seminarios
Este seminario de investigación, puesto en marcha el curso 2002-2003, cuenta con ponencias informales por parte de los miembros del grupo y de investigadores invitados de otras Universidades españolas y extranjeras. La frecuencia habitual es de un seminario al mes, alternativamente en la Universidad de Almería y en la Universidad de Granada, comúnmente con dos sesiones por Seminario, una de las cuales corre preferiblemente a cargo de un profesor invitado.
CURSO 2022-2023
Viernes, 3 de febrero de 2023
Lugar: Seminario Paul Erdös (seminario 2.42) del Edificio CITE III, Universidad de Almería.
Hora: 11:00.
Alberto Lastra, Universidad de Alcalá (España).
Título: Una primera aproximación a las soluciones de sistemas de ecuaciones momento diferenciales.
Resumen: En el seminario se motivará e introducirá el estudio de sistemas de ecuaciones momento-diferenciales, generalizando sistemas de EDOs, de ecuaciones diferenciales fraccionarias y ecuaciones en q-diferencias, dependiendo de la elección de la sucesión de momentos asociada a una elección concreta de medidas de tipo Laguerre. Se determinará la solución general de estas a partir de núcleos para la sumabilidad y se establecerán ciertas propiedades.
Edmundo J. Huertas, Universidad de Alcalá.
Título: Sobre una perspectiva matricial de las perturbaciones tipo Sobolev-discreto de medidas.
Resumen: Es bien sabido que los polinomios ortogonales de tipo Sobolev con respecto a medidas soportadas en la recta real satisfacen relaciones de recurrencia de orden superior, y que éstas pueden expresarse como una matriz semi-infinita simétrica de (2N + 1) bandas. En este trabajo se establece la conexión entre estas matrices de (2N+1)-banda y las matrices de Jacobi asociadas con la relación de recurrencia de tres términos satisfecha por la familia de polinomios ortonormales con respecto a la doble perturbación canónica de Christoffel de la medida considerada.
Este seminario está basado en la reciente publicación: Carlos Hermoso, Edmundo J. Huertas, Alberto Lastra, and Francisco Marcellán, Higher-order recurrence relations, Sobolev-type inner products and matrix factorizations, Numer. Algorithms, 92 (2023), 665-692, DOI.
Ver fotos: Foto 1 Foto 2.
Viernes, 16 de diciembre de 2022
Lugar: Seminario Paul Erdös del Edificio CITE III, Universidad de Almería.
Hora: 11:00.
Maria das Neves Rebocho, Universidade da Beira Interior (Portugal).
Título: Deformed orthogonal polynomials on the real line.
Resumen: The construction of families of orthogonal polynomials on the real line from a given system of orthogonal polynomials or from a given modified orthogonalizing measure has been subject of many studies. Well-known connections with integrable systems, Painlevé equations (discrete and continuous), random matrices, and many other topics from the literature of Mathematical-Physics have been recently studied.
In this talk we focus on the so-called Laguerre-Hahn class on the real line, that is, the sequences of orthogonal polynomials whose Stieltjes functions satisfy a Riccati type differential equation with polynomial coefficients. We shall take Stieltjes functions subject to a deformation parameter, $t$, and we derive systems of differential equations and give Lax pairs, yielding non-linear differential equations in $t$ for the recurrence relation coefficients and Lax matrices of the orthogonal polynomials. A specialisation to a non semi-classical case obtained via a M\"{o}bius transformation of a Stieltjes function related to a modified Jacobi weight is studied in detail, showing that such a system is governed by a differential equation of the Painlevé type P$_\textrm{VI}$.
Teresa E. Pérez, Universidad de Granada (España).
Título: Operadores de tipo Bernstein y polinomios de Jacobi.
Resumen: Los polinomios de Bernstein fueron introducidos por S. Bernstein en 1912 para proporcionar una demostración constructiva del teorema de aproximación de Weierstrass, que afirma que toda función continua definida en el intervalo $[0, 1]$ puede ser aproximada uniformemente por polinomios de Bernstein.
