Site menu:

Last News:

September 1, 2022: Ministry of Science and Innovation has granted the research project.

Publications

 

Preprints:

2024

2023

  • M. J. Cantero, A. Iserles, On skyburst polynomials and their zeros, Dolomites Res. Notes Approx. 16 (1) (2023), 31--41. DOI. Preprint arXiv.

  • D. Dominici, J. J. Moreno-Balcázar, Asymptotic analysis of a family of Sobolev orthogonal polynomials related to the generalized Charlier polynomials. J. Approx. Theory 293 (2023). Art. 105918. DOI. Preprint en arXiv.2210.00082.

  • G. Filipuk, Juan F. Mañas-Mañas, Juan J. Moreno-Balcázar, Second-order difference equation for Sobolev-type orthogonal polynomials. Part II: computational tools, East Asian J. Appl. Math. 13(4) (2023), 960--979. DOI.

  • G. Filipuk, A. Stokes, On Hamiltonian structures of quasi-Painlevé equations, J. Phys. A: Math. Theor. 56 (2023) Art. 495205. DOI.

  • G. Filipuk, A. Stokes, Takasaki's rational fourth Painlevé-Calogero system and geometric regularisability of algebro-Painlevé equations, Nonlinearity, 36(10) (2023), Art. 5661. DOI.

  • C. F. Lardizabal, L. F. L. Pereira, Hitting time expressions for quantum channels: beyond the irreducible case and applications to unitary walks, Quantum Inf. Process. 22 (2023), Art. 304. DOI. Preprint arXiv.

  • A. Martínez-Finkelshtein, R. Orive, J. Sánchez-Lara, Electrostatic Partners and Zeros of Orthogonal and Multiple Orthogonal Polynomials, Constr. Approx. 58 (2023), 271--342. DOI. También prerpint en arXiv.

  • D. Mbouna, Juan F. Mañas-Mañas, Juan J. Moreno-Balcázar, Characterization of orthogonal polynomials on lattices, Integral Transforms Spec. Funct. 34(9) (2023), 675--689. DOI. También preprint en arXiv.

 

Funded by: