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1 Introduction

It can be observed in many papers on periodic differential equations that a
lot of hypotheses are stated in terms of the fundamental concept of average
[1], [6] and [4].

In this paper we study the logistic equation

x′ = xF (t, x) (1.1)

where F : IR× IR+ → IR is a continuous function such that xF (t, x) is locally
Lipschitz continuous in x and F (t, x) is decreasing in x. When F (t, x) = f(x)
is continuous, system (1.1) has been considered as a model to describe the
growth properties of a single population. In the special case, f(x) = a−bx (a,
b positive real numbers), the above system is know as the Verhulst equation

and its history can be found in [5].
Obviously, the growth properties of every natural population vary thought

time, and so the non-autonomous system (1.1) is more realistic than its

autonomous counterpart.
The aim of this paper is to improve the results of Vance and Condding-

ton [9], in which it was assumed that the long-term average values of F obey
certain properties. More precisely, it was assumed that there exists a time

period of fixed length such that, no matter when an interval of this length

begins, the population will experience a representative sample of all ecolog-
ically important events during this time interval that it will ever experience
in all time.
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The main assumptions in this paper involve a sort of average concept

which does not depend on a time unit and will be explained in the last
section of the article.

The paper is organized as follows. In section 2 we prove that (1.1) is
dissipative if F (t, R) ≤ B′(t) for some R > 0 and some bounded continuously
differentiable function B : IR → IR. This condition implies that ”the upper
average of F (t, R) is less than zero”. Analogously, we prove that (1.1) is
persistent if it is dissipative and F (t, δ) ≥ A′(t) for some δ > 0 and some

bounded continuously differentiable function A : IR → IR.

In section 3 we prove the existence of a solution of (1.1) in the set C+

of all continuous functions which are bounded above and below by positive

constants. Moreover we classify the set of all solutions of (1.1) which are
defined in IR.

In section 4, we study uniqueness of the solutions of (1.1) in C+ and we
prove, under certain additional restrictions, that any pair of solution of (1.1)
are asymptotic as t → +∞.

In section 5, we prove that the results in section 1 improve the main
results in [9]. Finally, in section 6 we explain how our hypotheses in section
1 can be seen as some kind of average restrictions.

2 Dissipativity and persistence

We consider the logistic equation

x′ = xF (t, x) (2.1)

where F : IR × IR+ → IR is a continuous function which is locally Lipschitz
continuous in x. In this section, we assume that:

H1) F (t, x) is decreasing in x.
H2)

∫∞
0 [F (t, x)− F (t, y)]dt = +∞ if 0 ≤ x < y.

H3) There exist R > 0 and a bounded and continuously differentiable func-
tion B : IR → IR such that,

F (t, R) ≤ B′(t) ; t ∈ IR. (2.2)
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We also use the following notations. Given a bounded function D : IR → IR
we write ID = −inf{D(t)−D(s) : s ≤ t}, SD = sup{D(t)−D(s) : s ≤ t},
MD = ID + SD. Note that ID, SD ≥ 0.

In the following, u denotes a (uncontinuable) solution of (2.1) such that
u(τ) > 0 for some τ ∈ dom(u). Here, and henceforth, dom(u) denotes the

(maximal) domain of u. Note that u(t) > 0 for all t ∈ dom(u).

Proposition 2.1 Let τ be as above. Then u is defined on [τ,∞) and

u(t) ≤ max{u(τ), Rexp(IB)}eB(t)−B(τ); t ≥ τ. (2.3)

In particular, if u(τ) ≤ Rexp(IB), then

u(t) ≤ Rexp(MB), for t ≥ τ .

Proof. For t ≥ τ , let v(t) be the right-hand side of (2.3). Then,

v(t) ≥ Rexp(IB)eB(t)−B(τ) > R

and v′(t) = B′(t)v(t). From this H1) and H3), v is a supersolution of (2.1)
such that v(τ) ≥ u(τ) and hence, v(t) ≥ u(t) if t ∈ dom(u)

⋂

[τ,∞). The
proof now follows easily.

Theorem 2.2 [Dissipativity] For each positive solution u of (2.1) we have,

limt→+∞ sup u(t) ≤ R exp(MB).

