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Introduction

What are load disturbances?

Typically low frequency input signals which affect the output of

processes but that cannot be manipulated

Manipulated

Inputs
Outputs

Disturbances

Process
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Introduction

Most industrial processes are subject to disturbances and the

nature and origin of disturbances may vary depending on the

process and the operational environments.

Effective disturbance effect reduction is a key topic in process

control. In fact, disturbances together with process uncertainty,

are one of the reasons for feedback control.
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Introduction

Real plants at the Automatic Control research group in Almerı́a
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Introduction

Energy production with solar plants
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Introduction

Crop production in greenhouses
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Introduction

Photobioreactors to microalgae production

pHE

Data
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Control
unit

Co2 injection

T T

Pump

DOE

Mass flow

Air injection

Medium injection

Mass flow

Mass flow

pHE

pHE

pHE

Refrigerator

DOE Dissolved Oxygen element
pHE   pH element
TT Temperature transmiter
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Introduction

Motivation: feedback controller

r yu

d

C f b Pu

Pd

−1

ΣΣ
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Introduction

Motivation: feedback controller
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No reaction until there are discrepancies!
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Introduction

Motivation: feedforward compensator

r u y

d

ΣΣΣ C f b Pu

−1

−C f f Pd

C f f =
Pd

Pu

Y = (Pd − PuC f f )D
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Introduction

Motivation: feedforward compensator
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Feedforward control problem

Perfect compensation is seldom realizable:

Non-realizable delay inversion.

Right-half plan zeros.

Integrating poles.

Improper transfer functions.

Classical solution

Ignore the non-realizable part of the compensator and implement the

realizable one. In practice, static gain feedfoward compensators are

quite common.
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Introduction

Motivation: non-ideal feedforward compensator
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Introduction

Motivation: non-ideal feedforward compensator
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Introduction

Motivation: residual term

r u y

d

ΣΣΣ C f b Pu

−1

−C f f Pd

C f f =
Pd

Pu

Y = (Pd − PuC f f )D
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Introduction

Motivation
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(a) Open-loop response
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(b) Closed-loop response
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Introduction

Motivation

http://aer.ual.es/ilm/ http://fichas-interactivas.pearson.es/
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Introduction

Motivation

An interaction between feedforward and feedback controllers arises

y =
Pd − C f f Pu

1 + L
d =

Pd − C f f Pu

1 + C f bPu
d

Other design strategies are required!
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Introduction

Motivation

Surprisingly there are very few studies in literature (we starting the

project in 2010):

D. Seborg, T. Edgar, D. Mellichamp, Process Dynamics and Control,

Wiley, New York, 1989.

F. G. Shinskey, Process Control Systems. Application Design

Adjustment, McGraw-Hill, New York, 1996.

C. Brosilow, B. Joseph, Techniques of Model-Based Control,

Prentice-Hall, New Jersey, 2002.

A. Isaksson, M. Molander, P. Modn, T. Matsko, K. Starr, Low-Order

Feedforward Design Optimizing the Closed-Loop Response, Preprints,

Control Systems, 2008, Vancouver, Canada.
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Introduction

Objectives

1 Study and development of a control methodology to improve

disturbance compensation in industrial processes

2 Definition of nominal simple optimal tuning rules for designing

feedforward compensators

3 Development of a robust methodology to cope with both

reference tracking and disturbance rejection, using feedforward

control structures

4 Integration of the obtained nominal and robust feedforward tuning

rules into a general dead-time compensation solution

5 Propose performance indices for feedforward control
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Feedforward control problem

Feedforward control is an old topic in process control. In fact, its

first application dates from 1925, where a feedforward

compensator was used for drum level control of tanks connected

in series.

Many of the other early applications dealt with control of

distillation columns.

Since then, feedforward control has become a fundamental

control technique for the compensation of measurable

disturbances.

Nowadays, this mechanism is implemented in most distributed

control systems to improve the control performance.
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Feedforward control problem

The idea behind feedforward control from disturbances is to supply

control actions before the disturbance affects the process output:

r u y

d

ΣΣΣ C f b Pu

−1

−C f f Pd

C f f =
Pd

Pu
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Feedforward control problem

In industry, PID control is commonly used as feedback controller and

four structures of the feedforward compensator are widely considered:

C f b = κ f b

(

1 +
1

sτi
+ sτd

)

Static: C f f = κ f f

Static with delay: C f f = κ f f e−sL f f

Lead-lag: C f f = κ f f

1 + sβ f f

1 + sτf f

Lead-lag with delay: C f f = κ f f

1 + sβ f f

1 + sτf f
e−sL f f
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Feedforward control problem

Then, if we consider that process transfer functions are modeled as

first-order systems with time delay, i.e.

Pu =
κu

1 + τu
e−sλu , Pd =

κd

1 + sτd
e−sλd

The following feedforward compensator can be considered:

Static: C f f =
κd

κu

Static with delay: C f f =
κd

κu
e−s(λd−λu)

Lead-lag: C f f =
κd

κu

1 + sτu

1 + sτd

Lead-lag with delay: C f f =
κd

κu

1 + sτu

1 + sτd
e−s(λd−λu)
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Feedforward control problem

Lets consider the following example:

Pu(s) =
1

s + 1
e−s, Pd(s) =

1

2s + 1
e−2s

Static: C f f = 1

Static with delay: C f f = e−s

Lead-lag: C f f =
1 + s

1 + 2s

Lead-lag with delay: C f f =
1 + s

1 + 2s
e−s

C f b is a PI controller tuned using the AMIGO rule, κ f b = 0.25 and

τi = 2.0.
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Feedforward control problem
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Feedforward control problem

Motivation

Then, lets consider a delay inversion problem, i.e., λd < λu. Then, the

resulting feedforward compensators are given by:

C f f = K f f =
κd

κu

C f f =
κd

κu

τus + 1

τds + 1
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Feedforward control problem

Motivation

Example:

Pu(s) =
1

2s + 1
e−2s, Pd(s) =

1

s + 1
e−s

C f f = 1, C f f =
2s + 1

s + 1

The feedback controller is tuned using the AMIGO rule, which gives

the parameters κ f b = 0.32 and τi = 2.85.
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Feedforward control problem

Motivation
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(a) Open-loop response

 

 

0 5 10 15 20 25 30 35 40 45 50
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

t

u

 

 

0 5 10 15 20 25 30 35 40 45 50
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

t

y

(b) Closed-loop response

 

 

0 5 10 15 20 25 30 35 40 45 50
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

t

u

 

 

Static
Lead-Lag

Static
Lead-Lag

Without Feedforward
Static
Lead-Lag

Without Feedforward
Static
Lead-Lag
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Feedforward control problem

r u y

d

ΣΣΣ C f b Pu

−1

−C f f Pd

y =
Pd − C f f Pu

1 + L
d =

Pd − C f f Pu

1 + C f bPu
d
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Feedforward control problem

r u y

d

ΣΣΣ C f b Pu

−1

−C f f Pd

e =
r

1 + PuC f b
, e =

r + P∗
d (e

−λus − e−λds)d

1 + PuC f b
, Pd = P∗

d e−λd
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Feedforward tuning rules

Cases to be evaluated in this talk:

Non-realizable delay inversion.

Right-half plan zeros.

Integrating poles.
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Nominal feedforward design: non-realizable delay

Objective

To improve the final disturbance response of the closed-loop system

when delay inversion is not realizable (λu > λd)

Methodology

Adapt the open-loop tuning rules to closed-loop design

Obtain optimal open-loop tuning rules

Design a switching controller to improve the results
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Nominal feedforward design: non-realizable delay

Two approaches:

r u y

d

ΣΣΣ C f b Pu

−1

C f f Pd

r u y

d

ΣΣΣ C f b Pu

−1

C f fH Pd

Pk(s) =
κk

τks + 1
e−λks k ∈ [u, d] λu > λd

C f b(s) = κ f b
τis + 1

τis
C f f (s) = κ f f

β f f s + 1

τf f s + 1
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Nominal feedforward design: non-realizable delay

Delay inversion: open-loop compensation

replacements

d

yu
ΣPu−C f f

Pd

y = Pf f =
(

Pd − C f f Pu

)

d C f f =
κd

κu
· τus + 1

τds + 1
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Nominal feedforward design: non-realizable delay
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Nominal feedforward design: non-realizable delay

r u y

d

ΣΣΣ C f b Pu

−1

−C f f Pd

y = Pf f =
(

Pd − C f f Pu

)

d + u f bPu C f f =
κd

κu
· τus + 1

τds + 1
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Nominal feedforward design: non-realizable delay

Delay inversion: open-loop compensation
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41/244 José Luis Guzmán Sánchez Advances in Feedforward Control



Nominal feedforward design: non-realizable delay

First approach

To deal with the non-realizable delay case, the first approach was to

work with the following:

Use the classical feedforward control scheme.

Remove the overshoot observed in the response.

Proposed a tuning rule to minimize Integral Absolute Error (IAE).

The rules should be simple and based on the feedback and

model parameters.
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Nominal feedforward design: non-realizable delay

To remove the overshoot, the feedback control action is taken into

account to calculate the feedforward gain, κ f f .

∆u =
κ f b

τi

∫

edt =
κ f b

τi
IE · d

So, in the new rule, the goal is to take the control signal to the correct

stationary level −∆u in order to take the feedback control signal into

account and reduce the overshoot. The gain is therefore reduced to

κ f f =
kd

ku
− κ f b

τi
IE

Closed-loop design
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Nominal feedforward design: non-realizable delay
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(b) Closed-loop response
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Nominal feedforward design: non-realizable delay

Delay inversion: open-loop compensation

d

yu
ΣPu−C f f

Pd

y = Pf f =
(

Pd − C f f Pu

)

d
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Nominal feedforward design: non-realizable delay
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Nominal feedforward design: non-realizable delay

IE estimation:

Y = (Pd − PuC f f )D = PdD − PuC f f D

y(t)− ysp =











kd

(

1 − e
− t

τd

)

d 0 ≤ t ≤ λb

kd

(

(

1 − e
− t

τd

)

−
(

1 − e
− t−λb

Tb

))

d λb < t

λb = max(0, λu − λd), Tb = τu + τf f − β f f
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Nominal feedforward design: non-realizable delay

IE estimation:

IE · d =
∫ ∞

0
(y(t)− ysp)dt

= kd

∫ λb

0

(

1 − e
− t

τd

)

d dt + kd

∫ ∞

λb

(

−e
− t

τd + e
− t−λb

Tb

)

d dt

= kd

[

t + τde
− t

τd

]λb

0
d + kd

[

τde
− t

τd − Tbe
− t−λb

Tb

]∞

λb

d

= kd

(

λb + τde
− λb

τd − τd − τde
− λb

τd + Tb

)

d

= kd (λb − τd + Tb) d
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Nominal feedforward design: non-realizable delay

IE estimation:

IE =

{

kd(τu − τd + τf f − β f f ) λd ≥ λu

kd(λu − λd + τu − τd + τf f − β f f ) λd < λu

κ f f =
kd

ku
− κ f b

τi
IE
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Nominal feedforward design: non-realizable delay

Lets consider the same previous example:

Pu(s) =
1

2s + 1
e−2s, Pd(s) =

1

s + 1
e−s

C f f = 1, C f f =
2s + 1

s + 1

The feedback controller is tuned using the AMIGO rule, which gives

the parameters κ f b = 0.32 and τi = 2.85.
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Nominal feedforward design: non-realizable delay
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The feedforward gain κ f f has been reduced from 1 to 0.778 for the

static feedforward and from 1 to 0.889 for the lead-lag filter.
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Nominal feedforward design: non-realizable delay

Once the overshoot is reduced, the second goal is to design β f f and

τf f to minimize the IAE value. In this way, we keep β f f = τu to cancel

the pole of Pu and fix the pole of the compensator:

IAE =
∫ ∞

0
|y(t)|dt =

∫ t0

0
y(t)dt −

∫ ∞

t0

y(t)dt

where t0 is the time when y crosses the setpoint, with ysp = 0 and

d = 1.
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Nominal feedforward design: non-realizable delay

y(t)− ysp =











kd

(

1 − e
− t

τd

)

d 0 ≤ t ≤ λb

kd

(

(

1 − e
− t

τd

)

−
(

1 − e
− t−λb

Tb

))

d λb < t

IAE =
∫ ∞

0
|y(t)|dt =

∫ t0

0
y(t)dt −

∫ ∞

t0

y(t)dt

t0

τd
=

t0 − λb

Tb
→ t0 =

τdλb

τd − Tb
=

τd

τu − τf f
λb

Tb = τu + τf f − β f f
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Nominal feedforward design: non-realizable delay

IAE =
∫ λb

0

(

1 − e
− t

τd

)

dt +
∫ t0

λb

(

−e
− t

τd + e
− t−λb

Tb

)

dt −
∫ ∞

t0

(

−e
− t

τd + e
− t−λb

Tb

)

dt

=

[

t + τde
− t

τd

]λb

0

+

[

τde
− t

τd − Tbe
− t−λb

Tb

]t0

λb

−
[

τde
− t

τd − Tbe
− t−λb

Tb

]∞

t0

= λb − τd + Tb + 2τde
− t0

τd − 2Tbe
− t0−λb

Tb

= λb − τd + Tb + 2τde
− λb

τd−Tb − 2Tbe
− λb

τd−Tb

= λb − τ

(

1 − 2e−
λb
τ

)

with τ = τd − τf f .
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Nominal feedforward design: non-realizable delay

d

dτ
IAE = −1 + 2e−

λb
τ + 2

λb

τ
e−

λb
τ = −1 + 2(1 + x)e−x = 0

where x = λb/τ. A numerical solution of this equation gives x ≈ 1.7,

which gives

τf f = Tb − τd + τu = τd − τ ≈ τd −
λb

1.7

τf f =











τu λu − λd ≤ 0

τd −
λu − λd

1.7
0 < λu − λd < 1.7τd

0 λu − λd > 1.7τd
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Nominal feedforward design: non-realizable delay

Gain and τf f reduction rule:
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Nominal feedforward design: non-realizable delay

Gain and τf f reduction rule:
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IAE 9.03 1.76 1.37 0.59

56/244 José Luis Guzmán Sánchez Advances in Feedforward Control



Nominal feedforward design: non-realizable delay

First approach: Guideline summary

1 Set β f f = τu and calculate τf f as:

τf f =











τu λu − λd ≤ 0

τd −
λu − λd

1.7
0 < λu − λd < 1.7τd

0 λu − λd > 1.7τd

2 Calculate the compensator gain, κ f f , as

κ f f =
kd

ku
− κ f b

τi
IE

IE =

{

kd(τd + τf f ) λd ≥ λu

kd(λu − λd − τd + τf f ) λd < λu
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Nominal feedforward design: non-realizable delay

Second approach

To deal with the non-realizable delay case, the second approach was

to work with the following:

Use the non-interacting feedforward control scheme (feedback

effect removed).

Obtain a generalized tuning rule for τf f for moderate, aggressive

and conservative responses.

The rules should be simple and based on the feedback and

model parameters.
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Nominal feedforward design: non-realizable delay

Second approach: non-interacting structure

r u y

d

ΣΣΣ C f b Pu

−1

C f fH Pd

y =
Pf f + LH

1 + L
d =

(

Pf f ǫ + Hη
)

d H = Pf f = Pd − C f f Pu

C. Brosilow and B. Joseph. Techniques of model-based control. Prentice Hall,

New Jersey, 2012.

59/244 José Luis Guzmán Sánchez Advances in Feedforward Control



Nominal feedforward design: non-realizable delay

Second approach: non-interacting structure

r u y

d

ΣΣΣ C f b Pu

−1

C f fH Pd

y =
Pf f + LH

1 + L
d =

(

Pf f ǫ + Hη
)

d H = Pf f = Pd − C f f Pu

C. Brosilow and B. Joseph. Techniques of model-based control. Prentice Hall,

New Jersey, 2012.
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Feedforward control problem

r u y

d

ΣΣΣ C f b Pu

−1

−C f f Pd

e =
r

1 + PuC f b
, e =

r + P∗
d (e

−λus − e−λds)d

1 + PuC f b
, Pd = P∗

d e−λd
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Nominal feedforward design: non-realizable delay

Second approach: non-interacting structure

r u y

d

ΣΣΣ C f b Pu

−1

C f fH Pd

e =
r + (H − Pd + PuC f f )d

1 + PuC f b
, H = Pf f = Pd − PuC f f
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Nominal feedforward design: non-realizable delay

Second approach

The main idea of this second approach relies on analyzing the residual

term appearing when perfect cancelation is not possible:

y

d
= Pd − PuC f f = Pd − Pf f , Pf f = PuC f f

y

d
=

kd

τds + 1
e−λds − kd

τf f s + 1
e−λus
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Nominal feedforward design: non-realizable delay
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τf f s + 1
e−λus
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Nominal feedforward design: non-realizable delay

From the previous analysis, it can be concluded that in order to totally

remove the overshoot for the disturbance rejection problem by using a

lead-lag filter, the settling times of both transfer functions must be the

same:

y

d
=

kd

τds + 1
e−λds − kd

τf f s + 1
e−λus

τf f =
4τd + λd − λu

4
= τd −

λb

4
, λb = λd − λu
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Nominal feedforward design: non-realizable delay

Notice that the new rule for τf f implies a natural limit on performance.

If parameter τf f is chosen larger, performance will only get worse

because of a late compensation. The only reasons why τf f should be

even larger is to decrease the control signal peak:

τf f = τd −
λb

4
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Nominal feedforward design: non-realizable delay

So, considering the IAE rule obtained for the first approach, two tuning

rules are available:

τf f =
4τd + λd − λu

4
= τd −

λb

4

τf f = τd −
λu − λd

1.7
= τd −

λb

1.7

And a third one (a more agreessive rule) can be calculated to minimize

Integral Squared Error (ISE) instead of IAE such as proposed in the

first approach.
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Nominal feedforward design: non-realizable delay

ISE minimization:

ISE =
∫ ∞

λb

(

e
− (t−λb)

τf f − e
− t

τd

)2

dt

=
∫ ∞

λb

(

e
− 2(t−λb)

τf f − 2e
−

τd(t−λb)+τf f t

τd τf f + e
− 2t

τd

)

dt

=−
τf f

2

[

e
− 2(t−λb)

τf f

]∞

λb

+ 2
τdτf f

τd + τf f

[

e
−

τd(t−λb)+τf f t

τdτf f

]∞

λb

− τd

2

[

e
− 2t

τd

]∞

λb

=
τf f

2
− 2τd

τf f

τd + τf f
e
− λb

τd +
τd

2
e
− 2λb

τd
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Nominal feedforward design: non-realizable delay

ISE minimization:

d ISE

d τf f
=

1

2
− 2τde

− λb
τd

(

1

τd + τf f
+

−τf f

(τd + τf f )2

)

=
1

2
− 2τ2

d

(τd + τf f )2
e
− λb

τd = 0

τ2
f f + 2τdτf f + τ2

d (1 − 4e
− λb

τd ) = 0

τf f =
−2τd +

√

4τ2
d − 4τ2

d (1 − 4e
− λb

τd )

2
= τd

(

2

√

e
− λb

τd − 1

)
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Nominal feedforward design: non-realizable delay

Thus, three tuning rules are available:

τf f = τd −
λb

4

τf f = τd −
λb

1.7

τf f = τd

(

2

√

e
− λb

τd − 1

)

which can be generalized as:

τf f = τd −
λb

α
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Nominal feedforward design: non-realizable delay

Second approach: Guideline summary

1 Set β f f = τu, κ f f = kd/ku and calculate τf f as:

τf f =







τd λb ≤ 0

τd − λb
α 0 < λb < 4τd

0 λb ≥ 4τd

2 Determine τf f with λb/τd < α < ∞ using:

α =























λb

2τd

(

1−
√

e−λb/τd

) aggressive (ISE minimization)

1.7 moderate (IAE minimization)

4 conservative (Overshoot removal)
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Nominal feedforward design: non-realizable delay

Example:

Pu(s) =
0.5

5s + 1
e−2.25s, Pd(s) =

1

2s + 1
e−0.75s

The feedback controller is tuned using the AMIGO rule, which gives

the parameters κ f b = 0.9 and τi = 4.53.
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Nominal feedforward design: non-realizable delay
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72/244 José Luis Guzmán Sánchez Advances in Feedforward Control



Nominal feedforward design: non-realizable delay

ISE IAE uinit J1 J2

Hast and Hägglund 0.0739 0.6423 38.7800 2.5710 0.8979

ISE Minimization 0.0896 0.6021 8.0090 0.9993 0.8615

IAE Minimization 0.0975 0.5641 5.3680 0.9113 0.8315

Overshoot Removal 0.1277 0.6833 3.6920 0.9323 0.8870

J1(F, B) =
1

2

(

ISE(F)

ISE(B)
+

ISC(F)

ISC(B)

)

, ISC =
∫ ∞

0
u(t)2 dt

J2(F, B) =
1

2

(

IAE(F)

IAE(B)
+

IAC(F)

IAC(B)

)

, IAC =
∫ ∞

0
|u(t)|dt
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Nominal feedforward design: non-realizable delay

Second approach: A switching solution

It is clear that if the compensation is made too fast, the output will

suffer a bigger overshoot error, while if it is too slow, the compensator

will take too much time to reject the disturbance and it will have a

bigger residual error. Therefore, a switching rule can be proposed in

such a way that the feedforward compensator reacts fast before the

outputs cross in order to decrease the residual error, and slower after

this time to avoid the overshoot because of the residual error.
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Nominal feedforward design: non-realizable delay

Second approach: A switching solution
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Nominal feedforward design: non-realizable delay

Second approach: A switching solution
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Nominal feedforward design: non-realizable delay

Second approach: A switching solution
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Nominal feedforward design: non-realizable delay

Second approach: A switching solution

The idea is to set τf f to a small value until the time when the

responses of both transfer functions cross. After this time, the new

value of τf f will be τd. Once the load disturbance is rejected, τf f will

be set again to the small initial value in order to be ready for new

coming disturbances.
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Nominal feedforward design: non-realizable delay

Second approach: A switching solution

Thus, the first step is to calculate the time it takes since a step change

in d appears at time instant td until the outputs of both transfer

functions cross. This time, tcross, corresponds to the point when the

step responses of Pf f and Pd are equal:

κdd

(

e
−(tcross−td−λd)

τd − e
−(tcross−td−λu)

τf f

)

= 0

where it is straightforward to see that:

tcross =
τdλu − τf f λd

τd − τf f
+ td
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Nominal feedforward design: non-realizable delay

Second approach: A switching solution

On the other hand, notice that the time event of the switching rule is

really given at tchange = tcross − λu.

