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In this paper the concept of a nonlinear verticum-type observation system is introduced.
These systems are composed from several “subsystems” connected sequentially in a
particular way: a part of the state variables of each “subsystem” also appears in the
next “subsystem” as an “exogenous variable” which can also be interpreted as a con-
trol generated by an “exosystem”. Therefore, these “subsystems” are not observation
systems, but formally can be considered as control-observation systems. The problem of
observability of such systems can be reduced to rank conditions on the “subsystems”.
Indeed, under the condition of Lyapunov stability of an equilibrium of the “large”,
verticum-type system, it is shown that the Kalman rank condition on the linearization
of the “subsystems” implies the observability of the original, nonlinear verticum-type
system.

For an illustration of the above linearization result, a stage-structured fishery model
with reserve area is considered. Observability for this system is obtained by applying

the above linearization and decomposition approach. Furthermore, it is also shown that,
applying an appropriate observer design method to each subsystem, from the observa-
tion of the biomass densities of the adult (harvested) stage, in both areas, the biomass
densities of the pre-recruit stage can be efficiently estimated.

Keywords: Verticum-type system; nonlinear system; observability; observer design;
fishery with reserve area.

1. Introduction

The research line concerning the application of mathematical systems theory to
monitoring and control of population systems was initialized in Varga [19, 20], where
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sufficient conditions for local controllability and observability of nonlinear systems
with invariant manifold have been proved and applied to populations controlled by
artificial selection, and to phenotypic observation of the genetic composition of a
population under selection. For further results on frequency-dependent population
systems, see also Scarelli and Varga [16], López et al. [9] and Varga [21].

Later on, for density-dependent multi-species population models, monitoring
problems have been formulated in terms of observation systems. In the context of
population ecology, observability means that from the observation of the densities
of certain species considered as indicators, in principle, the whole state process of
the population system can be uniquely recovered. Observability has been analyzed
in different multi-species population system models in Varga et al. [23–25] and
Shamandy [17]. Both Lotka–Volterra and non-Lotka–Volterra type systems have
been studied for local observability, and effective state estimation by observer design
have been obtained in e.g. López [10, 11], Gámez et al. [3, 4]. For a general review
on the application of mathematical systems theory in population biology, see Varga
[22], a recent update of this survey is Gámez [2].

Verticum-type systems have been introduced by Molnár [12] for modeling certain
industrial systems. These systems, in a top-down way, are hierarchically composed
of linear “subsystems” such that a part of the state variables of each subsystem
influence the state of the next “subsystem”. In Molnár [12], necessary and sufficient
conditions for observability and controllability of such systems were obtained, and
their further systems-theoretical properties were studied in Molnár [13], Molnár
and Szigeti [14].

Recently, verticum-type systems have found an application in population ecol-
ogy. As a matter of fact, population interactions are typically nonlinear, but in
Gámez et al. [5] a concrete ecological interaction chain of the type resource —
producer — primary user — secondary consumer was found to have a verticum-
like structure which admitted to reduce the monitoring problem of observability
to a linearized version of the original model. In the present paper, in a general
approach, nonlinear verticum-type systems are introduced. In Sec. 2, the basic defi-
nitions and a sufficient condition for local observability of such systems is obtained.
The proof is based on a natural decomposition and a linearization method of Lee
and Markus [8]. In Sec. 3, as an example of a nonlinear verticum-type system,
a stage-structured fishery model with reserve area is considered, and its stability
properties are discussed.

Section 4 is devoted to a monitoring problem for a fishery system. First local
observability is obtained by applying the linearization and decomposition approach
of Sec. 2. Furthermore, it is also shown that applying the observer design method
of Sundarapandian [18] to each subsystem, from the observation of the biomass
densities of the adult (harvested) stage in both areas, the biomass densities of
pre-recruit stage can be efficiently estimated.
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2. Observability of Nonlinear Verticum-Type Systems

Let k, ni, ri ∈ N , hi : Rni → Rri , (i ∈ 0, k), fi ∈ C1(Rni×ni−1 , Rni) (i ∈ 1, k), and
consider the nonlinear system

ẋ0 = f0(x0),

y0 = h0(x0),
(2.1)

and for all i ∈ 1, k

ẋi = fi(xi, xi−1),

yi = hi(xi).
(2.2)

Denoting n :=
∑k

i=0 ni, r :=
∑k

i=0 ri; let x = (x0, x1, . . . , xk) ∈ Rn, f : Rn → Rn

with

f(x) := (f0(x0), f1(x1, x0), . . . , fk(xk, xk−1)),

and h : Rn → Rr with

h(x) := (h0(x0), h1(x1), . . . , hk(xk)).

We shall suppose that there exists x∗ = (x∗
0, x

∗
1, . . . , x

∗
k) > 0, such that

f(x∗) = (f0(x∗
0), f1(x∗

1, x
∗
0), . . . , fk(x∗

k, x∗
k−1)).

Definition 2.1. Observation system

ẋ = f(x),

y = h(x),
(2.3)

is said to be of verticum type.

Remark 2.2. Equations (2.2) (i ∈ 1, k) do not define a standard observation
system in this setting, because of the presence of the “exogenous” variable xi−1

connecting it to system (2.2), with i − 1.

Remark 2.3. It is known that near equilibrium x∗ all solutions of system (2.3) can
be defined on the same time interval [0, T ]. In what follows T > 0 will be considered
fixed and concerning observability, the reference to T will be suppressed.

For the analysis of observability of system (2.3), let us linearize system (2.2), at
the respective equilibria x∗

i ∈ 0, k, obtaining the linearized systems

ẋ0 = A00x0,

y0 = C0x0,
(2.4)
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and for all i ∈ 1, k

ẋi = Aiixi + Aii−1xi−1,

yi = Cixi,
(2.5)

where

A00 = f ′
0(x

∗
0), C0 = h′

0(x
∗
0);

Aii =
∂fi

∂xi
(x∗

i , x
∗
i−1), Aii−1 =

∂fi

∂xi−1
(x∗

i , x
∗
i−1), Ci = h′

i(x
∗
i ) (i ∈ 1, k).

Define matrices A ∈ Rn×n, C ∈ Rr×n as follows:

A =




A00 0 0 . . . 0 . . . 0

A10 A11 0 . . . 0 . . . 0

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

0 0 0 . . . . Ak−1,k−1 0

0 0 0 . . . . Ak,k−1 Ak,k




,

C =




C0 0 . . . 0

0 C1 . . . 0

0 0
. . . 0

0 0 . . . Ck




obtaining linear observation system

ẋ = Ax,

y = Cx
(2.6)

of verticum type (see [12]). In the latter paper, a Kalman-type necessary and suffi-
cient condition for observability of linear verticum-type systems was obtained. Here
we recall only its “sufficient part” to be applied below.

Theorem 2.4 ([12]). Suppose that

rank




Ci

CiAii

...
CiA

ni−1
ii


 = ni (i ∈ 0, k).

Then the linear verticum-type system (2.6) is observable.
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Remark 2.5. If x∗ is a Lyapunov stable equilibrium of system

ẋ = f(x),

then (2.2) (i ∈ 1, k) can be considered as a control-observation system with “small”
controls in the following sense. By the Lyapunov stability of x∗, for all ε > 0, there
exists δ > 0 such that |x(0) − x∗| < δ implies |x(t) − x∗| < ε (for t ∈ [0, T ]).
In particular, |xi−1(t) − x∗

i−1| < ε for all t ∈ [0, T ].

Considering ui(t) := xi−1(t) − x∗
i−1 as a control for system

ẋi = fi(xi, x
∗
i−1 + ui),

(2.2) becomes a control-observation system in the sense of Appendix A. Suppose
that for each i ∈ 0, k

rank




Ci

CiAii

...
CiA

ni−1
ii


 = ni,

then by Theorem 2.1 the verticum-type system (2.6) is observable.
Hence, the linearization of the observation system (2.3) is observable. Therefore,

by Kalman’s theorem on observability of linear systems (see Kalman et al. [7]), the
rank condition (A.3) of Appendix A is fulfilled, which by Theorem A.1 implies local
observability of system (2.3) near equilibrium x∗.