Proof. Let us fix S > R. We shall prove that

u(τ) ≤ Sexp(IB) for some τ ∈ dom(u). (2.4)

To show this, assume to the contrary that u(t) > Sexp(IB) for all t ∈
dom(u), and define v(t) = u(t)eB(t). Since u(t) ≥ S, and (2.2) holds, we
obtain

v′(t)
v(t)

= F (t, u(t))−B′(t) ≤ F (t, S)− F (t, R)

and hence, for a fixed s ∈ dom(u), we have

ln
v(s)
v(t)

≥
∫ t

s
[F (σ,R)− F (σ, S)]dσ → +∞ as t → +∞;
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since H2) holds. From this, v(t) → 0 as t → +∞, and thus the same holds
for u. But u(t) ≥ S > 0, and this contradiction proves (2.4).

By (2.3)-(2.4) we have, u(t) ≤ Sexp(IB)eB(t)−B(τ) ≤ Sexp(MB) for t ≥ τ ,
and the proof is complete.

Corollary 2.3 Suppose that there exists a bounded and continuously differ-

entiable function B : IR → IR such that F (t, 0) ≤ B′(t). Then,

u(t) → 0 as t → +∞

for any positive solution u of (2.1).

Proof. The assumptions in theorem 2.2 are satisfied for every R > 0, and

the proof follows from that result.

Proposition 2.4 In addition to H1)-H3), suppose that

H4) There exists δ > 0 such that

F (t, δ) ≥ A′(t); t ∈ IR; (2.5)

for some bounded and continuously differentiable function A : IR → IR. Then,
for each τ ∈ dom(u)

u(t) ≥ min{u(τ), δexp(−SA)}eA(t)−A(τ); t ≥ τ. (2.6)

In particular, if u(τ) ≥ δexp(−SA), then

u(t) ≥ δexp(−MA); for t ≥ τ.

Proof. See proposition 2.1.

Remark 2.5 If δ satisfies (2.5), then δ ≤ R. To show this assume to the
contrary that δ > R. By (2.2) and (2.5), A′(t) ≤ F (t, δ) ≤ F (t, R) ≤ B′(t),
and hence

B(t)− A(t)− [B(0)− A(0)] =
∫ t

0
[B′(s)− A′(s)]ds

≥
∫ t

0
[F (s,R)− F (s, δ)]ds → +∞ as t → +∞.

Then B − A is not bounded, and this contradiction ends the proof.
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Theorem 2.6 (Persistence.) If H4) is satisfied, then

limt→+∞infu(t) ≥ δexp(−SA)

for any positive solution u of (2.1).

Proof. See theorem 2.2.

3 A classification of the solutions of the logistic equa-
tion

In the following C+ denotes the set of all bounded continuous functions ω :

IR → IR such that inf(ω) > 0.

Corollary 3.1 If H1)-H4) are satisfied, then (2.1) has solution in C+.

Proof. We shall use a well-know argument. Let us fix x0 ∈ [δexp(−MA),

R exp(MB)] and define uk, for each integer k ≥ 1, as the solution of (2.1)

determined by the initial condition uk(−k) = x0. By propositions 2.1 and
2.4,

δexp(MA) ≤ uk(t) ≤ Rexp(MB), for t ≥ −k.

In particular, {uk(0)} is bounded, and so, we can assume that it converges

to a point ξ > 0. Now it is easy to show that the solution u of (2.1),

determined by the initial condition u(0) = ξ, satisfies the required property.

In this section, in addition to H1)-H4), we also assume that

H5)
∫ 0
−∞[F (t, x)− F (t, y)]dt = +∞ if 0 ≤ x < y.

Proposition 3.2 Let u : IR → (0, +∞) be a solution of (2.1).

a) If there exist T ∈ IR and η ∈ (0, δ) such that u(t) < ηe−SA for t < T , then
u(t) → 0 as t → −∞.
b) If there exist T ∈ IR and S > R such that u(t) > SeIB for t < T , then
u(t) → +∞ as t → −∞.
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Proof. We only prove a). To do this, we define v(t) = u(t)e−A(t) and we

remark that u(t) ≤ η and

v′(t)
v(t)

= F (t, u(t))− A′(t) ≥ F (t, η)− F (t, δ)

for t < T . From this, for a fixed s ∈ dom(u),

ln
v(s)
v(t)

→ +∞ as t → −∞,

(since H5) holds) and the proof follows easily.

Theorem 3.3 Assume H1)-H5) hold. If u ∈ C+ is a solution of (2.1),
then δexp(−SA) ≤ u(t) ≤ Rexp(IB). In particular, δexp(−MA) ≤ u(t) ≤
Rexp(MB).

Proof. Let us fix η ∈ (0, δ). By proposition 3.2 a), there exists a sequence
τn → −∞ such that u(τn) ≥ ηe−SA . From this and (2.6), u(t) ≥ ηe−SA

if t ≥ τn. Hence, u(t) ≥ ηe−SA , for all t ∈ IR and so, u(t) ≤ δe−SA since

η ∈ (0, δ) is arbitrary. The rest of the proof is analogous.
Let us define X = {u(0) : u ∈ C+ is a solution of (2.1)}. By corollary 3.1,
χ = ∅ and by theorem 3.3 X is bounded and closed. In particular, (2.1) has
a maximal (and a minimal) solution in C+.

Theorem 3.4 Assume that H1) - H5) hold and let u : IR → (0,∞) be a

solution of (2.1)

a) If u(0) < inf(X ), then u(t) → 0 as t →∞.
b) If u(0) > sup(X ), then u(t) → +∞ as t → −∞.

Proof. We only prove a). To this end, let us fix η ∈ (0, δ) and assume that
there exists a sequence τn → −∞ such that u(τn) ≥ ηe−SA . By the argument
in theorem 3.3, u(t) ≥ ηe−SA , for all t ∈ IR.

Let us fix x ∈ X and let v ∈ C+ be the solution of (2.1) determined by the

initial condition v(0) = x. Since u(0) < v(0) then, u < v, and by theorem

3.3, u(t) ≤ Rexp(MB). Thus, u ∈ C+, and this contradiction (u(0) ∈ X )
shows the existence of T ∈ IR such that u(t) < δexp(−SA) for t < T . The
proof now follows from proposition 3.2 a).
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4 Asymptotic properties. Uniqueness

Let I be an interval. We denote by C+(I) the set of all bounded continuous
functions u : I → IR such that inf(u) > 0.

Proposition 4.1 Assume H1) holds and that
∫ 0

−∞
[F (t, u0(t))− F (t, u1(t))]dt = +∞ (4.1)

if u0, u1 ∈ C+(−∞, 0] are uniformly continuous and u1 − u0 ∈ C+(−∞, 0].
Suppose further that the restriction of F to IR×K is bounded for any compact

set K ⊂ (0, +∞). Then, (2.1) has at most one solution in C+.

Proof. Let u0 < u1 be solutions of (2.1) in C+ and define ∆ =
u0

u1
. Then

inf(∆) > 0 and

∆′ = ∆[F (t, u0(t))− F (t, u1(t))] ≥ 0.

From this, ∆(t) has a finite limit λ ∈ (0, 1) as t → −∞. In particular,
∫ 0

−∞
[F (t, u0(t))− F (t, u1(t)]dt = lim(

∆(0)
λ

) < +∞. (4.2)

On the other hand; ∆(t) ≤ ∆(0) for t ≤ 0, and so,

u1(t)− u0(t) ≥ [1−∆(0)]u1(t) ≥ [1−∆(0)] inf(u1) > 0

if t ≤ 0, that is, u1 − u0 ∈ C+(−∞, 0]. Obviously, u0, u1 are uniformly
continuous since, u′0, u

′
1 are bounded. From this, (4.1) holds. This contradicts

(4.2) and the proof is complete.
Let K ⊂ [0,∞) be compact and let G : K → IR be a function. We write

G ∈ αK(F ) (resp. G ∈ wK(F )) if there exists a sequence tn → −∞ (resp.

tn → +∞) such that

F (tn, x) → G(x) as n →∞ uniformly for x ∈ K. (4.3)

Remark 4.2 Suppose that the restriction of F to IR × K is bounded and

uniformly continuous for each compact subset K of (0,∞). Assume further
that αK(F ) contains a strictly decreasing function for any compact subset
K ⊂ (0,∞). If H1) holds, then F satisfies the assumptions in proposition
(4.1).
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Proof. Assume, to the contrary, that there exist u0, u1 ∈ C+(−∞, 0] uni-
formly continuous such that u1 − u0 ∈ C+(−∞, 0] and

∫ 0
−∞ F (t, u0(t))− F (t, u1(t))]dt < +∞.

