational aspects of the through-focus characteristics of a human eye, J. Optical Soc. of America A 31(7) (2014), 1408-1415.  http://dx.doi.org/10.1364/JOSAA.31.001408
  • J. F. Sánchez-Lara, Local behavior of the equilibrium measure under an external field non differentiable at a point, J. Approx. Theory 187 (2014), 1--17. MR3262924

2013


  • Bracciali, Cleonice F.; Pérez, Teresa E.; Piñar, Miguel A. Stieltjes functions and discrete classical orthogonal polynomials. Comput. Appl. Math. 32 (2013), 537-547. MR3120139
  • Castaño--García, Laura; Moreno--Balcázar, Juan J. Zeros of varying Laguerre--Krall orthogonal polynomials. Proc. Amer. Math. Soc. 141 (2013), no. 6, 2051--2060. MR3034430
  • Delgado, Antonia M.; Pérez, Teresa E.; Piñar, Miguel A.; Sobolev-type orthogonal polynomials on the unit ball. J. Approx. Theory 170 (2013), 94-106. MR3044047
  • B. Xh. Fejzullahu, F. Marcellán, J.J. Moreno-Balcázar; Jacobi-Sobolev orthogonal polynomials: asymptotics and a Cohen type inequality; Journal of Approximation Theory, 170, 78-93, 2013. MR3044046
  • J.F. Mañas-Mañas, F. Marcellán, J.J. Moreno-Balcázar; Varying discrete Laguerre-Sobolev orthogonal polynomials: asymptotic behavior and zeros; Applied Mathematics and Computation, 222, 612-618, 2013. MR3115898
  • A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, Differential equation for Hermite-Padé polynomials, Uspekhi Mat. Nauk, 68:1(409) (2013), 197-198 (en ruso). English transl. in Russian Math. Surveys 68:1, (2013), 183-185. MR3088082
  • Pérez, Teresa E.; Piñar, Miguel A.; Xu, Yuan; Weighted Sobolev orthogonal polynomials on the unit ball. J. Approx. Theory 171 (2013), 84-104. MR3053718
  • D. Ramos-López, A. Martínez-Finkelshtein, G. M. Castro-Luna, N. Burguera-Gimenez, A. Vega-Estrada, D. Piñero, J. L. Alió, Screening subclinical keratoconus with Placido-based corneal indices. Optometry and Vision Science 90, No. 4, 2013, pp. 335-343.

2012


  • V. I. Buslaev, A. Martínez-Finkelshtein, S. P. Suetin, The method of interior variations and existence of S-compacts, Trudy MIAN 279 (2012), 31-58 (en ruso). English transl. in Proc. Steklov Inst. Math. 279 (2012), 25-51. MR3086756
  • L. Castaño-García, J.J. Moreno-Balcázar, Varying Sobolev type orthogonal polynomials: the Laguerre case. Jaen Journal of Approximation, 4(2), 85-99, 2012.
  • A. M. Delgado, L. Fernández, T. E. Pérez, M. A. Piñar, On the Uvarov modification of two variable orthogonal polynomials on the disk. Complex Anal. Oper. Theory 6 (3) (2012), 665-676. MR2944078
  • L. Fernández, T. E. Pérez, M. A. Piñar, On Koornwinder classical orthogonal polynomials in two variables. J. Comput. Appl. Math. 236 (2012), 3817-3826. MR2923514
  • A. Martínez-Finkelshtein (ed.), Book reviews. Journal of Approximation Theory 164 (2012), 1313--1329, DOI:10.1016/j.jat.2012.06.004.
  • A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, Heine, Hilbert, Pade, Riemann, and Stieltjes: a John Nuttall's work 25 years later, Contemporary Mathematics 578 (2012), 165-193, DOI http://dx.doi.org/10.1090/conm/578/11474. También preprint arXiv:1111.6139.
  • J.J. Moreno-Balcázar, Contributions to the theory of Sobolev orthogonal polynomials. Book "Select works of Francisco J. Marcellán Español", p. 55-70, Universidad Carlos III de Madrid, 2012.
  • J.J. Moreno-Balcázar, Varying Jacobi-Krall orthogonal polynomials: local asymptotic behaviour and zeros. The Ramanujan Journal, 28, 79-88, 2012. MR2914454


projects