A lo largo del tiempo se han modificado los operadores de Bernstein para que cumplan propiedades adicionales, como la preservación de la derivación o el hecho de poseer familias completas de funciones propias. En este caso estudiaremos operadores de tipo Bernstein que poseen los polinomios ortogonales de Jacobi como funciones propias y, además, preservan derivadas en el sentido de que la derivada del operador aplicada a una función coincide con un operador de familia adyacente aplicado a la derivada de la función.
Este es un trabajo conjunto con David Lara.
Ver foto aquí (además asistió al seminario Darío Ramos López pero la fotografía fue tomada posteriormente).
CURSO 2021-2022
Viernes, 22 de julio de 2022
Lugar: Seminario Paul Erdös del Edificio CITE III, Universidad de Almería.
Veronika Pillwein, Johannes Kepler University Linz (Austria).
Hora: 10:00.
Título: Symbolic methods for special functions.
Resumen: The beginning of computer algebra is dated by Wikipedia to around 1970: Bruno Buchberger's seminal PhD thesis, in which he developed Groebner bases, was published in 1965, in 1975 George E. Collins introduced the notion of Cylindrical Algebraic Decomposition for doing quantifier elimination over the real numbers, and in 1982 the Lenstra–Lenstra–Lovász (LLL) lattice basis reduction algorithm was invented. These three methods are often referred to as the pillars of symbolic computation. In the late 1980s, early 1990s, Doron Zeilberger introduced the holonomic systems approach for special functions identities. Since then, these algorithms have been extended and implemented and nowadays even the non-expert in computer algebra has a variety of methods to choose from. In my research, several of these have been very handy in proving and discovering identities and inequalities (in particular) on orthogonal polynomials. In this talk, I want to give an overview on different applications and share how one can include symbolic methods in daily calculations.
Diego E. Dominici, Johannes Kepler University Linz (Austria).
Hora: 11:00.
Título: Comparative asymptotics for discrete semiclassical orthogonal polynomials.
Resumen: We study the ratio ((P_{n}(x;z))/(φ_{n}(x))) asymptotically as n→∞, where the polynomials P_{n}(x;z) are orthogonal with respect to a discrete linear functional and φ_{n}(x) denote the falling factorial polynomials.
We give recurrences that allow the computation of high order asymptotic expansions of P_{n}(x;z) and give examples for most discrete semiclassical polynomials of class s.
We show several plots illustrating the accuracy of our results.
Ver foto aquí (además asistieron al
seminario María Inmaculada López García, Darío Ramos López, Dieudonne Mbouna,
Miguel Ángel Sánchez Granero y Joaquín Sánchez Lara pero la fotografía fue
tomada posteriormente).
Jueves,
24 de marzo de 2022
Lugar: Seminario de Matemática
Aplicada (2.42) del CITE III, Universidad de Almería.
Hora: 11:00
Joaquín Sánchez Lara, Universidad de Granada.
Título: Compañeros
electrostáticos y raíces de polinomios ortogonales
Resumen: La interpretación
electrostática de las raíces de polinomios ortogonales es una de
las descripciones más elegantes y útiles que existen a la hora de
estudiar la distribución que éstas siguen así como su asintótica
para grados altos. Sin embargo esta interpretación es bien conocida
solamente en el caso de polinomios ortogonales clásicos y solo de
manera relativa en otros casos. El objetivo de esta charla es
mostrar una construcción que permite obtener dicha interpretación
electrostática partiendo solamente del polinomio (no necesariamente
ortogonal) y un peso semiclásico. En esta construcción aparece un
segundo polinomio, el compañero electrostático, cuyas raíces son
fundamentales en el modelo electrostático que se propone. Si bien
esta construcción es general, prestaremos especial atención al caso
de polinomios ortogonales múltiples de tipo II, en donde el modelo
resultante permite explicar de forma unificada las diferentes
descripciones asintóticas que aparecen en la literatura.
Dieudonne Mbouna, Universidad de Almería.