Now fix a compact set K ⊂ (0,∞) such that u0(t), u(t) ∈ K for all t ∈ IR.

Since the restriction of F to IR×K is uniformly continuous, then F (t, u0(t))−
F (t, u0(t)) is uniformly continuous and hence.

F (t, u0(t))− F (t, u1(t)) → 0 as t → −∞.

Now, let G ∈ αK(F ) be strictly decreasing and fix a sequence tn → −∞
satisfying (4.3). Since u0, u1 are bounded, we can assume, without loss of

generality, that ui(tn) → xi; i = 0, 1. From this, G(x0) = G(x1) and,
consequently, x0 = x1. Thus, u1(tn) − u0(tn) → 0 as n → ∞, and this
contradiction (u1 − u0 ∈ C+(−∞, 0]) ends the proof.

Proposition 4.3 In addition H1)-H4), assume that F is bounded on IR×K
for any compact set K of [0,∞). Suppose further that,

∫ ∞

τ
[F (t, v0(t))− F (t, v1(t))]dt = +∞ (4.4)

if v0, v1 ∈ C+[τ,∞) are uniformly continuous and v1 − v0 ∈ C+[τ,∞). If
u0, u1 are positive solutions of (2.1) then

u1(t)− u0(t) → 0 as t → +∞.

Proof. Let us fix τ ∈ dom(u0)
⋂

dom(u1). Without loss of generality, we can

suppose that u0 < u1. Define 0 < ∆(t) =
u0(t)
u1(t)

for t ≥ τ . Then ∆(t) < 1

and ∆′(t) = ∆(t)[F (t, u0(t)) − F (t, u1(t))] ≥ 0. In particular, ∆(t) has a
finite limit λ ∈ (0, 1] as t → +∞.
Claim. λ = 1. To show this assume λ < 1. By proposition 2.1 and theorem

2.6, the restriction of ui to [τ,∞) belongs to C+[τ,∞). Note also that,

u1(t)− u0(t) ≥ u1(t)− λu0(t) = (1− λ)u1(t),
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and so, u1 − u0 ∈ C+[τ,∞). Therefore, (4.4) holds. Note that the restriction

of ui to [τ,∞) is uniformly continuous since the restriction of u′i is bounded
in this interval. On the other hand,

∫ 0

τ
[F (t, u0(t)− F (t, u1(t))]dt = ln

λ
∆(τ)

< +∞

and this contradiction proves the claim.

Hence
u0(t)
u1(t)

→ 1 as t → +∞ and the proof follows from the fact that the

restriction of ui to [τ,∞) is bounded.

Remark 4.4 The assumptions in proposition 4.3 are satisfied if:
a) The restriction of F to IR × K is bounded and uniformly continuous on

IR×K, for any compact set K ⊂ [0,∞).
b) ωK(F ) contains a strictly decreasing function for any compact set K ⊂
[0,∞).

Proof. See remark 4.2.
Using the arguments in propositions 4.1 and 4.3 we obtain

Proposition 4.5 Assume (4.1) holds if u0, u1, u1− u0 ∈ C+(−∞, 0]. If H1)
holds then (2.1) has at most one solution in C+.

Proposition 4.6 In additions to H1)-H4), assume that (4.4) holds if v0, v1, v1−
v0 ∈ C+[τ,∞). If u0, u1 are positive solution of (2.1) then

u0(t)− u1(t) → 0 as t → +∞.

Remark 4.7 a) Suppose that for each compact subset K of (0,∞) the exists

a continuous function bK : IR → [0,∞) such that

F (t, x)− F (t, x) ≥ bk(t)(y − x) if x ≤ y and x, y ∈ K.

If
∫ 0
−∞ bK(t)dt = +∞, then the assumptions in proposition 4.5 are satisfied.

b) We have a parallel remark concerning proposition 4.6 (In this case, it is

assumed that K ⊂ [0,∞) and
∫∞

0 bK(t)dt = +∞).
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5 Comparison with earlier results

In [9] the following result was proved.