Once the disturbance has been rejected, the feedforward switching

controller should return to its original value in order to be ready for

possible new coming load disturbances. This change must be done at

a time instant, tr, which can be proposed as the settling time of

process Pd such as follows:

tr = 4τd + λd + td

Thus, τf f should be equal to τd when td + tcross − λu ≤ t ≤ td + tr

and it must be tuned for a faster response otherwise, specially for

t < tchange.
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controller should return to its original value in order to be ready for

possible new coming load disturbances. This change must be done at

a time instant, tr, which can be proposed as the settling time of

process Pd such as follows:

tr = 4τd + λd + td

Thus, τf f should be equal to τd when td + tcross − λu ≤ t ≤ td + tr

and it must be tuned for a faster response otherwise, specially for

t < tchange.
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Nominal feedforward design: non-realizable delay
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Nominal feedforward design: non-realizable delay

Second approach: the switching solution guideline

1 Set τf f to a value as close to 0 as possible (tradeoff with the

control signal peak).

2 Wait until a step load disturbance is detected at time instant td.

Define tcross and trestore. Set tchange = tcross − λu.

3 Using a non-interacting scheme, set C f f and H as follows:

C f f (s) =























κd

κu

1 + τus

1 + τds
tchange ≤ t ≤ tr

κd

κu

1 + τus

1 + τf f s
otherwise

4 Go to step 2.
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Nominal feedforward design: non-realizable delay
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Nominal feedforward design: non-realizable delay

ISE IAE uinit J1 J2

ISE Minimization 0.0896 0.6021 8.0090 0.9993 0.8615

IAE Minimization 0.0975 0.5641 5.3680 0.9113 0.8315

Switching 0.0889 0.4252 6.2160 0.9062 0.7527
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Nominal feedforward design: non-realizable delay
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Feedforward tuning rules: RH plane zeros

Right-half plane zeros

Pu(s) =
ku (−βus + 1)

D−
u (s)

e−λus βu > 0

Pd(s) =
kd

D−
d (s)

e−λds

such that D−
u (s) = 1 + ∑

nu
i=1 au[i]si and D−

d (s) = 1 + ∑
nd

i=1 ad[i]s
i

are polynomials with nu and nd degree, respectively, such that all their

roots are located in the LHP (left-half plane). Moreover, λu ≤ λd.
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Feedforward tuning rules: RH plane zeros

Objective

To improve the final disturbance response of the closed-loop system

when there are righ-half plane zeros in Pu

Methodology

Decouple both reference tracking and disturbance rejection

responses

Shape the nominal disturbance rejection response as a critically

damped system

Obtain simple tuning rules for the time constant of the response
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Feedforward tuning rules: RH plane zeros

r u y

d

ΣΣΣ C f b Pu

−1

C f fH Pd

H(s) = Pd(s)− Pu(s)C f f (s)
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Feedforward tuning rules: RH plane zeros

y(s)

d(s)
= e−λds

(

kd

D−
d (s)

− C f f (s)
ku (−βus + 1)

D−
u (s)

e−(λu−λd)s

)

C f f (s) =
kd

κu
· D−

u (s)

D−
d (s)

·

(

1 + ∑
m f f

i=1 β f f [i]s
i
)

(

τf f s + 1
)n f f

e−(λd−λu)s

y(s)

d(s)
=

kde−λds

D−
d (s)



1 −

(

1 + ∑
m f f

i=1 β f f [i]s
i
)

(−βus + 1)
(

τf f s + 1
)n f f
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Feedforward tuning rules: RH plane zeros
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Feedforward tuning rules: RH plane zeros

y(s)
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Feedforward tuning rules: RH plane zeros

By using the binomial theorem, the previous expression results in:

y(s)

d(s)
=

kdP0s
(

τf f s + 1
)nu

· P(s)

D−
d (s)

e−λds

with

P(s) = P−1
0

(

βu

nd

∑
i=1

β f f [i]s
i −

nd−1

∑
i=1

β f f [i + 1]si+

+
nu−1

∑
i=1

nu!

(i + 1)! (nu − i − 1)!
τi+1

f f si

)

+ 1

P0 = nuτf f + βu − β f f [1]
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Feedforward tuning rules: RH plane zeros

After solving β f f [i] coefficients and cancelling D−
d (s), it is obtained

that

Gd(s) =
y(s)

d(s)
=

κy/ds
(

τf f s + 1
)nu

e−λds

with

κy/d = kd

β
nd−nu+1
u

(

βu + τf f

)nu

β
nd
u + ∑

nd

l=1 ad[l]β
nd−l
u

And where the unitary step response is given by

y(t) =
κy/d (t − λd)

nu−1

τnu

f f (nu − 1)!
e
− (t−λd)

τf f
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Feedforward tuning rules: RH plane zeros

After solving β f f [i] coefficients and cancelling D−
d (s), it is obtained

that
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Feedforward tuning rules: RH plane zeros

Three different tuning rules are proposed for τf f looking for

Obtaining a desired settling time.

Minimize the H∞ norm.

Minimize the H2 norm.
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Feedforward tuning rules: RH plane zeros

Settling time rule

y(t) =
κy/d (t − λd)

nu−1

τnu

f f (nu − 1)!
e
− (t−λd)

τf f

The settling time is defined as the time that the system takes to reach

around 5% of its maximum value

y(t5%) = 0.05Mpeak

dy(t)

dt
= 0 ⇒ tpeak ⇒ Mpeak ⇒ t5%
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Feedforward tuning rules: RH plane zeros

Settling time rule

dy(t)

dt
=

κy/de
− (t−λd)

τf f

(nu − 1)!τn
f f

(

(nu − 1) (t − λd)
nu−2 − (t − λd)

nu−1

τf f

)

e
− (

tpeak−λd)
τf f

(

tpeak − λd

)nu−2 (
τf f (nu − 1)−

(

tpeak − λd

))

= 0

tpeak = λd + τf f (nu − 1) .
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Feedforward tuning rules: RH plane zeros

Settling time rule

Thus, the maximum peak Mpeak is given by

Mpeak = y(tpeak) =
κy/d

τf f
· e1−nu (nu − 1)nu−1

(nu − 1)!
.

If this expression is used in

y(t5%) = 0.05Mpeak

with t = t5%, the following equation is obtained

κy/d (t5% − λd)
nu−1

τnu

f f (nu − 1)!
e
− t5%−λd

τf f = 0.05
κy/d

τf f
· e1−nu (nu − 1)nu−1

(nu − 1)!
.
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Feedforward tuning rules: RH plane zeros

Settling time rule

t5% = λd + xτf f , 0.05 − xnu−1

(nu − 1)nu−1
e−x+nu−1 = 0

τf f =
(t5% − λd)

x

For nu = 1, the following solution is obtained

τf f ≈
t5%−λd

3
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Feedforward tuning rules: RH plane zeros

Settling time rule: Example

Pu(s) =
−0.8s + 1

s2 + s + 1
, Pd(s) =

0.45

0.75s + 1

C f f (s) = 0.45
s2 + s + 1

0.75s + 1
· β f f [1]s + 1
(

τf f s + 1
)2

To cancel the stable pole of Pd(s), it is necessary to set

β f f [1] = −0.6452τ2
f f + 0.9677τf f + 0.3871

Then, τf f is selected according to the desired settling time

τf f ≈
t5%

5.74
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Feedforward tuning rules: RH plane zeros
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Feedforward tuning rules: RH plane zeros

Feedforward controller β f f [1] τf f

t5% = 4 0.75 0.70

t5% = 3 0.72 0.52

t5% = 2 0.65 0.35
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Feedforward tuning rules: RH plane zeros

H∞-norm rule

y(t) =
κy/d (t − λd)

nu−1

τnu

f f (nu − 1)!
e
− (t−λd)

τf f

An H∞ optimal feedforward compensator to minimize the maximum

value of the disturbance response can be found by minimizing the

absolute value of the maximum peak:

d ‖y(t)‖∞

dτf f
=

d|Mpeak|
dτf f

= 0
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Feedforward tuning rules: RH plane zeros

H∞-norm rule

d ‖y(t)‖∞

dτf f
= c1

(

nu

(

βu + τf f

)nu−1

τf f
−
(

βu + τf f

)nu

τ2
f f

)

c1 =
|κd| β

nd−nu+1
u (nu − 1)nu−1

(

β
nd
u + ∑

nd

l=1 ad[l]β
nd−l
u

)

(nu − 1)!
.

(

βu + τf f

)nu−1 (
nuτf f −

(

βu + τf f

))

= 0 ⇒ τf f =
βu

nu − 1
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Feedforward tuning rules: RH plane zeros

H∞-norm rule

d ‖y(t)‖∞

dτf f
= c1

(

nu

(

βu + τf f

)nu−1

τf f
−
(

βu + τf f

)nu

τ2
f f

)

c1 =
|κd| β

nd−nu+1
u (nu − 1)nu−1

(

β
nd
u + ∑

nd

l=1 ad[l]β
nd−l
u

)

(nu − 1)!
.

(

βu + τf f

)nu−1 (
nuτf f −

(

βu + τf f

))

= 0 ⇒ τf f =
βu

nu − 1
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Feedforward tuning rules: RH plane zeros

H∞-norm rule

d ‖y(t)‖∞

dτf f
= c1

(

nu

(

βu + τf f

)nu−1

τf f
−
(

βu + τf f

)nu

τ2
f f

)

c1 =
|κd| β

nd−nu+1
u (nu − 1)nu−1

(

β
nd
u + ∑

nd

l=1 ad[l]β
nd−l
u

)

(nu − 1)!
.

(

βu + τf f

)nu−1 (
nuτf f −

(

βu + τf f

))

= 0 ⇒ τf f =
βu

nu − 1
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Feedforward tuning rules: RH plane zeros

H2-norm rule

y(t) =
κy/d (t − λd)

nu−1

τnu

f f (nu − 1)!
e
− (t−λd)

τf f

An H2 optimal feedforward compensator of the disturbance response

can be found by minimizing the absolute value of the output:

d ‖y(t)‖2

dτf f
= 0
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Feedforward tuning rules: RH plane zeros

H2-norm rule

‖y(t)‖2 =





∫ ∞

λd

∣

∣

∣

∣

∣

κy/d (t − λd)
nu−1

τnu
f f (nu − 1)!

e
− (t−λd)

τf f

∣

∣

∣

∣

∣

2

dt





1
2

=

∣

∣κy/d

∣

∣

τnu
f f (nu − 1)!