Título: On another
characterization of Askey-Wilson polynomials
Resumen: In this talk
we expose the theory of classical orthogonal polynomials on
lattices and we use this to give a Al-Salam and Chihara type
characterization of classical orthogonal polynomials on lattices.
Ver foto aquí.
Miércoles, 26 de enero de 2022
Lugar: Seminario de Matemática Aplicada (2.42) del CITE III, Universidad de Almería.
Hora: 12:00
Francisco Marcellán Español, Universidad Carlos III de Madrid.
Título: Third degree linear functionals. Applications and open problems.
Resumen: In this talk we will focus the attention on linear functionals such that the corresponding Stieltjes function satisfies a cubic equation with polynomial coefficients. They are called third degree linear functionals. Some algebraic properties of these functionals are discussed. They belong to the Laguerre-Hahn class and several examples are presented. Finally, some open problems will be stated.
Juan Francisco Mañas Mañas, Universidad de Almería.
Título: A local asymptotics for some basic hypergeometric polynomials.
Resumen: The basic $q$-hypergeometric function $ _r\phi_s$ is defined by the series
\begin{equation}\label{q-basic}
_r\phi_{s}\left(\begin{array}{l}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} ; q, z\right)
=\sum_{k=0}^{\infty} \frac{\left(a_{1}; q\right)_{k}\cdots\left(a_{r} ; q\right)_{k}}{\left(b_{1}; q\right)_{k}\cdots\left(b_{s} ; q\right)_{k}}\left((-1)^kq^{\binom{k}{2}}\right)^{1+s-r}\frac{z^{k}}{(q ; q)_{k}},
\end{equation}
where $0<q<1$ and $ \left(a_{j}; q\right)_{k}$ and $\left(b_{j}; q\right)_{k}$ denote the $q$-analogues of the Pochhammer symbol.
When one of the parameters $a_j $ in (\ref{q-basic}) is equal to $q^{-n}$ the basic $q$-hypergeometric function is a polynomial of degree at most $n$ in the variable $z$. Our objective is to obtain a type of local asymptotics, known as Mehler--Heine asymptotics, for $q$-hypergeometric polynomials when $r=s$.
Concretely, by scaling adequately these polynomials we intend to get a limit relation between them and a $q$-analogue of the Bessel function of the first kind. Originally, this type of local asymptotics was introduced for Legendre orthogonal polynomials (OP) by the German mathematicians H. E. Heine and G. F. Mehler in the 19th century. Later, it was extended to the families of classical OP (Jacobi, Laguerre, Hermite), and more recently, these formulae were obtained for other families as discrete OP, generalized Freud OP, multiple OP or Sobolev OP, among others.
These formulae have a nice consequence about the scaled zeros of the polynomials, i.e. using the well--known Hurwitz's theorem we can establish a limit relation between these scaled zeros and the ones of a Bessel function of the first kind. In this way, we are looking for a similar result in the context of the $q$-analysis and we will illustrate the results with numerical examples.
This is a joint work with Juan J. Moreno-Balcázar.
Ver foto
aquí.CURSO 2017-2018
Jueves, 8 de Marzo de 2018
Lugar: Seminario de Matemática Aplicada (2.42) del CITE III, Universidad de Almería.
Hora: 13:00
Roberto Costas Santos, Universidad de Alcalá.
Título: A first study of Zeros of Classical Orthogonal Polynomial.
Resumen: In this short work we consider some basic results connected with the zeros of classical orthogonal polynomials (COP). Given a orthogonal polynomial sequence (OPS)m namely $(p_n)_{n\ge 0}$, we set a positive integer $N$ and we obtain for such value a new set of orthogonality properties for such for $(p_n)_{n\ge 0}$, we obtain closed expressions for $p_n(x)$ for $n\le N$ and the Hankel matrix for such polynomials in terms of the zeros of $p_N(x)$.
With these results we believe we are able to establish some conditions on the parameters of the family. We also prove that the derivative of every COP is the kernel of itself. Explicit expressions are given.