The above reasoning can be summarized in the following theorem.

Theorem 2.6. If equilibrium x∗ is Lyapunov stable for system ẋ = f(x), and

rank




Ci

CiAii

...
CiA

ni−1
ii


 = ni (i ∈ 0, k),

then observation system (2.3) is observable near its equilibrium x∗.

3. A Stage-Structured Fishery Model with Reserve Area

For the illustration of the above theorem we consider a modification of the stage-
structured fishery model of Guiro et al. [6], supposing that there is reserve area
where fishing is not allowed. In what follows, the first index of the biomass density
N will indicate the area: i = 1 for the reserve and i = 2 for the free area; the second
index will refer to the development stage: j = 0 for the pre-recruits, i.e. the eggs,
larvae and the juveniles together, and j = 1 the exploited stage of the population.
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The dynamics of the system is modeled by the following autonomous system of
differential equations

Ṅ10 = −m10N10 + f11N11 − p11N10N11 − p10N
2
10, (3.1)

Ṅ11 = α11N10 − m11N11 − βN11, (3.2)

Ṅ20 = −m20N20 + f21N21 − p21N20N21 − p20N
2
20, (3.3)

Ṅ21 = α21N20 − m21N21 + βN11 − qEN21, (3.4)

where:
mij = natural mortality rate of class ij,
αij = linear aging coefficient in areas i = 1, 2,

pi0 = juvenile competition parameter in areas i = 1, 2,

fi1 = fecundity rate of adult fish in areas i = 1, 2,

pi1 = predation rate of class 1 on class 0 in areas i = 1, 2,

q = catchability coefficient of class 1 in the unreserved area,
β = migration rate of the second class from reserved area to unreserved area,
E = constant fishing effort.

We note that a fishing model with reserve area without stage structure display-
ing logistic growth was studied in Gámez et al. [4].

3.1. Existence of positive equilibrium

Let us now find conditions for the existence of a nontrivial (i.e. positive) equilibrium
of dynamic system (3.1)–(3.4), where all components are present. Define functions
fi : R2 → R2, i = 1, 2

f1(N10, N11) =

(−m10N10 + f11N11 − p11N10N11 − p10N
2
10

α11N10 − m11N11 − βN11

)
,

f2(N20, N21) =

(−m20N20 + f21N21 − p21N20N21 − p20N
2
20

α21N20 − m21N21 + βN11 − qEN21

)
.

Then, we can define f : R4 → R4 given by the right-hand side of this system:

f(N) = f(N10, N11, N20, N21) :=

[
f1(N10, N11)

f2(N20, N21)

]
.

Then a vector N∗, N∗ > 0 is an equilibrium for the considered dynamics if and
only if f(N∗) = 0. From (3.1) we immediately get

N∗
11 =

α11N
∗
10

m11 + β
.
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Hence, by (3.2) we obtain

N∗
10 =

f11α11 − m10(m11 + β)
p11α11 + p11(m11 + β)

.

In the following we will suppose

f11α11 − m10(m11 + β) > 0. (3.5)

Analogously, from (3.4) we get

N∗
21 =

α21N
∗
20 + βN∗

11

m21 + qE
.

Finally, from (3.3) we obtain a quadratic equation for N∗
20:

a(N∗
20)

2 + bN∗
20 + c = 0

where

a = (m21 + qE)p20 + p21α21; b = (m21 + qE)α20 + p21βN∗
11; c = −f21βN∗

11.

Since a > 0 and c < 0, solution

N∗+
20 =

−b +
√

b2 − 4ac

2a

is positive and

N∗−
20 =

−b −√
b2 − 4ac

2a

is negative.
Summing up, we conclude that under condition (3.5) system (3.1)–(3.4) have a

unique positive equilibrium.