Theorem 5.1 Suppose that F (t, x) has continuous partial derivative Fx(t, x)
defined on IR× IR+ such that

Fx(t, x) ≤ −λ(t)γ(x) (5.1)

for some continuous functions γ : [0,∞) → (0,∞), λ : IR → [0,∞) such that
∫ ∞

0
λ(t)dt = +∞. (5.2)

If there exist positive numbers β, R such that

F (t, R) ≤ β,
∫ t+1

t
F (s,R)ds ≤ 0; t ∈ IR; (5.3)

then (2.1) is dissipative.
Further, if there exist positive numbers α, δ such that

F (t, δ) ≥ −α,
∫ t+1

t
F (s, δ)ds ≥ 0; t ∈ IR, (5.4)

then (2.1) is persistent.
Moreover, if (5.1)-(5.4) hold and u0, u1 are positive solution of (2.1) then

u1(t)− u0(t) → 0 as t → +∞.

Remark 5.2 Note that (5.1)-(5.2) imply (4.4), since the assumptions in
remark 4.7, part b), are satisfied with bK(t) = min{γ(x) : x ∈ K}λ(t).

Using lemma 5.6 below it is easy to show that (5.3) (resp. (5.4)) implies
H3) (resp. H4)) and so, theorem 5.1 is a consequence of theorems 2.2, 2.6
and proposition 4.6.

Lemma 5.3 Given a continuous function α : [a, d] → (−∞, 0] and a number
ρ ≥ 0, ρ > α(d), there exists a continuous function β : [a, d] → IR such that
α(t) ≤ β(t) ≤ ρ, for a ≤ t ≤ a; β(a) = α(a) and β(d) = ρ.
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Proof. Let L : [a, d] → IR be the affine map determined by the conditions

L(a) = α(a), L(d) = ρ. Since L(d) > α(d), there exists c ∈ [a, d) such that
L(c) = α(c) and L(t) > α(t) for all t ∈ (c, d]. Let us define β : [a, d] → IR

by β(t) = α(t) for a ≤ t ≤ c and β(t) = L(t) for a ≤ t ≤ d. Obviously
α ≤ β. On the other hand, the slop of L is negative and hence, L(t) ≤ ρ for
all t ∈ [c, d]. From this β ≤ ρ. The rest of the proof is trivial.

Lemma 5.4 Let α : [a, c] → IR be a continuous function such that α < 0 in

[a, c) and α(c) = 0. Given a positive number ε > 0, there exists a continuous
function β : [a, c] → (−∞, 0] such that β(a) = α(a) β(c) = 0, α ≤ β and

∫ c

a
β(s)ds ≥ −ε.

Proof. Let us fix a number δ ∈ (0, c− a) such that
∫ a+δ

a
α(s)ds ≥ −ε.

By lemma 5.3, there exists a continuous function γ : [a, a + δ] → (−∞, 0]

such that, α ≤ γ, γ(a) = α(a) and γ(a + δ) = 0. We define β : [a, c] → IR by
β(t) = γ(t) on [a, a + δ] and β(t) = 0 for t ∈ [a + δ, c]. Thus,

∫ c

a
β(s)ds =

∫ a+δ

a
γ(s)ds ≥

∫ a+δ

a
α(s)ds

and the proof is complete.

Lemma 5.5 Let α : [a, b] → IR be a continuous function such that
∫ b

a α(t)dt ≤
0. Given a positive number M ≥ max(α), there exists a continuous function
β : [a, b] → IR such that α(t) ≤ β(t) ≤ M for all t ∈ [a, b], β(a) = α(a),
β(b) = α(b) and

∫ b

a
β(t)dt = 0.

Proof. Note that if
∫ b

a α(t)dt = 0, it suffices to take β ≡ α. Thus, we shall
assume that

∫ b
a α(t)dt < 0. Let C be the space of all continuous functions
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β : [a, b] → IR provided with the used sup norm and let F ⊂ C be the subset

consisting of all points β ∈ C such that

β ≡ α in {a, b} ∪ α−1[0,∞)

α(t) ≤ β(t) ≤ M ; t ∈ [a, b]

Obviously, F is convex and α ∈ F . On the other hand, the map I : F →
IR; I(β) =

∫ b
a β(s)ds; is continuous and I(α) ≤ 0. Thus, it suffices to show

the existence of a β∗ ∈ F such that I(β∗) ≥ 0.