Ver foto aquí
Jueves, 30 de Noviembre de 2017
Lugar: Seminario de Matemática Aplicada, Edificio CITE III, 2.42, Universidad de Almería.
Hora: 10:30
Ana B. Castaño Fernández, Universidad de Almería.
Título: Longitudinal vibrations effect via Strehl ratio Optical Transfer Function and Depth of focus.
Resumen: This work consist on computing and analysing the Strehl Ratio Optical Transfer Function Metric (SOTF) from the wavefront. For that, we search some efficient algorithms for calculating the SOTF metric, especially for radially-symmetric wavefronts. It is an alternative for the standard approach via the Discrete Fourier Transform (DFT), developing integral formulas that lack the oscillatory character and can be evaluated accurately by quadratures. Therefore, numerical analysis of scenarios, studied previously empirically, when longitudinal vibrations are present, confirming an improvement of the visual quality expressed by the averaged SOTF metric, where the only two possible averaging were considered: in the diffraction integral and in the Point Spread Function (PSF). For finishing, we study changes in the objective depth of focus by means of a Through-focus Analysis using the averaged SOTF metric.
A similar study was carried out for the modified metric, called the visual Strehl ratio calculated from the optical transfer function (VSOTF) which takes into account also the Neural Contrast Sensitivity Function (NCSF) of the eye. It is regarded as a more accurate metric of the visual quality. We perform also a comparison of our conclusions for both the SOTF and the VSOTF.
Fátima Lizarte López, Universidad de Granada.
Título: Polinomios de Appell bivariados. Carácter clásico.
Resumen: Los polinomios de Appell, introducidos por el propio Paul Appell en 1881, se definen a partir de una fórmula de tipo Rodrigues (utilizando operadores de derivación sucesiva en varias variables sobre una función determinada) como una extensión no trivial a dos variables de los polinomios clásicos de Jacobi que son ortogonales en el intervalo [0, 1].
En este trabajo se estudia en profundidad dichos polinomios y sus propiedades más importantes, haciendo un recorrido desde las propiedades más conocidas hasta las que se han obtenido recientemente.
Demostramos la ortogonalidad de estos polinomios con respecto a un producto escalar definido sobre el triángulo unidad mediante una función peso dependiente de tres parámetros, que es la extensión de la función peso de los polinomios de Jacobi al caso bivariado. También estudiamos su expresión hipergeométrica.
A continuación, hacemos un estudio en profundidad del carácter clásico de los polinomios de Appell; se suelen llamar clásicos porque son funciones propias de un operador diferencial en derivadas parciales de segundo orden cuyos coeficientes son polinomios de grado fijo, y están relacionados con la función peso considerada, y que le confiere su carácter hipergeométrico. Pero, además satisfacen otras propiedades diferenciales menos conocidas: ecuación de tipo Pearson para la función peso, fórmula de estructura, ortogonalidad de los gradientes, ortogonalidad de tipo Sobolev, entre otras.
Juan F. Mañas Mañas, Universidad de Almería.
Título: Gegenbauer-Sobolev orthonormal polynomials: Differential operator and eigenvalues.
Resumen: In this talk, we consider the following discrete Sobolev inner product involving the Gegenbauer weight $$(f,g)_S:=\int_{-1}^1f(x)g(x)(1- x^2)^{\alpha}dx+M\big[f^{(j)}(-1)g^{(j)}(-1)+f^{(j)}(1)g^{(j)}(1)\big],$$ where $\alpha>-1,$ $j\in \mathbb{N}\cup \{0\},$ and $M>0.$ Let $\{q_n^{(\alpha,M,j)}\}_{n\geq0}$ be the sequence of orthonormal polynomials with respect to the above inner product. These polynomials are eigenfunctions of a differential operator $\mathbf{T} $ (see [1]). We establish the asymptotic behavior of the corresponding eigenvalues which we denote by $\widetilde{\lambda}_n$.