3.2. Asymptotic stability of the positive equilibrium

In the verticum-type nonlinear model (3.1)–(3.4) we can determine two subsystems
according to the definition given in Sec. 2,

Ṅ10 = −m10N10 + f11N11 − p11N10N11 − p10N
2
10,

Ṅ11 = α11N10 − m11N11 − βN11,
(3.6)

Ṅ20 = −m20N20 + f21N21 − p21N20N21 − p20N
2
20,

Ṅ21 = α21N20 − m21N21 + βN11 − qEN21.
(3.7)
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To study the stability of subsystem (3.6) we calculate the Jacobian

A1 := f ′
1(N1) =

(−m10 − p11N11 − 2p10N10 f11 − p11N10

α11 −m11 − β

)
,

where N1 = (N10, N11). Here, there are two possible equilibrium states, N0∗
1 = (0, 0)

and N1∗
1 = (N∗

10, N
∗
11). At N0∗

1 , we have

A1(0, 0) =

(−m10 f11

α11 −m11 − β

)
.

Then the characteristic equation is λ2 + B1λ + B2 = 0, where

B1 = m10 + m11 + β; B2 = m10(m11 + β) − α11f11. (3.8)

Here B1 > 0 and by condition (3.5) we have B2 < 0. Applying the Routh–Hurwitz
criterion (see [1]) we obtain that equilibrium N0∗

1 is unstable. In biological terms
this means that a release of any stage class at low density in the reserve area would
colonize this area.

Proceeding analogously for the positive equilibrium N1∗
1 , the Jacobian now

becomes

A1(N∗
10, N

∗
11) =

(−m10 − p11N
∗
11 − 2p10N

∗
10 f11 − p11N

∗
10

α11 −m11 − β

)

and its characteristic equation is λ2 + B1λ + B2 = 0 with

B1 = m10 + p11N
∗
11 + 2p10N

∗
10 + m11 + β,

B2 = (m10 + p11N
∗
11 + 2p10N

∗
10)(m11 + β) − α11(f11 − p11N

∗
10).

Now f11−p11N
∗
10 implies B1 > 0 and B2 > 0, from which by the Routh–Hurwitz cri-

terion we get that equilibrium N1∗
1 is (locally) asymptotically stable. The straight-

forward biological consequence of this is stable coexistence in the reserve area.
On the other hand, set

A2 := f ′
2(N2) =

(−m20 − p21N21 − 2p20N20 f21 − p21N20

α21 −m21 − qE

)
,

where N2 = (N20, N21). Now condition f21 − p21N
∗
20 < 0 implies asymptotic sta-

bility of the positive equilibrium N1∗
2 = (n∗

20, N
∗
21). Therefore, we have proved the

following result.

Theorem 3.1. Suppose that (3.5) holds and

f11 − p11N
∗
10 < 0 and f21 − p21N

∗
20 < 0, (3.9)

then equilibrium and are asymptotically stable for systems, respectively.
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A biological interpretation of asymptotic stability is a stable coexistence of both
stages in both areas.

Finally, we analyze the stability of the equilibria of the whole system (3.1)–(3.4).
To this end we calculate the corresponding Jacobian,

A := f ′(N1, N2) =




A1

0 0

0 0
0 0

0 0
A2


.

It is easy to see that the characteristic polynomial of A has the form

p(λ) = p1(λ) · p2(λ),

where p1(λ) and p2(λ) are the characteristic polynomials of A1 and A2, respectively.
Hence we obtain the following theorem.

Theorem 3.2. If conditions (3.5) and (3.9) are satisfied, then N1∗ = (N1∗
1 , N1∗

2 )
is an asymptotically stable positive equilibrium of system (3.1)–(3.4).

Remark 3.3. Since asymptotic stability implies Lyapunov stability, in the next
section we can apply Theorem 2.2 to the corresponding nonlinear verticum-type
observation system.

Remark 3.4. We note that it is easy to see that the trivial equilibrium of system
(3.7) is unstable, if

f11α11 − m10(m11β) < 0 and f21α21 − m20(m21 − qE) > 0

and asymptotically stable, if the opposite inequalities hold.

4. Observability and Observer Design for the Model

4.1. Observability

We consider the observation function h : R4 → R2, defined by

y = h(N1, N2) = (N11 − N∗
11, qE(N21 − N∗

21)). (4.1)

Our aim is to analyze the observability of observation system (3.1)–(3.4), (4.1) using
the results of the previous sections.