(

∫ ∞

0
ξ2(nu−1)e

− 2ξ
τf f dξ

) 1
2

=

∣

∣κy/d

∣

∣

τnu
f f (nu − 1)!









− (2 (nu − 1))!τ2nu−1
f f

22nu−1
e
− 2ξ

τf f

2(nu−1)

∑
i=1

τ
2(nu−1)−i
f f

22(nu−1)−i
ξ i





∞

0





1
2

τ−1.5
f f

(

βu + τf f

)nu−1 (
nuτf f − 0.5

(

βu + τf f

))

= 0 ⇒ τf f =
βu

2nu − 1
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Feedforward tuning rules: RH plane zeros

H2-norm rule

‖y(t)‖2 =





∫ ∞

λd

∣

∣

∣

∣

∣

κy/d (t − λd)
nu−1

τnu
f f (nu − 1)!

e
− (t−λd)

τf f

∣

∣

∣

∣

∣

2

dt





1
2

=

∣

∣κy/d

∣

∣

τnu
f f (nu − 1)!

(

∫ ∞

0
ξ2(nu−1)e

− 2ξ
τf f dξ

) 1
2

=

∣

∣κy/d

∣

∣

τnu
f f (nu − 1)!









− (2 (nu − 1))!τ2nu−1
f f

22nu−1
e
− 2ξ

τf f

2(nu−1)

∑
i=1

τ
2(nu−1)−i
f f

22(nu−1)−i
ξ i





∞

0





1
2

τ−1.5
f f

(

βu + τf f

)nu−1 (
nuτf f − 0.5

(

βu + τf f

))

= 0 ⇒ τf f =
βu

2nu − 1
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Feedforward tuning rules: RH plane zeros

H2-norm rule

‖y(t)‖2 =





∫ ∞
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∣

∣
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∣

∣

∣

2

dt





1
2

=

∣

∣κy/d

∣

∣
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∣
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∣

∣
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∑
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∞
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Feedforward tuning rules: RH plane zeros

H∞ and H2 rules: Example

Pu(s) =
−s + 1

(0.25s + 1)4
, Pd(s) =

0.85

(0.9s + 1)3

C f f (s) = 0.85
(0.25s + 1)4

(0.9s + 1)3
· 1 + ∑

3
i=1 β f f [i]s

i

(

τf f s + 1
)4

Feedforward controller β f f [1] β f f [2] β f f [3] τf f

H2 1.32 0.77 0.18 0.14

H∞ 1.87 1.30 0.32 0.33
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Feedforward tuning rules: RH plane zeros
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Feedforward tuning rules: RH plane zeros

Feedforward controller ‖y(t)‖1 ‖y(t)‖2 ‖y(t)‖∞

Gain 80.47 3.85 0.33
Lead-lag 51.51 2.39 0.16

H2 12.68 1.33 0.20
H∞ 23.50 1.61 0.16
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Feedforward tuning rules: RH plane zeros

1 Set τf f according to the desired specification:

Settling time : τf f = (t5% − λd) /x

H∞ : τf f =
βu

nu − 1

H2 : τf f =
βu

2nu − 1
.

2 Obtain the coefficients β f f [i] to cancel D−
d (s).

3 Define the feedforward compensator F(s) as

F(s) =
kd

ku
· D−

u (s)

D−
d (s)

·

(

1 + ∑
m f f

i=1 β f f [i]s
i
)

(

τf f s + 1
)n f f

e−(λd−λu)s

4 Set H(s) = Pf f (s) = Pd(s)− C f f (s)Pu(s).
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Feedforward tuning rules: integrators

Integrating poles

Pu(s) =
ku

Du(s)stu

Pd(s) =
kd

D−
d (s)

such that Du(s) = 1 + ∑
nu
i=1 au[i]si is a polynomial of degree nu and

D−
d (s) = 1 + ∑

nd

i=1 ad[i]s
i is a polynomial of degree nd with all its

roots in the left half plane (LHP), and tu is the type of process Pu(s).
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Nominal feedforward design: integrators

Objective

To improve the final disturbance response of the closed-loop system

when there are integrating poles in Pu

Methodology

Decouple both reference tracking and disturbance rejection

responses

Shape the nominal disturbance rejection response as a critically

damped system

Obtain simple tuning rules for the time constant of the response
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Feedforward tuning rules: integrators

r u y

d

ΣΣΣ C f b Pu

−1

C f f Pd
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Feedforward tuning rules: integrators

In this case, the feedback controller will be defined as follows

C f b(s) = κ f b

N f b(s)

D f b(s)s
t f b

such that t f b is the type of C f b(s).

And the reference tracking response can be expressed as

y(s)

r(s)
=

N f b(s)

Dcl(s)

where Dcl(s) is a polynomial of degree ncl that represents the

closed-loop system dynamics.
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Feedforward tuning rules: integrators

y(s)

d(s)
=

(

kd

D−
d (s)

− C f f (s)
ku

Du(s)
s−tu

)

Du(s)stu D f b(s)s
t f b

Dcl(s)

=

(

kddDu(s)stu

D−
d (s)

− C f f (s)ku

)

D f b(s)s
t f b

Dcl(s)

C f f (s) =
kd

ku

1

D f b(s)D−
d (s)

1 + ∑
m f f

i=1 β f f [i]s
i

(

τf f s + 1
)n f f
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Feedforward tuning rules: integrators

y(s)

d(s)
=

(

kd

D−
d (s)

− C f f (s)
ku

Du(s)
s−tu

)

Du(s)stu D f b(s)s
t f b

Dcl(s)

=

(

kddDu(s)stu

D−
d (s)

− C f f (s)ku

)

D f b(s)s
t f b

Dcl(s)

C f f (s) =
kd

ku

1

D f b(s)D−
d (s)

1 + ∑
m f f

i=1 β f f [i]s
i

(

τf f s + 1
)n f f
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Feedforward tuning rules: integrators

By substituting the proposed compensator in the disturbance rejection

response, it is obtained that

y(s)

d(s)
= Gy/d(s) =

−kddst f b

(

τf f s + 1
)n f f

P(s)

Dcl(s)D−
d (s)

with

P(s) = 1 +
m f f

∑
i=1

β f f [i]s
i −
(

τf f s + 1
)n f f D f b(s)Du(s)s

tu

The idea is to cancel all stable roots of Dcl(s) and D−
d (s) with β f f [i]

coefficients.
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Feedforward tuning rules: integrators

So, the resulting response will not present any undesired dynamics or

undershoot. This fact can be clearly observed by its consequent time

response against unitary step

y(t) =
−kdtn f f −1

τ
n f f

f f

(

n f f − 1
)

!
e
− t

τf f
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Feedforward tuning rules: integrators

Three different tuning rules are proposed for τf f looking for

Obtaining a desired settling time.

Optimal solution for a tradeoff between maximum peak and

settling time.
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Feedforward tuning rules: integrators

Settling time rule

y(t) =
−kdtn f f −1

τ
n f f

f f

(

n f f − 1
)

!
e
− t

τf f

The settling time is defined as the time that the system takes to reach

around 5% of its maximum value

y(t5%) = 0.05Mpeak

dy(t)

dt
= 0 ⇒ tpeak ⇒ Mpeak ⇒ t5%
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Feedforward tuning rules: integrators

Settling time rule

t5% =
x

τf f
, 0.05 − xn f f−1

(

n f f − 1
)n f f−1

e−x+n f f−1 = 0

τf f =
t5%

x

For nu = 1, the following solution is obtained

τf f ≈
t5%

3
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Feedforward tuning rules: integrators

Settling time rule: Example

Pu(s) =
1

s (0.25s + 1)

Pd(s) =
0.5

0.9s + 1

To obtain a reference tracking response with the closed-loop dynamics

given by Dcl(s) =
(

0.25s2 + 0.75s + 1
)2

, the feedback controller is

selected as a PID controller with a filter in the derivative term such that

C f b(s) = 2
0.56s2 + 1.5s + 1

s (0.5s + 1)
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Feedforward tuning rules: integrators

Settling time rule: Example

Then, the feedforward compensator is defined as

C f f (s) =
0.5

(0.025s + 1) (0.9s + 1) (0.5s + 1)

1 + ∑
6
i=1 β f f [i]s

i

(

τf f s + 1
)3

τf f = 0.13t5%

Feedforward controller β f f [1] β f f [2] β f f [3] β f f [4] β f f [5] β f f [6] τf f

t5% = 5 3.42 5.17 4.25 1.90 0.43 0.04 0.65

t5% = 4 3.42 4.78 3.50 1.38 0.27 0.02 0.52

t5% = 3 3.42 4.39 2.85 0.98 0.17 0.01 0.39
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Feedforward tuning rules: integrators

Settling time rule: Example
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Feedforward tuning rules: integrators

Settling time rule: Example

Feedforward controller ‖y(t)‖1 ‖y(t)‖2 uinit

Gain 18.57 1.16 −0.30
Lead-Lag 22.91 1.32 −0.08

t5% = 5 15.14 0.83 −3.47
t5% = 4 15.10 0.92 −3.60
t5% = 3 15.05 1.06 −3.96
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Feedforward tuning rules: integrators

Optimal tuning rule

A tradeoff arises from the fact that by making τf f small, the settling

time is reduced but the maximum peak is increased.

So, a cost function to find a tradeoff between settling time and

maximum peak can be proposed as follows

J = αt5% + (1 − α)
∣

∣Mpeak

∣

∣ α ∈ (0, 1)

where α is a weighting parameter.
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Feedforward tuning rules: integrators

Optimal tuning rule

Then, substituting Mpeak and t5% equations previously calculated in J,
when J is derivative with respect to τf f and is taken equal to zero

dJ

dτf f
= 0

the following solution is obtained

τf f =

√

√

√

√|kd|
(1 − α)

α

e1−n f f
(

n f f − 1
)n f f−1

x
(

n f f − 1
)

!