As usual, we define α+(t) = max{0, α(t)}. Note that, if α(a) ≥ 0 and

α(b) ≥ 0, then α+ ∈ F and I(α+) ≥ 0. So, we can assume that either

α(a) < 0 or α(b) < 0.
Now let us consider the following cases and subcases:
Case 1. α+ ≡ 0.
Subcase 1.1. α(a) < 0 and α(b) ≥ 0.
In this case there exists c ∈ (a, b] such that α < 0 on [a, c) and α(c) = 0.

By lemma 5.4, there exists a continuous function γ : [a, c] → (−∞, 0] such
that γ(a) = α(a), γ(c) = 0 and

∫ c
a γ(s)ds ≥

∫ b
a α+. Let us define β∗ : [a, b] →

IR by

β∗(t) = γ(t) for t ∈ [a, c]
β∗(t) = α+(t) for t ∈ [c, d]

Obviously, β∗ ∈ F and
∫ b

a
β∗ =

∫ b

a
γ +

∫ b

c
α+ =

∫ c

a
γ +

∫ b

a
α+ ≥ 0.

Subcase 1.2. α(a) ≥ 0 and α(b) < 0.

The proof of this case is similar to subcase 1.2.
Subcase 1.3. α(a) < 0 and α(b) < 0.
Let us fix c < d on (a, b) such that α < 0 on [a, c) ∪ (d, b] and α(c) =

α(d) = 0. By lemma 5.4 there are continuous functions γ0 : [a, c] → (−∞, 0],
γ1 : [d, b] → (−∞, 0) such that γ0(a) = α(a), γ0(c) = γ1(b) = 0, γ1(d) = α(d),

∫ c

a
γ0 ≥ −1

2

∫ b

a
α+,

∫ b

d
γ1 ≥ −1

2

∫ b

a
α+.
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Define β∗ : [a, b] → IR by β∗ = γ0 on [a, c], β∗ = α+ on [c, d] and β∗ = γ1

on [d, b]. It is easy to show that β∗ ∈ F and I(β∗) ≥ 0.
Case 2. α ≤ 0. Let us fix δ > 0, δ <

(

b− a
2

)

, such that

M(b− a) ≥ 2δ[M −min(α)].

By lemma 5.3 there exist continuous functions γ0 : [a, a + δ] → IR, γ1 :

[b−δ, b] → IR such that γ0(a) = α(a), γ0(a+δ) = M = γ1(b−δ), γ1(b) = α(b),
M ≥ γ0 ≥ α on [a, a+ δ] and M ≥ γ1 ≥ α on [b− δ, b]. Define β∗ : [a, b] → IR
by β∗ = γ0 on [a, a + δ], β∗ ≡ M on [a + δ, b − δ] and β∗ = γ1 on [b − δ, b].
Obviously β∗ ∈ F . On the other hand:

∫ b

a
β∗ = M(b− a− 2δ) +

∫ a+δ

a
γ0 +

∫ b

b−δ
γ1

≥ M(b− a− 2δ) + 2 min(α)δ

≥ 0

and the proof is complete.
In the following, J denotes the set of all strictly increasing sequences

τ : ZZ → IR such that

τn := τ(n) → ±∞ as n → ±∞
0 < inf{τn+1 − τn : n ∈ ZZ} ≤ sup{τn+1 − τn : n + ZZ} < +∞.

Given a continuous function ϕ : IR → IR, we write ϕ ∈ A0 (resp. ϕ ∈ A0)
if ϕ is bounded above (resp. below) and if there exists τ ∈ J such that

∫ τn+1

tn
ϕ(s)ds ≤ 0 (resp.

∫ τn+1

τn

ϕ(s)ds ≥ 0); n ∈ ZZ. (5.5)

Lemma 5.6 If ϕ ∈ A0, then there exists a bounded and continuously differ-

entiable function B : IR → IR such that ϕ(t) ≤ B′(t) for all t ∈ IR.

Proof. Let us write M = sup(ϕ). If M = 0, if suffices to take B ≡ 0. Thus,

we shall assume that M > 0.
Let us fix τ ∈ J satisfying (5.5) and let n ∈ ZZ. By lemma 5.5, there

exists a continuous function βn : [τn, τn+1] → IR such that βn(τn) = ϕ(τn),

βn(τn+1) = ϕ(τn+1), M ≥ βn ≥ ϕ and
∫ τn+1

τn

βn(s)ds = 0. (5.6)
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In particular, we can define a continuous function β : IR → IR by

β(t) := βn(t) if τn ≤ t ≤ τn+1.

Note that ϕ ≤ β ≤ M .
To end the proof, it suffices to show that the function B(t) =

∫ t
τ0

β(s)ds

is bounded. To this end, let us first remark that for each t ∈ IR, there exists
and unique n ∈ ZZ such that τn ≤ t ≤ τn+1. In this case, we write [t] = τn.

Note that, by (5.4);

B(t) =
∫ t

[t]
β(s)ds. (5.7)

Assume now that there exists a sequence {tk} in IR such that |B(tk)| →
+∞. Then, |tk| → +∞ since B is continuous. On the other hand, by (5.7),
there exists σk ∈ [[tk], tk] such that

B(tk) = (tk − [tk])β(σk) (5.8)

and hence |β(σk)| → +∞ as k → +∞, since 0 ≤ tk − [tk] ≤ sup{τn+1 − τn :
n ∈ ZZ} < +∞. But β(t) ≤ M for all t ∈ IR, and so, β(σk) → −∞ as
k → +∞. From this and (5.8),

B(tk) → −∞ as k → +∞ (5.9)

Given t ∈ IR we write (t) = τn+1, if [t] = τn. Since
∫ (t)
[t] β(s)ds = 0 and

(5.7) holds, we have

B(t) = −
∫ (t)

t
β(s)ds

and hence B(tk) = −((tk) − tk)β(sk) for some sk ∈ [tk, (tk)]. By (5.9),

β(sk) → +∞ since {(tk) − tk} is bounded. This contradicts the fact that
β ≤ M and the proof is complete.

6 Average concepts

In this section we show assumptions (2.2) and (2.5) can be seen as a sort of
average restrictions.
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Given a bounded continuous function h : IR → IR, we define the upper
(resp. lower) average of h, denoted D(h) (resp. D(h)) as the infimum (resp.
supremum) of all real numbers λ such that (see [2]),

h(t) ≤ λ + B′(t) (resp. h(t) ≥ λ + B′(t) (6.1)

for some bounded continuously differentiable function B : IR → IR.
Obviously, D(h) ≤ sup(h) (resp. inf(h) ≤ D(h)), since (6.1) is valid for

λ = sup(h) (resp. λ = inf(h)) and B ≡ 0.

Proposition 6.1 D(h) ≤ D(h).

Proof. Suppose that the result is false and fix ε > 0 such that

µ := D(h)−D(h)− 2ε > 0.

Now, fix bounded continuously differentiable functions A,B : IR → IR
such that

D(h)− ε + A′(t) ≤ h(t) ≤ B′(t) + D(h) + ε

then, B′(t) ≥ µ + A′(t) and hence, B is not bounded. This contradiction
ends the proof.

We remark that condition (2.2) implies D(F (·, R)) ≤ 0, and condition
(2.5) implies D(F (·, δ)) ≥ 0. Using the inequalities (5.3), (5.4), (5.5), we

define

C(h) = inf
τ∈J

sup
n∈ZZ

1
τ(n + 1)− τ(n)

∫ τ(n+1)

τn

h(s)ds

C(h) = sup
τ∈J

inf
n∈ZZ

1
τ(n + 1)− τ(n)

∫ τ(n+1)

τn

h(s)ds

B(h) = inf
T>0

sup
t∈IR

1
T

∫ t+T

t
h(s)ds

B(h) = sup
T>0

inf
t∈IR

1
T

∫ t+T

t
h(s)ds.

It is easy to show that
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C(h) ≤ B(h) and C(h) ≥ B(h).

Note also that by lemma 5.5,

D(h) ≤ C(h) and D(h) ≥ C(h).

From this,

A(h) ≤ B(h) ≤ C(h) ≤ D(h) ≤ D(h) ≤ C(h) ≤ B(h) ≤ A(h)

where A(h) and A(h) were defined by,

A(h) = lim
T→+∞

inf
t−s≥T

1
t− s

∫ t

s
h(σ)dσ

A(h) = lim
T→+∞

sup
t−s≥T

1
t− s

∫ t

s
h(σ)dσ.

These definitions were used in [7] to establish the existence of coexistence
states for non-autonomous competitions systems of Lotka-Volterra type and

for to generalize in [8] to the periodic case a well case known work of Mottoni
and Schiaffino [3] concerning periodic systems for species in competition.
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