Globally Stable Kolmogorov Systems

Antonio Tineo¹ and Manuel Gámez²

¹Departamento de Matemáticas, Facultad de Ciencias, Universidad de los Andes, Merida. Venezuela

²Departamento de Estadística y Matemática Aplicada. Universidad de Almería. España

AbstractIn this paper, we consider a biological community consisting of p competing subcommunities, such that each subcommunity, in isolation, behaves as a cooperative system. Assuming that the Jacobian matrix is "uniformly stable", we prove that our system is globally asymptotically stable. We also prove a result about persistence, if each subcommunity is globally asymptotically stable. Finally, for p=2, we use a comparison result by H. L. Smith to prove the existence of a coexistence state.

1 Introduction

In this paper, we study the periodic Kolmogorov system

$$x_i' = x_i f_i(t, x_1, \dots, x_n); \ 1 \le i \le n;$$
 (1.1)

where $f = (f_1, \dots, f_n) : \mathbb{R} \times \mathbb{R}^n_+ \to \mathbb{R}^n$ is a continuous function such that f(t, x) is T-periodic in t and has partial derivative $f_x(t, x)$, defined and continuous in $\mathbb{R} \times \mathbb{R}^n_+$.

We shall assume that there exists a "decomposition" I_1, \dots, I_p of $I := \{1, \dots, n\}$ such that,

$$\frac{\partial f_i}{\partial x_j} \ge 0 \text{ if } i \ne j \text{ and } (i,j) \in \bigcup_{\alpha=1}^p (I_\alpha \times I_\alpha)$$
 (1.2)

$$\frac{\partial f_i}{\partial x_j} \leq 0 \text{ if } (i,j) \in \bigcup_{\alpha \neq \beta} (I_\alpha \times I_\beta).$$

The case p=2, for autonomous systems, has been considered by several authors: [5], [6], [4], [10], [11], etc.

This paper was partially supported by CDCHT, Universidad de los Andes.

²⁰⁰⁰ Mathematics Subject Classification: Primary 34A37; 34B37; 34B18.; Secondary: 39A99 Keywords: Kolmogorov periodic systems, Jacobian matrix, Stability.