α can be easily used as a tuning parameter to find a desired tradeoff

between settling time and maximum peak values.
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Feedforward tuning rules: integrators

Optimal tuning rule: Example

Pu(s) =
1

s (s + 1)

Pd(s) =
0.75

(0.35s + 1)3

To obtain a reference tracking response with the closed-loop dynamics

given by Dcl(s) =
(

0.25s2 + 0.75s + 1
)2

, the feedback controller is

selected as a PID controller with a filter in the derivative term such that

C f b(s) = 3.2
0.75s2 + 1.5s + 1

s (0.2s + 1)
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Feedforward tuning rules: integrators

Optimal tuning rule: Example

Then, the feedforward compensator is defined as

C f f (s) =
0.75

(0.35s + 1)3 (0.2s + 1)

1 + ∑
7
i=1 β f f [i]s

i

(

τf f s + 1
)3

Feedforward β f f [1] β f f [2] β f f [3] β f f [4] β f f [5] β f f [6] β f f [7] τf f

α = 0.25 3.55 5.05 3.54 1.39 0.32 0.04 0.01 0.28

α = 0.10 3.55 5.67 4.75 2.17 0.53 0.06 0.01 0.49

α = 0.01 3.55 9.06 15.95 15.52 6.89 6.88 0.01 1.62
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Feedforward tuning rules: integrators

Optimal tuning rule: Example

0 5 10 15

-0.1

-0.05

0

0.05

time

p
ro

ce
ss

o
u
tp

u
t

 

 

Gain

Lead-Lag

α = 0.25
α = 0.10
α = 0.01

0 5 10 15
-7

-6

-5

-4

-3

-2

-1

0

1

time

co
n
tr

o
l
eff

o
rt

 

 

Gain

Lead-Lag

α = 0.25
α = 0.10
α = 0.01
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Feedforward tuning rules: integrators

Optimal tuning rule: Example

Feedforward controller ‖y(t)‖1 ‖y(t)‖2 uinit

Gain 23.35 1.40 −0.45
Lead-Lag 23.60 1.41 −0.43
α = 0.25 14.06 1.15 −6.31
α = 0.10 14.06 0.87 −1.21
α = 0.01 14.06 0.48 −0.03
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Feedforward tuning rules: integrators

1 Set τf f according to the desired specification:

Settling time : τf f = t5%/x

Optimal : tuning rule

2 Obtain the coefficients β f f [i] to cancel D−
d (s)Dcl(s).

3 Define the feedforward compensator as

C f f (s) =
kd

ku

1

D f b(s)D−
d (s)

1 + ∑
m f f

i=1 β f f [i]s
i

(

τf f s + 1
)n f f
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Robust disturbance compensation

Objective

To ensure a fast undershoot-free disturbance rejection even under the

presence of uncertainty

Methodology

Establish a robust disturbance rejection condition

Propose an optimization procedure

Suggest simple shapes for disturbance compensation
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Robust feedforward and feedback tuning

r u y

d

ΣΣΣ C f b Pu

−1

C f f Pd
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Robust feedforward and feedback tuning

Closed-loop relationships

y(s)

r(s)
=

L(s)

1 + L(s)
= η(s),

y(s)

d(s)
=

Pd(s)− C f f (s)Pu(s)

1 + L(s)
= Pf f (s)ε(s),

L(s) = C f b(s)Pu(s), Pf f (s) = Pd(s)− C f f (s)Pu(s)
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Robust feedforward and feedback tuning

Additive uncertainties are considered

Pk(s) = Pk(s) + ∆k(s) k ∈ [u, k]

Pu(jω) = Pu(jω) + ∆u(jω) ∀ω,

Pd(jω) = Pd(jω) + ∆d(jω) ∀ω,

|∆u(jω)| ≤ ∆max
u (ω) ∀ω,

|∆d(jω)| ≤ ∆max
d (ω) ∀ω,

where ∆max
u (ω) and ∆max

d (ω) are the additive norm-bound

uncertainties.
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Robust feedforward and feedback tuning

Robust closed-loop relationships

Gy/r =
y

r
=

L + ∆L

1 + L + ∆L

Gy/d =
y

d
=

P f f + ∆ f f

1 + L + ∆L

where

L(s) = C f b(s)Pu(s),

P f f (s) =
y f f (s)

d(s)
= Pd(s)− C f f (s)Pu(s),

∆L(s) = C f b(s)∆u(s),

∆ f f (s) = ∆d(s)− C f f (s)∆u(s).
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Robust feedforward and feedback tuning

Robust stability

The robust stability of the closed loop is determined by the robust

stability of the feedback control system and the stability of the

feedforward controller (as it acts on open loop).

The classical robust condition for a closed loop is obtained using

Nyquist stability criterion

∣

∣C f b(jω)ε(jω)
∣

∣∆max
u (ω) < 1 ∀ω,
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Robust feedforward and feedback tuning

Robust performance

It must be satisfied:

Robust reference tracking

Robust disturbance rejection
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Robust feedforward and feedback tuning

Robust performance: reference tracking

The problem for reference tracking remains the same as in a classical

feedback scheme:

|ε(jω)Wr(jω)|+
∣

∣C f b(jω)ε(jω)
∣

∣∆max
u (ω) < 1 ∀ω,

where Wr is a weighting function which determines the guaranteed

performance.
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Robust feedforward and feedback tuning

Robust performance: disturbance rejection

Robust disturbance rejection performance depends on both controllers

C f b(s) and C f f (s). A condition for robust disturbance rejection

performance can be expressed as

∣

∣

∣

∣

∣

P f f (jω) + ∆ f f (jω)

1 + L(jω) + ∆L(jω)

∣

∣

∣

∣

∣

− |Wd(jω)| < |Wd(jω)| ψ(ω) ∀ω

where Wd(jω) is a weight that defines the desired disturbance

rejection shape, and ψ(ω) is the tolerable degradation band over

Wd(jω).
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Robust feedforward and feedback tuning

Robust performance: disturbance rejection

So, a condition for robust disturbance rejection performance can be
expressed as
∣

∣

∣
P f f (jω)

∣

∣

∣
+ ∆max

d (ω) +
∣

∣

∣
C f f (jω)

∣

∣

∣
∆max

u (ω)
∣

∣1 + L(jω)
∣

∣−
∣

∣

∣C f b(jω)
∣

∣

∣∆max
u (ω)

|Wd(jω)|−1
< 1 + ψ(ω), ∀ω.

where Wd(jω) is a weight that defines the desired disturbance

rejection shape, and ψ(ω) is the tolerable degradation band over

Wd(jω).
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Robust feedforward and feedback tuning

Constrained optimization problem

min
C f b,C f f

max
ω

(

θrp(ω) + θdr(ω)
∣

∣

∣
W−1

d (s)
∣

∣

∣

)

subject to max
ω

θrp(ω) < 1

max
ω

θdr(ω) < 0

nominal stability

with

θrp(ω) = |ε(s)Wr(s)|+
∣

∣

∣
C f b(s)ε(s)

∣

∣

∣
∆max

u (ω)

θdr(ω) =

∣

∣

∣P f f (s)
∣

∣

∣+ ∆max
d (ω) +

∣

∣

∣C f f (s)
∣

∣

∣∆max
u (ω)

∣

∣1 + L(s)
∣

∣−
∣

∣

∣
C f b(s)

∣

∣

∣
∆max

u (ω)
|Wd(s)|−1 − (1 + ψ(ω)) .
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Robust feedforward and feedback tuning

Constrained optimization problem

Note that θdr(ω) is weighted by

∣

∣

∣
W−1

d (s)
∣

∣

∣
to scale the disturbance

rejection shaping error at all the frequency range.

To efficiently solve this optimization problem, the following steps are

executed:

1 Define the controllers structure. Both feedback and feedforward

controllers must satisfy realizability constraints.

2 Tune the optimization parameters. A shaping procedure in time

domain is proposed to determine the disturbance rejection

weight.

3 Choose an initial guess. Initial parameter values are chosen using

nominal conditions to guide the optimizer to a satisfying optimum.
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Robust feedforward and feedback tuning

Constrained optimization problem: controllers structure

The feedback controller is considered as

C f b(s) =
N f b(s)

D f b(s)

The feedforward compensator is defined as

C f f (s) = C
−
f f (s)C

′
f f (s)
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Robust feedforward and feedback tuning

Constrained optimization problem: controllers structure

The feedback controller is considered as

C f b(s) =
N f b(s)

D f b(s)

The feedforward compensator is defined as

C f f (s) = C
−
f f (s)C

′
f f (s)
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Robust feedforward and feedback tuning

Constrained optimization problem: optimization parameters

There are three parameters for the optimization problem: Wr(jω),
Wd(jω) and ψ(ω).

The reference tracking weight Wr(s) can be selected following

classical and well established recommendations that will not be

discussed here for the sake of simplicity. ε(s) is only a tolerance band

that can be constant if the same error is admitted in all frequencies or

can be defined as a function of ω to allow bigger errors in some

frequency ranges.

The disturbance weight is the most difficult parameter to tune.
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Robust feedforward and feedback tuning

Constrained optimization problem: optimization parameters

In this case, a weighting methodology for Wd(jω) in order to obtain an

overshoot-free response based on time-domain specifications is

proposed:

Wtd(s) =
ytd(s)

d(s)
=

κtds

(τtds + 1)ntd
e−λtds ntd ∈ N

+

where λtd = max(λu, λd) is a mandatory time delay, the zero at

s = 0 gives the desired zero static gain (used to reject step

disturbances) and κtd, τtd, ntd can be used to fix the other transient

specifications of the response.
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Robust feedforward and feedback tuning

Constrained optimization problem: optimization parameters

However, since the effect of a time delay λtd is not visible in the

magnitude component, a H2 optimization procedure is proposed in

time domain using the following expression

min
C′

f f

∥

∥

∥
y f f (t)− ytd(t)

∥

∥

∥

2
t0 ≤ t ≤ t f

where y f f (t) and ytd(t) are the step input responses for transfer

functions P f f (s) = y f f (s)/d(s) = Pd(s)− C′
f f (s)Pu(s) and

Wtd(s), respectively.
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Robust feedforward and feedback tuning

Constrained optimization problem: optimization parameters

min
C′

f f

∥

∥

∥y f f (t)− ytd(t)
∥

∥

∥

2
t0 ≤ t ≤ t f

The result of this procedure gives both, the optimal C′
f f (s) and the

consequent P f f (s). Therefore, P f f (s) can be used as an adequate

weight Wd(s) for the robust disturbance rejection response in the

optimization problem. Notice also that C′
f f (s) can be used as initial

condition in the optimization process.
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Robust feedforward and feedback tuning

Design for typical cases

Case A. Non-realizable delay inversion. This problem is

originated when λu > λd. The desired settling time t5% becomes

a time domain design specification.

Case B. Non-minimum phase zeros. The problem here is when

Pu(s) has RHP zeros. Settling time t5% or peak time tpeak, and

peak value Mpeak become two time domain design specifications.