Finally, following the techniques of [3] and [4], we deduce the Mehler-- Heine type asymptotics for $\{q_n^{(\alpha,M,j)}\}_{n\geq0}$ and the location of the zeros of this polynomials.
Joint work with Lance L. Littlejohn (Baylor University, United States), Juan J. Moreno-Balcázar (Universidad de Almería, Spain), and Richard Wellman (Westminster College SLC, United States), see [2].
Referencias
[1] H. Bavinck, J. Koekoek, Differential operators having symmetric orthogonal polynomials as eigenfunctions, J. Comput. Appl. Math. 106 (1999), 369-393.
[2] L. L. Littlejohn, J. F. Mañas-Mañas, J. J. Moreno-Balcázar, R. Wellman, Differential operator for discrete Gegenbauer-Sobolev orthogonal polynomials: eigenvalues and asymptotics, submitted (arXiv:1705.08167).
[3] J. F. Mañas-Mañaas, F. Marcellán, J. J. Moreno-Balcázar, Asymptotics for varying discrete Sobolev orthogonal polynomials, Appl. Math. Comput. 314 (2017), 65-79.
[4] A. Peña, M. L. Rezola, Connection formulas for general discrete Sobolev polynomials: Mehler-Heine asymptotics, Appl. Math. Comput. 261 (2015), 216-230.
Ver foto aquí
CURSO 2016-2017
Jueves, 9 de Febrero de 2017
Lugar: Seminario de Matemática Aplicada, Edificio CITE III, 2.42, Universidad de Almería.
Hora: 12:00
Roberto Costas, Universidad de Alcalá.
Título: Orthogonality relations of Al-Salam-Carlitz for general parameters.
Resumen: In this talk we describe the orthogonality conditions satisfied by Al-Salam-Carlitz polynomials $U^{(a)}_n(x;q)$ when the parameters a and q are not necessarily real nor 'classical', i.e., the linear functional u with respect to such polynomial sequence is quasi-definite and not positive definite. We establish orthogonality on a simple contour in the complex plane which depends on the parameters. In all cases we show that the orthogonality conditions characterize the Al-Salam-Carlitz polynomials $U_n^{(a)}(x;q)$ of degree $n$ up to a constant factor. We also obtain a generalization of the unique generating function for these polynomials.
This is a joint work with Howard S. Cohl, and Wenqing Xu.
Irene V. Toranzo, Universidad de Granada.
Título: Integral functionals of hypergeometric orthogonal polynomials with large parameters and hydrogenic application.
Resumen: The analytical determination of the $\alpha \rightarrow \infty $ asymptotic behavior of various power and logarithmic integral functionals of Laguerre ($L_{m}^{\alpha} (x)$) and Gegenbauer ($C_{m}^{(\alpha}) (x)$) polynomials has allowed us to calculate the uncertainty measures of Heisenberg and entropic types for $D$-dimensional hydrogenic and harmonic quantum systems. They are given by the radial expectation values and the Rényi entropies of the probability density of the quantum-mechanical states of these systems. In this work we have used the known asymptotics of the Laguerre and Gegenbauer polynomials together with some Hermite-type expansions of the entropy-like functionals of these polynomials [1], as well as two novel approaches for the computation of the leading term of the hypergeometric functions involved in the large $D$ limit of the radial expectation values [2]. Then, these quantities are used to obtain generalizations of the standard Heisenberg-like and logarithmic uncertainty relations, and some upper and lower bounds to the entropic uncertainty measures (Shannon, Rényi, Tsallis) of the $D$-dimensional hydrogenic system.
Referencias
[1] I. V. Toranzo, N. M. Temme and J. S. Dehesa, Entropic functionals of Laguerre and Gegenbauer polynomials with large parameters. J. Phys. A: Math. Theor. Enviado.
[2] I. V. Toranzo, A. Martínez-Finkelshtein and J. S. Dehesa, Heisenberg- like uncertainty measures for D-dimensional hydrogenic systems at large D. J. Math. Phys. 57, 082109 (2016).
Ver foto aquí
CURSO 2015-2016
Martes, 14 de Junio de 2016
Lugar: Seminario de Matemática Aplicada, Edificio CITE III, Universidad de Almería.
Hora: 12:30
Dmitry Karp, Far Eastern Federal University, Vladivostok (Rusia).
Título: Distributional G function of Meijer and properties of generalized hypergeometric functions
Resumen: We discuss various new properties of a particular case of Meijer's G-function, including integral and functional equations, nonnegativity conditions and number of zeros, convergence of measures with G-function density and regularization of integrals containing G-function. Some of these properties are then applied to derive new representations for generalized hypergeometric functions and establish some new and old facts about them. In particular, for the generalized hypergeometric functions of Bessel type we find some positivity conditions, inequalities and information about zeros of this function.
Hora: 13:30.
Antonia Mª Delgado, Universidad de Granada.
Título: Asymptotics of Sobolev orthogonal polynomials on the unit ball
Resumen: Sobolev orthogonal polynomials on the unit ball are studied The corresponding Sobolev inner product is defined involving outward normal derivatives on the sphere. We will give explicit representation for orthogonal polynomials and reproducing kernels in term of classical polynomials on the ball. From these explicit expressions, algebraic properties and asymptotic behaviour of Christoffel functions will be deduced.
Ver foto aquí
Viernes, 22 de Abril de 2016
Lugar: Seminario de Matemática Aplicada, Edificio CITE III, Universidad de Almería.
Hora: 11:30
Cleonice F. Bracciali, UNESP - Univ. Estadual Paulista (Brasil).
Título: Orthogonal and para-orthogonal polynomials on the unit circle for measures which are modifications of Lebesgue measure
Resumen: We consider nontrivial probability measures, obtained as simple modifications of the Lebesgue measure, which include mass points at $z=1$ and $z=i$. The orthogonal polynomials on the unit circle (OPUC), the para-orthogonal polynomials and Toeplitz matrices associated with these measures are presented, through explicit formulas for the Verblunsky coefficients.
Joint work with Jairo S. Silva and A. Sri Ranga.
Hora: 12:30
Juan F. Mañas Mañas, Universidad de Almería.
Título: Asymptotic behavior of varying discrete Sobolev orthogonal polynomials
Resumen: We consider a varying discrete Sobolev inner product involving a finite positive Borel measure $\mu$ supported on a infinite subset of the real line. This talk is devoted to study the asymptotic properties of the orthonormal polynomials with respect to the Sobolev inner product
$$(f,g)_S=\int f(x)g(x)d\mu +M_nf^{(j)}(c)g^{(j)}(c),$$
where $c\in \mathbb{R}$, $j \geq 0$ and $\{M_n\}_n$ is a sequence of nonnegative real numbers. We are interested in Mehler--Heine type formulae because they describe the asymptotic behavior of these polynomials around point $c$, where we have located the perturbation. Moreover, asymptotic properties of the zeros of these Sobolev polynomials in terms of the zeros of other special functions are provided.
Joint work with F. Marcellán and J.J. Moreno-Balcázar.
Ver foto aquí
próximos eventos
- ORTHONET Winter School and meeting, Madrid (España), 16-20 de diciembre de 2024.
- 41st Southeastern Analysis Meeting (SEAM), the University of South Florida (Tampa, FL, EE.UU.), 21-23 de marzo de 2025.
- Conference "Constructive Functions 2025", dedicated to Ed Saff's 80th birthday, Vanderbilt University, Nashville (EE.UU.), 19-22 de mayo de 2025.
- Combinatorics around the q-Onsager algebra, Kranjska Gora (Eslovenia). Dedicado al 70º aniversario de Paul Terwilliger, 23-28 de junio de 2025.
- Third International Conference: Constructive Mathematical Analysis, Selcuk University, Konya, Turquía, 2-5 de julio de 2025.
- Conferencia "Point configurations: from statistical physics to potential theory", CIRM, Marsella (Francia), 4-8 de mayo de 2026.