Given the observation function

y1 = h1(N10, N11) = N11 − N∗
11, (4.2)
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we calculate its linearization

C1 := h′
1(N

∗
1 ) = (0, 1).

It is easy to check that rank(C1|C1A1) = 2, therefore by Theorem A.1 of
Appendix A we can guarantee local observability of system (3.6)–(4.2). Analogously,
if we consider the observation function

y2 = h2(N20, N21) = qE(N21 − N∗
21) (4.3)

for system (3.7) and calculate

C2 := h′
2(N

∗
2 ) = (0, qE).

Again we have rank(C2|C2A2) = 2, therefore from Theorem A.1 of Appendix A we
have local observability of system (3.7)–(4.3).

Since under the appropriate conditions equilibrium x∗ is asymptotically stable
and hence also Lyapunov stable, applying Theorem 2.2 we obtain the following
theorem.

Theorem 4.1. Suppose that conditions (3.5) and (4.2) hold. Then observation
system (3.1)–(3.4), (4.1) is locally observable near equilibrium N∗ = (N1∗

1 , N2∗
2 ).

4.2. Construction of an observer system

Given the observation system (3.6)–(4.2), using the corresponding observer design
of Sundarapandian [18], it is sufficient to find a matrix K1 such that A1 −K1C1 is
Hurwitz. It is easy to check that with k1

2 > 0,

K1 =

(
0

k1
2

)

is appropriate.
Analogously, for observation system (3.7)–(4.3), with k2

2 > 0,

K2 =

(
0

k2
2

)
.

A2 − K2C2 is Hurwitz, guaranteeing the construction of the observer system.
From these results, for

K :=

(
K1

K2

)
, C := (C1 C2)

we can check that A − KC is Hurwitz, which allows us to construct the observer
for system (3.1)–(3.4), (4.1). Moreover, this observer is composed of the observers
constructed for the two subsystems.
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Example 4.2. Use the following model parameters of [15]:

m10 = 0.4; m20 = 0.4,

f11 = 0.5; f21 = 0.5,

p11 = 0.1; p21 = 0.1,

p10 = 0.2; p20 = 0.1,

α11 = 0.8; α21 = 0.9,

m11 = 0.05; m21 = 0.1,

β = 0.65; q = 0.07; E = 0.5.

To construct the observer system for (3.6)–(4.2) we take

K1 =

(
0

10

)
.

Then the observer system is

Ż10 = −0.4Z10 + 0.5Z11 − 0.1Z10Z11 − 0.2Z2
10,

Ż11 = 0.8Z10 − 0.05Z11 − 0.65Z11 + 10(N11 − Z11).
(4.4)

Considering N1(0) = (0.1, 0.2) as initial value for the system (3.6), and Z1(0) =
(0.5, 0.1) for the observer (4.4), in Fig. 1 we can see how the solution of the observer
system approaches the solution of the original system. To construct the observer of
system (3.7)–(4.3) we take

K2 =

(
0

10

)
.

Then the observer system is

Ż20 = −0.4Z20 + 0.5Z21 − 0.1Z20Z21 − 0.1Z2
20,

Ż21 = 0.9Z20 − 0.1Z21 + 0.65Z11 − 0.07 · 0.5Z21 + 10 · 0.07 · 0.5(N21 − Z21).
(4.5)

0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

time

N10

Z10

0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

N11

Z11

Fig. 1. Solution of the observer (4.4) approaching the solution of the original system (3.6).
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0 5 10 15 20 25
1

1.5

2

2.5

3

3.5

4

time

N20

Z20

0 5 10 15 20 25
8

10

12

14

16

18

20

22

24

26

time

N21

Z21

Fig. 2. Solution of the observer (4.5) approaching the solution of the original system (3.7).