Case C. Non-realizable delay inversion and non-minimum

phase zeros. Combination of the two previous cases results in

another different problem. In this case a strictly proper weight

with two time domain design specifications — settling or peak

time, and maximum peak value — is required like in case B.
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Robust feedforward and feedback tuning

Example Pu(s) Pd(s) C
−
f f (s)

1
1

s + 1
e−0.45s 0.5

0.4s + 1
e−0.15s 0.5 (s + 1)

0.4s + 1

2
1

s + 1
e−0.45s 0.5 (−0.3s + 1)

(0.4s + 1)2
e−0.15s 0.5 (s + 1)

(0.4s + 1)2

3
−0.6s + 1

(s + 1)2
e−0.15s 0.5

0.4s + 1
e−0.15s 0.5 (s + 1)2

0.4s + 1

4
−0.6s + 1

(s + 1)2
e−0.15s 0.5 (−0.3s + 1)

(0.4s + 1)2
e−0.15s 0.5 (s + 1)2

(0.4s + 1)2

5
−0.6s + 1

(s + 1)2
e−0.45s 0.5

0.4s + 1
e−0.15s 0.5 (s + 1)2

0.4s + 1

6
−0.6s + 1

(s + 1)2
e−0.45s 0.5 (−0.3s + 1)

(0.4s + 1)2
e−0.15s 0.5 (s + 1)2

(0.4s + 1)2
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Robust feedforward and feedback tuning

Wd(jω) weighting methodology
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Robust feedforward and feedback tuning

Wd(jω) weighting methodology
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Robust feedforward and feedback tuning

Wd(jω) weighting methodology

Example t5% Mpeak Wtd(s) C′
f f (s)

1 2 − 0.14s

0.52s + 1
e−0.45s 0.45s + 1

0.52s + 1

2 2 − −0.02s

0.52s + 1
e−0.45s 0.08s + 1

0.01s + 1

3 2 0.40
0.35s

(0.32s + 1)2
e−0.15s 0.40s + 1

(0.26s + 1) (0.01s + 1)

4 2 0.10
0.09s

(0.32s + 1)2
e−0.15s 0.09s + 1

0.05s + 1

5 2 0.40
0.29s

(0.27s + 1)2
e−0.45s 1

0.18s + 1

6 2 0.25
0.18s

(0.27s + 1)2
e−0.45s 0.27s + 1

0.11s + 1
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Robust feedforward and feedback tuning

Robust design parameters

Example Wr(s) Wd(s)

1
15s

10s + 1

0.5

0.4s + 1
e−0.15s

(

1 − 0.45s + 1

0.52s + 1
e−0.3s

)

2
15s

10s + 1

0.5

(0.4s + 1)2
e−0.15s

(

−0.3s + 1 − 0.08s + 1

0.01s + 1
e−0.3

3
15s

10s + 1

0.5

0.4s + 1
e−0.15s

(

1 − −0.24s2 − 0.2s + 1

0.0026s2 + 0.27s + 1

)

4
15s

10s + 1

0.5

(0.4s + 1)2
e−0.15s

(

−0.3s + 1 − −0.054s2 − 0.51s

0.05s + 1

5
15s

10s + 1

0.5

0.4s + 1
e−0.15s

(

1 − −0.6s + 1

0.18s + 1
e−0.3s

)

6
15s

10s + 1

0.5

(0.4s + 1)2
e−0.15s

(

−0.3s + 1 − −0.162s2 − 0.33s +

0.11s + 1
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Robust feedforward and feedback tuning

Additive norm-bound uncertainty

Assuming an uncertainty of ±10% in both λu and λd

Example ∆max
u (s) ∆max

d (s)

1
0.05s

(s + 1) (0.02s + 1)

0.0075s

(0.35s + 1) (0.007s + 1)

2
0.05s

(s + 1) (0.02s + 1)

0.0075s

(0.5s + 1) (0.006s + 1)

3
0.0175s

(1.4s + 1) (0.008s + 1)

0.0075s

(0.35s + 1) (0.007s + 1)

4
0.0175s

(1.4s + 1) (0.008s + 1)

0.0075s

(0.5s + 1) (0.006s + 1)

5
0.05s

(1.4s + 1) (0.02s + 1)

0.0075s

(0.35s + 1) (0.007s + 1)

6
0.05s

(1.4s + 1) (0.02s + 1)

0.0075s

(0.5s + 1) (0.006s + 1)
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Robust feedforward and feedback tuning

Additive norm-bound uncertainty
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Robust feedforward and feedback tuning

Process outputs of nominal and robust tuning
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Robust feedforward and feedback tuning

Process outputs of nominal and robust tuning
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Robust feedforward and feedback tuning

Numerical results

Example Nominal Robust

‖ed(t)‖1 ‖ed(t)‖2 ‖ed(t)‖∞ ‖ed(t)‖1 ‖ed(t)‖2 ‖ed(t)‖∞

1 225.59 3.49 0.08 153.10 2.56 0.07

2 56.10 0.85 0.02 173.81 1.63 0.03
3 760.72 8.06 0.14 115.02 1.17 0.03

4 229.11 2.42 0.04 111.96 1.57 0.05
5 858.94 8.94 0.14 478.58 6.15 0.13

6 356.96 3.66 0.10 236.31 3.02 0.07

159/244 José Luis Guzmán Sánchez Advances in Feedforward Control



Robust feedforward and feedback tuning

Example optimization result: non-realizable delay inversion
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Outline

1 Introduction

2 Feedforward control problem

3 Nominal feedforward tuning rules

Non-realizable delay

Right-half plane zeros

Integrating behavior

4 Robust feedforward and feedback tuning

5 Feedforward design for dead-time compensators

6 Performance indices for feedforward control

7 Conclusions
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FSP with feedforward action

Objective

To obtain an optimal disturbance rejection for processes with large

dead-times

Methodology

Define a general structure for combined dead-time and

feedforward compensation

Decouple reference tracking, disturbance rejection and

robustness tasks

Propose simple tuning rules for fast overshoot-free disturbance

rejection
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Feedforward design for dead-time compensators

Filtered Smith predictor

r u y

d

Σ

Σ

Σ

Σ

Σ

Process

Fr C f b

Pd

Pu

−Pd

−Pu

−C f f

Gu

Fsp

−1

J. E. Normey-Rico and E. F. Camacho. Control of dead-time processes.

Springer, London, 2007.
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Feedforward design for dead-time compensators

Proposed controller

r u y

d

Σ

Σ

Σ

Σ

Process

Fr C

Pd

Pu

−Pd

−Pu

GdFdr

Gu

Fsp

−1
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164/244 José Luis Guzmán Sánchez Advances in Feedforward Control



Feedforward design for dead-time compensators

Nominal closed-loop relationships

Gy/r(s) =
y(s)

r(s)
=

Fr(s)L(s)

1 + C(s)Gu(s)

Gy/d(s) =
y(s)

d(s)
= Pd(s)−

Fdr(s)Gd(s)L(s)

1 + C(s)Gu(s)
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Feedforward design for dead-time compensators

Robust stability

Pu(s) = Pu(s) (1 + δu(s))

Pd(s) = Pd(s) (1 + δd(s))

|δu(jω)| ≤ δmax
u (ω) ∀ω > 0

|δd(jω)| ≤ δmax
d (ω) ∀ω > 0

where δmax
u (ω), δmax

d (ω) are the multiplicative norm-bound

uncertainties.
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Feedforward design for dead-time compensators

Robust stability

The characteristic equation for Pu(s) is given by

1 + C(s)Gu(s) + Fsp(s)L(s)δu(s) = 0.

Assuming that the nominal system is stable

δmax
u (ω) < dPu(ω) =

∣

∣

∣

∣

∣

1 + C(jω)Gu(jω)

Fsp(jω)L(jω)

∣

∣

∣

∣

∣

∀ω > 0

J. E. Normey-Rico and E. F. Camacho. Unified approach for robust dead-time

compensator design. Journal of Process Control, 19(1):38–47, 2009.
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Feedforward design for dead-time compensators

Tuning procedure

How to tune the proposed controller?

Nominal reference tracking

Nominal disturbance rejection

Robustness
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Feedforward design for dead-time compensators

Tuning procedure: nominal reference tracking

Drt(s) = Nu(s)Nc(s) + Du(s)Dc(s)

Fr(s) =
Nrt(s)

N−
u (s)Nc(s)

Gy/r(s) =
y(s)

r(s)
=

N+
u (s)Nrt(s)

Drt(s)
e−λus

169/244 José Luis Guzmán Sánchez Advances in Feedforward Control



Feedforward design for dead-time compensators

Tuning procedure: nominal reference tracking

Drt(s) = Nu(s)Nc(s) + Du(s)Dc(s)

Fr(s) =
Nrt(s)

N−
u (s)Nc(s)

Gy/r(s) =
y(s)

r(s)
=

N+
u (s)Nrt(s)

Drt(s)
e−λus
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169/244 José Luis Guzmán Sánchez Advances in Feedforward Control



Feedforward design for dead-time compensators

Tuning procedure: nominal disturbance rejection

Gy/d(s) = Pd(s) ·
(

1 − Fdr(s)Nc(s)Nu(s)

Drt(s)
e−(λu−λd)s

)

.

From previous equation, it can be seen that perfect disturbance

rejection is accomplished for

Fdr(s) =
Drt(s)

Nc(s)Nu(s)
e−(λd−λu)s
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Feedforward design for dead-time compensators

Tuning procedure: nominal disturbance rejection

However, this expression may lead to an improper or even unstable

transfer function and a more complicated design is required. Thus, the

disturbance rejection filter can be chosen to cope with the commented

problems and to decouple the reference and disturbance responses as

Fdr(s) =
Drt(s)

Nc(s)N−
u (s)

· Ndr(s)

Ddr(s)
e−λdrs, (1)

where Ndr(s) and Ddr(s) are polynomials used to cancel undesired

poles and to allocate a new set of them, respectively and

λdr = max(0, λd − λu) is a dead time used to ensure that

disturbance compensation is not made too early.
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Feedforward design for dead-time compensators

Tuning procedure: nominal disturbance rejection

With the proposed Fdr(s), it is obtained

Gy/d(s) = Pd(s) ·
(

1 − N+
u (s)Ndr(s)

Ddr(s)
e−(λu−λd+λdr)s

)

=
Nd(s)

Dd(s)
· QPdr(s)

Ddr(s)
,

where QPdr(s) is a quasi-polynomial such that

QPdr(s) =
[

Ddr(s)− N+
u Ndr(s)e

−(λu−λd+λdr)s
]

.
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Feedforward design for dead-time compensators

Tuning procedure: nominal disturbance rejection

Gy/d(s) =
Nd(s)

Dd(s)
· QPdr(s)

Ddr(s)

Ddr(s) should be designed to impose the main disturbance

rejection dynamics:

Ddr(s) = (τdrs + 1)ndr

Ndr(s) must be designed to eliminate the undesirable dynamics

of Pd(s) (typically slow, integrating and unstable poles):

Ndr(s) = 1 +
mdr

∑
i=1

βdr[i]s
i
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Feedforward design for dead-time compensators

Tuning procedure: robustness

Fsp(s) =
Drt(s)

Nc(s)N−
u (s)

· Nsp(s)

Dsp(s)

δmax
u (ω) <

∣

∣

∣

∣

∣

Dsp(jω)

Nsp(jω)N+
u (jω)

∣

∣

∣

∣

∣

∀ω > 0
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Feedforward design for dead-time compensators

Tuning procedure: robustness

Fsp(s) =
Drt(s)

Nc(s)N−
u (s)

· Nsp(s)

Dsp(s)

δmax
u (ω) <

∣

∣

∣

∣

∣

Dsp(jω)

Nsp(jω)N+
u (jω)

∣

∣

∣

∣

∣

∀ω > 0
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Feedforward design for dead-time compensators

Tuning guidline

1 Obtain process models Pu(s) and Pd(s).
2 Define the feedback controller C(s) to set the desired reference tracking response

denominator Drt(s).
3 Define the reference filter Fr(s) to allocate the new set of zeros for the desired reference

tracking response Nrt(s).
4 Tune τdr and τsp to achieve, respectively, the desired speed of disturbance rejection

response and robustness.

