Teoría de errores

- 1. Exprese correctamente (cuando sea necesario) las medidas y errores siguientes:
 - a) 3.456 ± 0.2134
- b) 2345.56 ± 161.34
- c) 0.0001 ± 0.1134
- d) 16789 ± 1798.87
- e) 0.0932 ± 0.0689
- f) $\pi = 3.1415$ (valor leído en una tabla).
- 2. Indique cuántas medidas debe realizar en cada uno de los siguientes casos y determine (en su caso) el valor verdadero de la medida junto a su error:
- a) Se han obtenido las siguientes medidas: 0.012, 0.013, 0.013 utilizando un instrumento de sensibilidad 0.001.
- b) Se han obtenido las siguientes medidas: 0.012, 0.018 y 0.009 utilizando un instrumento de sensibilidad 0.001.

Sol: a) 3 medidas, $x = 0.012 \pm 0.001$; *b) 50 medidas*

- 3. La magnitud f = f(x,y) viene dada por la expresión $f = 2x^4$ $xy + y^2$, y se sabe que $x = (2.33 \pm 0.07)$ e $y = (1.8976 \pm 0.0023)$. Determínese el error en la magnitud f. Sol: $f = 58 \pm 7$
- 4. Se ha medido el volumen de un cilindro con ayuda de una regla (sensibilidad 1 mm) para medir su altura y un nonius (sensibilidad 0.05 mm) para medir el radio. Las medidas fueron de 15.8 cm y de 45.25 mm. Determine el volumen y su error. $Sol: V = (1019 \pm 9) \text{ cm}^3$
- 5. Se ha medido la aceleración de un móvil a partir de la obtención del tiempo consumido en recorrer 100 m. Se utiliza un metro graduado en cm y un reloj que aprecia las décimas de segundo. Obtenga el error en la aceleración cuando se observan tiempos de 15.3 s, 15.6 s, 15.4 s. Sol: $a = (0.843 \pm 0.011) \text{ ms}^{-2}$
- 6. Se tienen 18 g (\pm 0.1 g) de vapor de agua en una botella cuyo volumen ha sido calculado obteniéndose un valor de 45 cm³ (\pm 5 cm³). Si se introduce un termómetro graduado en décimas de grado centígrado se mide una temperatura de 125 °C. Suponiendo una aproximación de gas ideal, calcule la presión del gas y su error. (Suponga que el peso molecular del gas no tiene error). Sol: $P = 730 \pm 90$ atm
- 7. En un experimento se han obtenido los siguientes datos en abscisas: 1.02 ± 0.21 , 2.0 ± 0.3 , 3.5 ± 0.7 , 4.1 ± 0.4 , 5.6 ± 0.3 , 7.0 ± 0.5 , 9.1 ± 0.6 , 12.4 ± 0.4 ; los correspondientes datos en ordenadas fueron : 8.9 ± 0.3 , 16.15 ± 0.15 , 26.2 ± 0.7 , 31.1 ± 0.4 , 43.0 ± 0.6 , 49.6 ± 0.5 , 62.6 ± 0.7 , 88.0 ± 0.4 . Construya una tabla con los datos. Dibuje estos datos en papel milimetrado con su correspondiente rectángulo de error; encuentre el ajuste por mínimos cuadrados con indicación de la pendiente y su error, la ordenada en el origen y su error y el coeficiente de correlación. Sol: $a = 6.82 \pm 0.14$; $b = 2.5 \pm 0.9$; r = 0.9988
- 8. Determinar la temperatura para un valor de la presión de 0.55 bares. Sol: 83.65 °C

Presión (bares)	Temperatura (°C)
0.5	81.35
0.6	85.95
0.7	89.96
0.8	93.51