If we consider N2(0) = (1, 10) as initial value for system (3.7), and Z2(0) = (1.5, 15)
for the observer (4.5), we obtain the result plotted in Fig. 2. Now the observer for
system (3.1)–(3.4), (4.1) can be simply composed from the single observers (4.4)
and (4.5). In Fig. 3 we can see how the solution of the observers (4.4)–(4.5) with

0 5 10 15 20
0.1

0.15

0.2

0.25

0.3

0.35

time

N10

Z10

0 5 10 15 20
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time

N11

Z11

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

time

N20

Z20

0 5 10 15 20
6

8

10

12

14

16

18

20

22

24

26

time

N21

Z21

Fig. 3. Solution of the observers (4.4) and (4.5) approaching the solution of the original system
(3.1)–(3.4) by coordinates.
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initial value Z(0) = (0.1, 0.4, 2.5, 10), estimates the solution of system (3.1)–(3.4)
with initial value N(0) = (0.3, 0.1, 0.3, 8).

5. Discussion

The concept of linear verticum-type systems have been introduced for the descrip-
tion of certain complex industrial systems consisting of several units (“subsystems”)
where in a “vertical chain” each “subsystem” is unilaterally connected to the next
one by a state variable. In industrial systems these connections typically describe
a material flow from one production unit to the next one.

In population ecological modeling, verticum-type systems basically occur in two
situations: First, when either in an ecological chain there is a unilateral interaction
such as commensalism (e.g. a commensalist animal may make use of a plant as part
of its habitat without harming it). Second, when there is a unilateral biomass flow
from one habitat to another. In this paper the latter case have been studied. To
this end it was necessary to generalize the concept of a verticum-type system to the
nonlinear case. For a decomposition of the monitoring problem of such systems we
also extended the sufficient condition for observability (existing for linear systems),
to the nonlinear case.

It is also shown that for an efficient state estimation based on the partial obser-
vation of the system, the construction of a Luenberger-type observer system can
also be carried out by a decomposition into “subsystems”.

For an illustration of our results we considered the simplest nontrivial case of
a stage-structured fishery model with reserved area. We note that our approach
can also be extended to more complicated verticum-type population systems, also
including some abiotic effects and/or changing environment.

Acknowledgments

The present research has been supported by the Hungarian Scientific Research
Fund OTKA (K81279). The Andalusian Regional Government (Spain), Program
of Excellence Projects (ref: P09-AGR-5000) of the Junta de Andalućıa, Consejeŕıa
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Appendix A

Suppose m, n, r ∈ N, F ∈ C1(Rn × Rm, Rn), h ∈ C1(Rn, Rr), (x∗, u∗) ∈ Rn × Rm

such that F (x∗, u∗) = 0 and h(x∗) = 0.

Remark A.1. It is known (see e.g. Lee and Markus [8]) that, given a fixed T > 0,
there exists an ε0 > 0 such that for all z0 ∈ Rn with ||z0 − x∗|| < ε0 there
exists a unique continuously differentiable function x ∈ C1([0, T ], Rn) such that
ẋ(t) = F (x(t)), for all t ∈ [0, T ].
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Definition A.2. With the above notation, consider the control-observation system
in Rn

ẋ = F (x, u), (A.1)

y = h(x). (A.2)

System (A.1) and (A.2) is said to be locally observable near the equilibrium if there
exists ε > 0 such that

|u(t) − u∗| < ε, |x(0) − x∗| < ε, |x̄(0) − x∗| < ε,

and

h(x(t)) = h(x̄(t)) for all t ∈ [0, T ]

imply that

x(0) = x̄(0).

Theorem A.3 (Lee and Markus, [8]). Consider the control-observation system
(A.1) and (A.2) in Rn with

A =
∂

∂x
F (x∗, u∗), C = h′(x∗).

Assume

rank




C

CA
...

CAn−1


 = n. (A.3)

Then system is locally observable near the equilibrium.

Remark A.4. The theorem similar to the previous one is also valid for function
F not depending on control.
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[4] M. Gámez, I. López, J. Garay and Z. Varga, Monitoring and control in a spatially
structured population model, in Computational Science and its Applications, Vol. V,
eds. B. Murgante, O. Gervasi, A. Iglesias, D. Taniar and B. O. Apduhan, Lecture
Notes in Computer Science, Vol. 6786 (Springer-Verlag, Berlin, 2011), pp. 511–520.
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