5 Compute the mdr undesired poles of Pd(s), sd[i] i = 1...mdr. Define Ndr(s) as

Ndr(s) = 1 +
mdr

∑
i=1

βdr[i]s
i

6 Set ndr = mdr + degree (Drt(s))− degree (Nc(s)N−
u (s)) and define Ddr(s) as

Ddr(s) = (τdrs + 1)ndr

in order to have a proper compensator.
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Feedforward design for dead-time compensators

Tuning guidline

7 Set λdr = max (0, λd − λu) to ensure the fastest disturbance compensation as possible.
8 Compute the βdr[i] coefficients to impose that every sd[i], i = 1...mdr is a root of the

quasi-polynomial

QPdr(s) =
[

Ddr(s)− Ndr(s)N+
u (s)e−(λu−λd+λdr)s

]

.

9 Compute the msp undesired poles of Pu(s), su[i] i = 1...msp. Define Nsp(s) as

Nsp(s) = 1 +
msp

∑
i=1

βsp[i]s
i

10 Set nsp = msp + degree (Drt(s))− degree (Nc(s)N−
u (s)) and define Dsp(s) as

Dsp(s) =
(

τsps + 1
)nsp

in order to have a proper compensator.
11 Compute the βsp[i] coefficients to impose that every su[i], i = 1...msp is a root of the

quasi-polynomial

QPsp(s) =
[

Dsp(s)− Nsp(s)N+
u (s)e−λus

]

.
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Feedforward design for dead-time compensators

Discrete-time implementation

r[kT] u[kT] y

d[kT]

T

ΣΣΣ C f b(z) Pu(s)

C f f (z) Pd(s)

F(z)

−1

ZOH

177/244 José Luis Guzmán Sánchez Advances in Feedforward Control



Feedforward design for dead-time compensators

Discrete-time implementation

F(z) =
Fr(z)

Fsp(z)
,

C f b(z) =
C(z)Fsp(z)

1 + C(z)
(

Gu(z)− Fsp(z)Pu(z)
)

C f f (z) =
C(z)

(

Fdr(z)Gd(z)− Fsp(z)Pd(z)
)

1 + C(z)
(

Gu(z)− Fsp(z)Pu(z)
)

178/244 José Luis Guzmán Sánchez Advances in Feedforward Control



Feedforward design for dead-time compensators

Case studies

Some simulations are performed

Steam pressure control in a boiler

Concentration control in an unstable reactor

Concentration control in a CSTR

179/244 José Luis Guzmán Sánchez Advances in Feedforward Control



Feedforward design for dead-time compensators

Results: boiler

u1

u2

u3
y1

y2

y3

d1

d2
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Feedforward design for dead-time compensators

Results: boiler

Pu(s) =
y1(s)

u1(s)
=

0.355

24.75s + 1
e−6.75s

Pd(s) =
y1(s)

d1(s)
=

−0.712

195.8s + 1

G. Pellegrinetti and J. Bentsman. Nonlinear control oriented boiler modeling – A

benchmark problem for controller design. IEEE Transactions on Control

Systems Technology, 4(1):57–64, 1996.
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Feedforward design for dead-time compensators

Results: boiler

The desired reference tracking was set as

Gy/r(s) =
1

(6.75s + 1)2

which results in

C(s) = 25.77 · 13.64s + 1

13.64s

Fr(s) =
1

13.64s + 1
.
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Feedforward design for dead-time compensators

Results: boiler

The feedforward controller is tuned using classic tuning rules

C f f (s) = −0.712

0.355
· 24.75s + 1

195.8s + 1
.

The slow disturbance pole is also cancellated and it is considered that

τdr = 1.5:

Fdr(s) =
(6.75s + 1)2

13.64s + 1
· 8.8789s + 1

(1.5s + 1)2
.

The robustness filter is chosen to cancel the slow disturbance pole

and τsp = 20 is selected to obtain a faster response:

Fsp(s) =
(6.75s + 1)2

13.64s + 1
· 24.8756s + 1

(20s + 1)2
.
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Feedforward design for dead-time compensators

Results: boiler
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Feedforward design for dead-time compensators

Results: boiler

Controller IAE ITAE ISE

FSP 26.55 495.92 23.26

FSP with open-loop feedforward 15.56 334.00 6.69

Proposed controller 6.10 66.71 2.53
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Feedforward design for dead-time compensators

Results: unstable reactor
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Feedforward design for dead-time compensators

Results: unstable reactor

Pu(s) =
C(s)

Ci(s)
=

3.433

103.1s − 1
· e−20s

Pd(s) =
C(s)

F(s)
=

−206.9346

103.1s − 1
· e−10s
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Feedforward design for dead-time compensators

Results: unstable reactor

The desired reference tracking was set as in the original paper:

C(s) = 3.29
43.87s + 1

43.87s

Fr(s) =
20s + 1

43.87s + 1
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Feedforward design for dead-time compensators

Results: unstable reactor

The feedforward controller is tuned using classic tuning rules

C f f (s) = −206.9346

3.433

The slow disturbance pole is also cancellated and it is considered that

τdr = 2.5:

Fdr(s) =
(20s + 1)2

43.87s + 1
· 13.7875s + 1

(2.5s + 1)2

The robustness filter is chosen to cancel the slow disturbance pole

and τsp = 26 is selected:

Fsp(s) =
(20s + 1)2

43.87s + 1
· 93.16s + 1

26s + 1
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Feedforward design for dead-time compensators

Results: unstable reactor
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Feedforward design for dead-time compensators

Results: unstable reactor

Controller IAE ITAE ISE

FSP 119.36 14723.26 72.07

FSP with open-loop feedforward 28.41 3426.62 4.45

Proposed controller 11.03 1118.02 1.17
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Feedforward design for dead-time compensators

Results: Continuous Stirred Tank Reactor (CSTR)
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Feedforward design for dead-time compensators

Results: CSTR

Pu(s) =
T(s)

Tc(s)
= 1.6898 · 0.8491s + 1

0.8286s2 + 1.4555s + 1
· e−s

Pd(s) =
T(s)

F0(s)
= −0.2339 · (0.7363s + 1) (−0.2339s + 1)

s (0.8286s2 + 1.4555s + 1)
· e−0.25s

M. A. Henson and D. E. Seborg. Nonlinear Process Control. Prentice Hall PTR,

Upper Saddle River, NJ, 1997.
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Feedforward design for dead-time compensators

Results: CSTR

The feedback controller is tuned to define the nominal reference

tracking denominator as

Drt(s) = s + 1

resulting in

C(s) = 0.5918 · 0.8286s2 + 1.4555s + 1

s (0.8491s + 1)
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Feedforward design for dead-time compensators

Results: CSTR

The feedforward controller is tuned using classic tuning rules

C f f (s) = −0.2339

1.6898

The slow disturbance pole is also cancellated and it is considered that

τdr = 0.5:

Fdr(s) = (s + 1) · 1.75s + 1

(0.5s + 1)2

The robustness filter is chosen to cancel the slow disturbance pole

and τsp = 1 is selected:

Fsp(s) =
3s + 1

s + 1
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Feedforward design for dead-time compensators

Results: CSTR
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Feedforward design for dead-time compensators

Results: CSTR

Controller IAE ITAE ISE

FSP 36.51 233.87 187.28

FSP with open-loop feedforward 25.55 174.13 72.33

Proposed controller 10.12 38.93 27.86
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Performance indices for feedforward control

There exist metrics to evaluate feedback controllers for load

disturbance rejection problem based on the controller parameters. For

instance:

Gy/d =
Pu(s)

1 + C f b(s)Pu(s)
=

C f b(s)Pu(s)

1 + C f b(s)Pu(s)

1

C f b(s)
ω ↓↓

Gy/d ≈ 1

C f b(s)
≈ s

κi
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Performance indices for feedforward control
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Performance indices for feedforward control
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Performance indices for feedforward control

Objective

To proposed indices such that the advantage of using a feedforward

compensator with respect to the use of a feedback controller only can

be quantified.

Methodology

Propose different indices

Calculate the indices based on the process parameters
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Performance indices for feedforward control

The two feedforward schemes are considered:

r u y

d

ΣΣΣ C f b Pu

−1

C f f Pd

r u y

d

ΣΣΣ C f b Pu

−1

C f fH Pd
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Performance indices for feedforward control

Assumptions:

Pu =
κu

1 + τu
e−sλu , Pd =

κd

1 + sτd
e−sλd

Only, the non-inversion delay problem is analyzed:

Lead-lag: C f f =
κd

κu

1 + sτu

1 + sτd
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Performance indices for feedforward control

Assumptions:

C f b = κ f b

(

1 +
1

sτi

)

The lambda tuning rule is considered:

κ f b =
τi

κu(λu + τbc)
, τi = τu

where τbc is the closed-loop time constant.
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Performance indices for feedforward control

The following index structure is proposed

IFF/FB = 1 − IAEFF

IAEFB
,

where IAEFB is the integrated absolute value of the control error

obtained when only feedback is used, and IAEFF is the corresponding

IAE value obtained when feedforward is added to the loop.

As long as the feedforward improves control, i.e. IAEFF < IAEFB,

the index is in the region 0 < IFF/FB < 1.
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Performance indices for feedforward control

Calculation of IAE f b

In the feedback only case, the transfer function between disturbance d
and process output y is

Gy/d(s) =
Pd(s)

1 + Pu(s)C f b(s)
=

κd
e−sλd

1 + sτd

1 + κu
e−sλu

1 + sτu
κ f b

1 + sτi

sτi

Assuming that r = 0 and d is a step with magnitude Ad and using the

final value theorem, the Integrated Error (IE) value becomes (note that

e = −y, with r = 0)

IEFB =
∫ ∞

0
e(t)dt = lim

s→0
s · 1

s
E(s) = lim

s→0
−Gy/d(s)

Ad

s
= − τiκd

κuκ f b
Ad
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Performance indices for feedforward control

Calculation of IAE f b

The magnitude of the IE value can be set equal to the IAE value

provided that the controller is tuned so that there are no oscillations:

IAEFB =
τiκd

κuκ f b
Ad

Finally, considering the lambda tuning rule, it becomes

IAEFB = κd Ad(λu + τbc)
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Performance indices for feedforward control

Calculation of IAEFF for classical FF scheme

In this case, the transfer function from the disturbance to the error is

Gy/d(s) = −Pd(s) + Pu(s)C f f (s)

1 + Pu(s)C f b(s)
=

κd
e−sλd

1 + sτd
− κd

e−sλu

1 + sτd

1 + κu
e−sλu

1 + sτu
κ f b

1 + sτi

sτi

Considering the lambda tuning rule and that the delays are

approximated as

e−λus ∼= 1 − λus, e−λds ∼= 1 − λds

It results in:

Gy/d(s) = −κd(λu + τbc)(λu − λd)s
2

(1 + τds)(1 + τbcs)

209/244 José Luis Guzmán Sánchez Advances in Feedforward Control



Performance indices for feedforward control

Calculation of IAEFF for classical FF scheme

The IE value for this case becomes

IEFF =
∫ ∞

0
e(t)dt = lim

s→0
s · 1

s
Gy/d(s)

Ad

s
= 0.

which demonstrates that zero steady-state error can be achieved by

using feedforward control.
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Performance indices for feedforward control

Calculation of IAEFF for classical FF scheme

Now, it is worth determining the expression of the error in the time

domain when a step signal of amplitude Ad is applied as a

disturbance. We have

e(t) =



















κd Ad(λu + τbc)(λu − λd)

τbcτd(τbc − τd)

(

τde−t/τbc − τbce
−t/τd

)

τbc 6= τd

κd Ad(λu + τbc)(λu − λd)

τ2
d

(

1 − t

τd

)

e−t/τd τbc = τd
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Performance indices for feedforward control

Calculation of IAEFF for classical FF scheme
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Performance indices for feedforward control

Calculation of IAEFF for classical FF scheme

We can therefore calculate the area of the first part of the transient as

A1 =
∫ t0

0
e(t)dt =















κd Ad

τd
(λu + τbc)(λu − λd)

(

τbc

τd

)−
τbc

τbc − τd τbc 6= τd

κd Ad

τd
(λu + τbc)(λu − λd)e

−1 τbc = τd
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Performance indices for feedforward control

According to

IEFF =
∫ ∞

0
e(t)dt = lim

s→0
s · 1

s
Gy/d(s)

Ad

s
= 0.

the area |A2| in the previous figure is equal to |A1|, and the IAE
value can finally be determined as

IAEFF = 2|A1| =















2
κd Ad

τd
(λu + τbc)(λu − λd)

(

τbc

τd

)−
τbc

τbc − τd τbc 6= τd

2
κd Ad

τd
(λu + τbc)(λu − λd)e

−1 τbc = τd
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Performance indices for feedforward control

Calculation of IAEFF for non-interacting FF scheme

In this case, the IAEFF estimation can be obtained in a straightforward

manner, as the effect from the feedback controller is removed.

The IAE result obtained in the non-invertible delay case can be

reformulated as

IAEFF = κd Ad

(

(λu − λd)− (τd − τu − τu + τu)

(

1 − 2e
− λu−λd

τd−τu−τu+τu

))

= κd Ad

(

1 − τd − τu − τu + τu

λu − λd

(

1 − 2e
− λu−λd

τd−τu−τu+τu

))

(λu − λd)

= κd Ad

(

1 − 1

a
+

2

a
e−a

)

(λu − λd)

= κd Adα(λu − λd)

where

α = 1 − 1

a
+

2

a
e−a, a =

λu − λd

τd − τu − τu + τu
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Performance indices for feedforward control

Calculation of IAEFF for non-interacting FF scheme

Here, when using classical feedforward design (τf f = τd, β f f = τu),

it results that

IAEFF = κd Ad(λu − λd) with a = ∞ and α = 1

However, if τu is tuned, for instance, to minimize IAEFF using the

following value

τu =

{

τ − λu−λd
1.7 0 < λu − λd ≤ 1.7τ

0 λu − λd > 1.7τ

The following values for a and α are obtained:

0 ≤ λu − λd ≤ 1.7τd : a = 1.7 α ≈ 0.63

λu − λd > 1.7τd : a = λu−λd
τd

> 1.7 0.63 < α < 1
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Performance indices for feedforward control

Analysis and discussion on the indices

Feedback control without feedforward:

IAEFB = κd Ad(λu + τbc)

Feedforward with classical control scheme and classical tuning:

IAEFF = 2
κd Ad

τ
(λu + τbc)(λu − λd) f (τbc/τd) (2)

where

f (τbc/τd) =















(

τbc

τd

)−
τbc

τbc − τd τbc 6= τd

e−1 τbc = τd

(3)

Feedforward with non-interacting control scheme:

IAEFF = ακd Ad(λu − λd)

where α can vary based on the τf f value.
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Performance indices for feedforward control

Analysis and discussion on the indices

Notice that the IAEFF value corresponding to the classical scheme is

quite complicated to analyze. To simplify the analysis, the function

f (τbc/τd) in (3) is shown

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

τbc/τd

f(
τ b

c/
τ d
)

From this figure, one can see that the function is continuous,

monotonically decreasing, and bounded to 0 ≤ f (τbc/τd) ≤ 1.
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Performance indices for feedforward control

Analysis and discussion on the indices

All IAEFF values are proportional to (λu − λd). When λu = λd,

we get IAEFF = 0, which is correct since the feedforward action

can eliminate the load disturbance response completely in this

case.

When λu ≫ λd, the IAEFF values become large. This is also

correct, since the delay in the process prohibits the feedforward

action from reducing the disturbance response in this case.
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Performance indices for feedforward control

Analysis and discussion on the indices

The ratio between the IAE value of the classical scheme and the

noninteracting scheme is

IAEclassical

IAEnoninteracting
=

2(λu + τbc) f (τbc/τd)

τdα

Therefore, the classical scheme gives a smaller IAE value when

τd >
2(λu + τbc) f (τbc/τd)

α
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Performance indices for feedforward control

Analysis and discussion on the indices

Since 0 < f (τbc/τ) ≤ 1 and 0.63 < α ≤ 1, one can conclude that

the classical scheme gives a better performance when τd is large

compared to process deadtime λu or the desired closed-loop time

constant τbc, i.e. when the load disturbance is varying slowly.
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Performance indices for feedforward control

Index interpretation

For the classical feedforward control case, the index becomes

IFF/FB = 1 − IAEFF

IAEFB
= 1 − 2(λu − λd)

τd
f (τbc/τd)

For the noninteracting feedforward control scheme, the index is given

by

IFF/FB = 1 − IAEFF

IAEFB
= 1 − α(λu − λd)

λu + τbc
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Performance indices for feedforward control

Index interpretation

Increasing τbc, corresponding to a more conservative tuning,

results in indices getting closer to one.

In the classical scheme, f (τbc/τd) decreases when τbc is

increased.

In the noninteracting scheme it is obvious that IFF/FB increases

since τbc appears in the denominator of the second term.

On the other hand, t can be observed that when λu = λd, all

indices become IFF/FB = 1, which means that the disturbance

response can be eliminated completely by introducing

feedforward.
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Performance indices for feedforward control

Index interpretation: classical control scheme
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Performance indices for feedforward control

Index interpretation: noon-interacting control scheme
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Performance indices for feedforward control

Example 1

Pu(s) =
e−2s

10s + 1
Pd(s) =

e−s

5s + 1

Using lambda tuning with τbc = τu = 10 gives the PI controller

parameters κ f b = 0.83 and τi = 10.

The feedforward compensators are defined as

C f f (s) =
10s + 1

5s + 1

for the classical feedforward control scheme and as

C f f =
10s + 1

4.4s + 1

for the non-interacting feedforward control scheme (to minimize IAE).
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Performance indices for feedforward control

Example 1

Control scheme IAEr IAEe IFF/FB

Feedback 11.99 12 –

Classical FF 1.21 1.2 0.9

Non-interacting FF 0.63 0.63 0.95
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Performance indices for feedforward control

Example 1

0 10 20 30 40 50 60 70
-0.2

0

0.2

0.4

0.6

0.8

 

 

0 10 20 30 40 50 60 70
-2.5

-2

-1.5

-1

-0.5

0

 

 

Feedback
Classical FF
Non-interacting FF

Feedback
Classical FF
Non-interacting FF

time

y
u
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Performance indices for feedforward control

Example 2

The differences between the pure feedback scheme and the

feedforward schemes can be reduced by retuning the PI controller to

obtain a more aggressive response. Lets retune the PI controller only

for the case when pure feedback is used, by using τbc = 0.25τu.
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Performance indices for feedforward control

Example 2

Control scheme IAEr IAEe IFF/FB

Feedback 4.5 4.5 –

Classical FF 1.21 1.2 0.73

Non-interacting FF 0.63 0.63 0.86
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Performance indices for feedforward control

Example 2
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Performance indices for feedforward control

Example 3

Assume that τbc = τu = λu. It means that we have a process model

Pu(s) where the delay is equal to the time constant and that the

lambda tuning rule is used with τbc = τu. Two different values of the

time constant τd = ηλu, where η = 1 or 10.

The index for the classical feedforward scheme becomes

IFF/FB = 1 − 2(λu − λd)

τd
f (1/η) = 1 − 2

τd
f (1/η)

(

1 − λd

λu

)

If instead the noninteracting scheme is used, the index is

IFF/FB = 1 − α(λu − λd)

λu + τbc
= 1 − α

2

(

1 − λd

λu

)
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Performance indices for feedforward control

Example 3
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Performance indices for feedforward control

Example 3

τd Control scheme IAEr IAEe Ir
FF/FB Ie

FF/FB

λu Feedback 2.04 2.0

Classical FF 1.43 1.47 0.30 0.26

Non-interacting FF 0.63 0.63 0.69 0.69

10λu Feedback 2.00 2.0

Classical FF 0.34 0.31 0.83 0.85

Non-interacting FF 0.63 0.63 0.69 0.69

234/244 José Luis Guzmán Sánchez Advances in Feedforward Control



Performance indices for feedforward control

Example 3
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Performance indices for feedforward control

Example 3
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Conclusions

The motivation for feedforward tuning rules was introduced.

The feedback effect on the feedforward design was analyzed.

The different non-realizable situations were studied.

The two available feedforward control schemes were used.

Simple tuning rules based on the process and feedback

controllers parameters were derived.

Robust design should be used in processes with significant

uncertainty.

A general dead-time plus feedforward compensator can be used

to efficiently decouple control tasks.

Performance indices for feedforward control were proposed.
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Conclusions

Future research

What else can be done?

Nominal tuning. Unified methodology for low-order feedforward

controllers tuning

Robust tuning. Scale up to other feedforward structures

DTC with feedforward action. Extension to MIMO processes

Experimental results. Validate the theoretically claimed benefits

Distributed parameter systems. Feedforward tuning rules to

deal with resonance dynamics
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End of the presentation

Thank you for your attention

244/244 José Luis Guzmán Sánchez Advances in Feedforward Control


	Introduction
	Feedforward control problem
	Nominal feedforward tuning rules
	Non-realizable delay
	Right-half plane zeros
	Integrating behavior

	Robust feedforward and feedback tuning
	Feedforward design for dead-time compensators
	Performance indices for feedforward control
	Conclusions

