Publicaciones:
2023
-
M. J. Cantero, L. Moral, L. Velázquez, Wall polynomials on the real line: A classical approach to OPRL Khrushchev's formula. Constr. Approx. 57 (2023), 75-124. DOI.
-
K. Castillo, D. Mbouna, Proof of two conjectures on Askey-Wilson polynomials. Proc. Amer. Math. Soc. 151(4) (2023), 1655-1661. DOI. Prepint disponible en arXiv:2202.02637.
-
D. Dominici, J. J. Moreno-Balcázar, Asymptotic analysis of a family of Sobolev orthogonal polynomials related to the generalized Charlier polynomials. J. Approx. Theory 293 (2023). Art. 105918. DOI. Preprint en arXiv.2210.00082.
-
G. Filipuk, J. F. Mañas-Mañas, J. J. Moreno-Balcázar, Second–order difference equation for Sobolev–type orthogonal polynomials. Part II: computational tools. Aceptado en East Asian J. Appl. Math.
-
D. Mbouna, A structure relation for some orthogonal polynomials, Mediterr. J. Math. 20 (2023) Art. 237. DOI. También preprint en arXiv:2206.10308.
- D. Mbouna, J. F. Mañas-Mañas, J. J. Moreno-Balcázar, Characterization of Orthogonal Polynomials on lattices. Aceptado en Integral Transforms Spec. Funct. DOI. También preprint en arXiv:2204.14098.
2022
-
C. Cedzich, T. Geib, F. A. Grünbaum, L. Velázquez, A. H. Werner, R. F. Werner, Quantum Walks: Schur Functions Meet Symmetry Protected Topological Phases. Comm. Math. Phys. 389 (2022) 31–74. DOI
-
G. Filipuk, J. F. Mañas-Mañas, J. J. Moreno-Balcázar, Second–order difference equation for Sobolev–type orthogonal polynomials. Part I: theoretical results. J. Differ. Equ. Appl. 28(7) (2022), 971-989. DOI Prepint en arXiv:2006.14391.
-
M. Hunziker, A. Martinez-Finkelshtein, T. Poe, B. Simanek, Poncelet-Darboux, Kippenhahn, and Szegő: interactions between projective geometry, matrices and orthogonal polynomials, J. Math. Anal. Appl. 511, (2022), Art. 126049. DOI. Preprint arXiv math.2101.12165.
-
C.F. Lardizabal, L. Velázquez Mean hitting time formula for positive maps, Linear Algebra Appl. 650 (2022), 169-189. DOI. También preprint en arXiv:2202.10167.
-
J. F. Mañas-Mañas, J. J. Moreno-Balcázar, Sobolev orthogonal polynomials: asymptotics and symbolic computation, East Asian J. Appl. Math. 12(3) (2022), 535–563. DOI. Software libre en la web Wolfram Alpha: Juan F. Mañas-Mañas, Juan J. Moreno-Balcázar, "Sobolev Orthogonal Polynomials: Asymptotics and Symbolic Computation" from the Notebook Archive (2022), Enlace web.
-
J. F. Mañas-Mañas, J. J. Moreno-Balcázar, Asymptotics for some q-hypergeometric polynomials, Results Math. 77(4) (2022), Art. 146, 26 pp. DOI.
-
D. Mbouna, A. Suzuki, On Another Characterization of Askey-Wilson Polynomials, Results Math. 77(4) (2022), Art. 148, 14 pp. DOI. También preprint en arXiv:2202.10167.
2021
-
M. J. Cantero, F. Marcellán, L. Moral, L. Velázquez, A CMV connection between orthogonal polynomials on the unit circle and the real line, J. Approx. Theory 266 (2021) 105579 [22 pp], DOI. Preprint en arXiv arXiv:2005.09772.
-
F. A. Grünbaum, L. Velázquez, J. Wilkening, Occupation time for classical and quantum walks, in "From Operator Theory to Orthogonal Polynomials, Combinatorics, and Number Theory”, in Honor of Lance Littlejohn's 70th Birthday (F. Gesztesy, A. Martínez-Finkelshtein, eds), Oper. Theory Adv. Appl. 285 (2021). Enlace web.
-
A. Martínez-Finkelshtein, G. Silva, Spectral curves, variational problems, and the hermitian matrix model with external source, Comm. Math. Physics 383 (2021), 2163–2242, DOI. Preprint en arXiv arXiv:1907.08108.
2020
-
J. F. Mañas-Mañas, J. J. Moreno-Balcázar, R. Wellman, Eigenvalue problem for Discrete Jacobi-Sobolev Orthogonal polynomials, Mathematics 8 (2), DOI.
Preprints
-
K. Castillo, D. Mbouna, A counterexample to a conjecture of M. Ismail, enviado. También preprint en arXiv:2206.08375.
-
K. Castillo, D. Mbouna, J. Petronilho, On classical orthogonal polynomials on lattices and some characterization theorems. Preprint en arXiv.2209.04615.
-
M. J. Cantero, L. Moral, L. Velázquez, Sesquilinear forms, Darboux transformations and Sobolev orthogonal polynomials.
Entidades Financiadoras: