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Introduction

What are load disturbances?

Typically low frequency input signals which affect the output of

processes but that cannot be manipulated

Manipulated

Inputs
Outputs

Disturbances

Process
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Introduction

Most industrial processes are subject to disturbances and the

nature and origin of disturbances may vary depending on the

process and the operational environments.

Effective disturbance effect reduction is a key topic in process

control. In fact, disturbances together with process uncertainty,

are one of the reasons for feedback control.
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Introduction

Real plants at the Automatic Control research group in Almerı́a
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Introduction

Motivation: feedback controller
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Introduction

Motivation: feedback controller
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No reaction until there are discrepancies!
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Introduction

Motivation: feedforward compensator

r u y

d

ΣΣΣ C f b Pu

−1

−C f f Pd

C f f =
Pd

Pu

Y = (Pd − PuC f f )D
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Motivation: feedforward compensator
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Feedforward control problem

Perfect compensation is seldom realizable:

Non-realizable delay inversion.

Right-half plan zeros.

Integrating poles.

Improper transfer functions.

Classical solution

Ignore the non-realizable part of the compensator and implement the

realizable one. In practice, static gain feedfoward compensators are

quite common.
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Introduction

Motivation: non-ideal feedforward compensator
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Introduction

Motivation: non-ideal feedforward compensator
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Introduction

Motivation: residual term
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Pu

Y = (Pd − PuC f f )D
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Introduction

Motivation

0 5 10 15 20 25 30 35 40 45 50
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

t

y

(a) Open−loop response
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(b) Closed−loop response
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Introduction

Motivation

http://aer.ual.es/ilm/ http://fichas-interactivas.pearson.es/
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Introduction

Motivation

An interaction between feedforward and feedback controllers arises

y =
Pd − C f f Pu

1 + L
d =

Pd − C f f Pu

1 + C f bPu
d

Other design strategies are required!

16/119 José Luis Guzmán Sánchez Advances in Feedforward Control for Measurable Disturbances



Introduction

Motivation

An interaction between feedforward and feedback controllers arises

y =
Pd − C f f Pu

1 + L
d =

Pd − C f f Pu

1 + C f bPu
d

Other design strategies are required!
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Introduction

Motivation

Surprisingly there are very few studies in literature (we starting the

project in 2010):

D. Seborg, T. Edgar, D. Mellichamp, Process Dynamics and Control,

Wiley, New York, 1989.

F. G. Shinskey, Process Control Systems. Application Design

Adjustment, McGraw-Hill, New York, 1996.

C. Brosilow, B. Joseph, Techniques of Model-Based Control,

Prentice-Hall, New Jersey, 2002.

A. Isaksson, M. Molander, P. Modn, T. Matsko, K. Starr, Low-Order

Feedforward Design Optimizing the Closed-Loop Response, Preprints,

Control Systems, 2008, Vancouver, Canada.
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Introduction

Objectives

1 Study and development of a control methodology to improve

disturbance compensation in industrial processes

2 Definition of nominal simple optimal tuning rules for designing

feedforward compensators

3 Development of a robust methodology to cope with both

reference tracking and disturbance rejection, using feedforward

control structures

4 Integration of the obtained nominal and robust feedforward tuning

rules into a general dead-time compensation solution

5 Propose performance indices for feedforward control
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Feedforward control problem

Feedforward control is an old topic in process control. In fact, its

first application dates from 1925, where a feedforward

compensator was used for drum level control of tanks connected

in series.

Many of the other early applications dealt with control of

distillation columns.

Since then, feedforward control has become a fundamental

control technique for the compensation of measurable

disturbances.

Nowadays, this mechanism is implemented in most distributed

control systems to improve the control performance.
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Feedforward control problem

The idea behind feedforward control from disturbances is to supply

control actions before the disturbance affects the process output:

r u y

d

ΣΣΣ C f b Pu

−1

−C f f Pd

C f f =
Pd

Pu
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Feedforward control problem

In industry, PID control is commonly used as feedback controller and

four structures of the feedforward compensator are widely considered:

C f b = κ f b

(

1 +
1

sτi
+ sτd

)

Static: C f f = κ f f

Static with delay: C f f = κ f f e−sL f f

Lead-lag: C f f = κ f f

1 + sβ f f

1 + sτf f

Lead-lag with delay: C f f = κ f f

1 + sβ f f

1 + sτf f
e−sL f f
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Feedforward control problem

Then, if we consider that process transfer functions are modeled as

first-order systems with time delay, i.e.

Pu =
κu

1 + τu
e−sλu , Pd =

κd

1 + sτd
e−sλd

The following feedforward compensator can be considered:

Static: C f f =
κd

κu

Static with delay: C f f =
κd

κu
e−s(λd−λu)

Lead-lag: C f f =
κd

κu

1 + sτu

1 + sτd

Lead-lag with delay: C f f =
κd

κu

1 + sτu

1 + sτd
e−s(λd−λu)
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Feedforward control problem

Lets consider the following example:

Pu(s) =
1

s + 1
e−s, Pd(s) =

1

2s + 1
e−2s

Static: C f f = 1

Static with delay: C f f = e−s

Lead-lag: C f f =
1 + s

1 + 2s

Lead-lag with delay: C f f =
1 + s

1 + 2s
e−s

C f b is a PI controller tuned using the AMIGO rule, κ f b = 0.25 and

τi = 2.0.
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Feedforward control problem
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Feedforward control problem

Motivation

Then, lets consider a delay inversion problem, i.e., λd < λu. Then, the

resulting feedforward compensators are given by:

C f f = K f f =
κd

κu

C f f =
κd

κu

τus + 1

τds + 1
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Feedforward control problem

Motivation

Example:

Pu(s) =
1

2s + 1
e−2s, Pd(s) =

1

s + 1
e−s

C f f = 1, C f f =
2s + 1

s + 1

The feedback controller is tuned using the AMIGO rule, which gives

the parameters κ f b = 0.32 and τi = 2.85.
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Feedforward control problem

Motivation
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(b) Closed−loop response
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Feedforward control problem

r u y

d

ΣΣΣ C f b Pu

−1

−C f f Pd

y =
Pd − C f f Pu

1 + L
d =

Pd − C f f Pu

1 + C f bPu
d
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Feedforward control problem

r u y

d

ΣΣΣ C f b Pu

−1

−C f f Pd

e =
r

1 + PuC f b
, e =

r + P∗
d (e

−λus − e−λds)d

1 + PuC f b
, Pd = P∗

d e−λd
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Feedforward tuning rules

Cases to be evaluated in this research:

Non-realizable delay inversion.

Right-half plan zeros.

Integrating poles.
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Nominal feedforward design: non-realizable delay

Objective

To improve the final disturbance response of the closed-loop system

when delay inversion is not realizable (λu > λd)

Methodology

Adapt the open-loop tuning rules to closed-loop design

Obtain optimal open-loop tuning rules

Design a switching controller to improve the results
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Nominal feedforward design: non-realizable delay

Two approaches:

r u y

d

ΣΣΣ C f b Pu

−1

C f f Pd

r u y

d

ΣΣΣ C f b Pu

−1

C f fH Pd

Pk(s) =
κk

τks + 1
e−λks k ∈ [u, d] λu > λd

C f b(s) = κ f b
τis + 1

τis
C f f (s) = κ f f

β f f s + 1

τf f s + 1
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Nominal feedforward design: non-realizable delay

Delay inversion: open-loop compensation

replacements

d

yu
ΣPu−C f f

Pd

y = Pf f =
(

Pd − C f f Pu

)

d C f f =
κd

κu
· τus + 1

τds + 1
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Nominal feedforward design: non-realizable delay

Delay inversion: open-loop compensation
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Nominal feedforward design: non-realizable delay

Delay inversion: open-loop compensation
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Nominal feedforward design: non-realizable delay

First approach

To deal with the non-realizable delay case, the first approach was to

work with the following:

Use the classical feedforward control scheme.

Remove the overshoot observed in the response.

Proposed a tuning rule to minimize Integral Absolute Error (IAE).

The rules should be simple and based on the feedback and

model parameters.
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Nominal feedforward design: non-realizable delay

To remove the overshoot, the feedback control action is taken into

account to calculate the feedforward gain, κ f f .

∆u =
κ f b

τi

∫

edt =
κ f b

τi
IE · d

So, in the new rule, the goal is to take the control signal to the correct

stationary level −∆u in order to take the feedback control signal into

account and reduce the overshoot. The gain is therefore reduced to

κ f f =
kd

ku
− κ f b

τi
IE

Closed-loop design
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Nominal feedforward design: non-realizable delay

IE estimation:

Y = (Pd − PuC f f )D = PdD − PuC f f D

y(t)− ysp =











kd

(

1 − e
− t

τd

)

d 0 ≤ t ≤ λb

kd

(

(

1 − e
− t

τd

)

−
(

1 − e
− t−λb

Tb

))

d λb < t

λb = max(0, λu − λd), Tb = τu + τf f − β f f
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Nominal feedforward design: non-realizable delay

IE estimation:

IE · d =
∫

∞

0
(y(t)− ysp)dt

= kd

∫ λb

0

(

1 − e
− t

τd

)

d dt + kd

∫

∞

λb

(

−e
− t

τd + e
− t−λb

Tb

)

d dt

= kd

[

t + τde
− t

τd

]λb

0
d + kd

[

τde
− t

τd − Tbe
− t−λb

Tb

]∞

λb

d

= kd

(

λb + τde
− λb

τd − τd − τde
− λb

τd + Tb

)

d

= kd (λb − τd + Tb) d
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Nominal feedforward design: non-realizable delay

IE estimation:

IE =

{

kd(τu − τd + τf f − β f f ) λd ≥ λu

kd(λu − λd + τu − τd + τf f − β f f ) λd < λu

κ f f =
kd

ku
− κ f b

τi
IE
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Nominal feedforward design: non-realizable delay

Lets consider the same previous example:

Pu(s) =
1

2s + 1
e−2s, Pd(s) =

1

s + 1
e−s

C f f = 1, C f f =
2s + 1

s + 1

The feedback controller is tuned using the AMIGO rule, which gives

the parameters κ f b = 0.32 and τi = 2.85.
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Nominal feedforward design: non-realizable delay
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(b) Lead/Lag feedforward
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The feedforward gain κ f f has been reduced from 1 to 0.778 for the

static feedforward and from 1 to 0.889 for the lead-lag filter.
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Nominal feedforward design: non-realizable delay

Once the overshoot is reduced, the second goal is to design β f f and

τf f to minimize the IAE value. In this way, we keep β f f = τu to cancel

the pole of Pu and fix the pole of the compensator:

IAE =
∫

∞

0
|y(t)|dt =

∫ t0

0
y(t)dt −

∫

∞

t0

y(t)dt

where t0 is the time when y crosses the setpoint, with ysp = 0 and

d = 1.
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Nominal feedforward design: non-realizable delay

y(t)− ysp =











kd

(

1 − e
− t

τd

)

d 0 ≤ t ≤ λb

kd

(

(

1 − e
− t

τd

)

−
(

1 − e
− t−λb

Tb

))

d λb < t

IAE =
∫

∞

0
|y(t)|dt =

∫ t0

0
y(t)dt −

∫

∞

t0

y(t)dt

t0

τd
=

t0 − λb

Tb
→ t0 =

τdλb

τd − Tb
=

τd

τu − τf f
λb

Tb = τu + τf f − β f f
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Nominal feedforward design: non-realizable delay

IAE =
∫ λb

0

(

1 − e
− t

τd

)

dt +
∫ t0

λb

(

−e
− t

τd + e
− t−λb

Tb

)

dt −
∫

∞

t0

(

−e
− t

τd + e
− t−λb

Tb

)

dt

=

[

t + τde
− t

τd

]λb

0

+

[

τde
− t

τd − Tbe
− t−λb

Tb

]t0

λb

−
[

τde
− t

τd − Tbe
− t−λb

Tb

]∞

t0

= λb − τd + Tb + 2τde
− t0

τd − 2Tbe
− t0−λb

Tb

= λb − τd + Tb + 2τde
− λb

τd−Tb − 2Tbe
− λb

τd−Tb

= λb − τ

(

1 − 2e−
λb
τ

)

with τ = τd − τf f .
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Nominal feedforward design: non-realizable delay

d

dτ
IAE = −1 + 2e−

λb
τ + 2

λb

τ
e−

λb
τ = −1 + 2(1 + x)e−x = 0

where x = λb/τ. A numerical solution of this equation gives x ≈ 1.7,

which gives

τf f = Tb − τd + τu = τd − τ ≈ τd −
λb

1.7

τf f =











τd λu − λd ≤ 0

τd −
λu − λd

1.7
0 < λu − λd < 1.7τd

0 λu − λd > 1.7τd
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Nominal feedforward design: non-realizable delay

Gain and τf f reduction rule:
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Nominal feedforward design: non-realizable delay

Gain and τf f reduction rule:
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No FF Open-loop rule κ f f reduction κ f f &τf f reduction

IAE 9.03 1.76 1.37 0.59
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Nominal feedforward design: non-realizable delay

First approach: Guideline summary

1 Set β f f = τu and calculate τf f as:

τf f =











τd λu − λd ≤ 0

τd −
λu − λd

1.7
0 < λu − λd < 1.7τd

0 λu − λd > 1.7τd

2 Calculate the compensator gain, κ f f , as

κ f f =
kd

ku
− κ f b

τi
IE

IE =

{

kd(τf f − τd) λd ≥ λu

kd(λu − λd − τd + τf f ) λd < λu
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Nominal feedforward design: non-realizable delay

Second approach

To deal with the non-realizable delay case, the second approach was

to work with the following:

Use the non-interacting feedforward control scheme (feedback

effect removed).

Obtain a generalized tuning rule for τf f for moderate, aggressive

and conservative responses.

The rules should be simple and based on the feedback and

model parameters.
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Nominal feedforward design: non-realizable delay

Second approach: non-interacting structure

r u y

d

ΣΣΣ C f b Pu

−1

C f fH Pd

y =
Pf f + LH

1 + L
d =

(

Pf f ǫ + Hη
)

d H = Pf f = Pd − C f f Pu

C. Brosilow and B. Joseph. Techniques of model-based control. Prentice Hall,

New Jersey, 2012.
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Nominal feedforward design: non-realizable delay

Second approach: non-interacting structure

r u y

d

ΣΣΣ C f b Pu

−1

C f fH Pd

e =
r + (H − Pd + PuC f f )d

1 + PuC f b
, H = Pf f = Pd − PuC f f
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Nominal feedforward design: non-realizable delay

Second approach

The main idea of this second approach relies on analyzing the residual

term appearing when perfect cancelation is not possible:

y

d
= Pd − PuC f f = Pd − Pf f , Pf f = PuC f f

y

d
=

kd

τds + 1
e−λds − kd

τf f s + 1
e−λus
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Nominal feedforward design: non-realizable delay
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Nominal feedforward design: non-realizable delay

From the previous analysis, it can be concluded that in order to totally

remove the overshoot for the disturbance rejection problem by using a

lead-lag filter, the settling times of both transfer functions must be the

same:

y

d
=

kd

τds + 1
e−λds − kd

τf f s + 1
e−λus

τf f =
4τd + λd − λu

4
= τd −

λb

4
, λb = λd − λu
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Nominal feedforward design: non-realizable delay

Notice that the new rule for τf f implies a natural limit on performance.

If parameter τf f is chosen larger, performance will only get worse

because of a late compensation. The only reasons why τf f should be

even larger is to decrease the control signal peak:

τf f = τd −
λb

4
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Nominal feedforward design: non-realizable delay

So, considering the IAE rule obtained for the first approach, two tuning

rules are available:

τf f =
4τd + λd − λu

4
= τd −

λb

4

τf f = τd −
λu − λd

1.7
= τd −

λb

1.7

And a third one (a more agreessive rule) can be calculated to minimize

Integral Squared Error (ISE) instead of IAE such as proposed in the

first approach.
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Nominal feedforward design: non-realizable delay

ISE minimization:

ISE =
∫

∞

λb

(

e
− (t−λb)

τf f − e
− t

τd

)2

dt

=
∫

∞

λb

(

e
− 2(t−λb)

τf f − 2e
−

τd(t−λb)+τf f t

τd τf f + e
− 2t

τd

)

dt

=−
τf f

2

[

e
− 2(t−λb)

τf f

]∞

λb

+ 2
τdτf f

τd + τf f

[

e
−

τd(t−λb)+τf f t

τdτf f

]∞

λb

− τd

2

[

e
− 2t

τd

]∞

λb

=
τf f

2
− 2τd

τf f

τd + τf f
e
− λb

τd +
τd

2
e
− 2λb

τd
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Nominal feedforward design: non-realizable delay

ISE minimization:

d ISE

d τf f
=

1

2
− 2τde

− λb
τd

(

1

τd + τf f
+

−τf f

(τd + τf f )2

)

=
1

2
− 2τ2

d

(τd + τf f )2
e
− λb

τd = 0

τ2
f f + 2τdτf f + τ2

d (1 − 4e
− λb

τd ) = 0

τf f =
−2τd +

√

4τ2
d − 4τ2

d (1 − 4e
− λb

τd )

2
= τd

(

2

√

e
− λb

τd − 1

)
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Nominal feedforward design: non-realizable delay

Thus, three tuning rules are available:

τf f = τd −
λb

4

τf f = τd −
λb

1.7

τf f = τd

(

2

√

e
− λb

τd − 1

)

which can be generalized as:

τf f = τd −
λb

α
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Nominal feedforward design: non-realizable delay

Second approach: Guideline summary

1 Set β f f = τu, κ f f = kd/ku and calculate τf f as:

τf f =







τd λb ≤ 0

τd − λb
α 0 < λb < 4τd

0 λb ≥ 4τd

2 Determine τf f with λb/τd < α < ∞ using:

α =























λb

2τd

(

1−
√

e−λb/τd

) aggressive (ISE minimization)

1.7 moderate (IAE minimization)

4 conservative (Overshoot removal)
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Nominal feedforward design: non-realizable delay

Example:

Pu(s) =
0.5

5s + 1
e−2.25s, Pd(s) =

1

2s + 1
e−0.75s

The feedback controller is tuned using the AMIGO rule, which gives

the parameters κ f b = 0.9 and τi = 4.53.
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Nominal feedforward design: non-realizable delay
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Nominal feedforward design: non-realizable delay

ISE IAE uinit J1 J2

Hast and Hägglund 0.0739 0.6423 38.7800 2.5710 0.8979

ISE Minimization 0.0896 0.6021 8.0090 0.9993 0.8615

IAE Minimization 0.0975 0.5641 5.3680 0.9113 0.8315

Overshoot Removal 0.1277 0.6833 3.6920 0.9323 0.8870

J1(F, B) =
1

2

(

ISE(F)

ISE(B)
+

ISC(F)

ISC(B)

)

, ISC =
∫

∞

0
u(t)2 dt

J2(F, B) =
1

2

(

IAE(F)

IAE(B)
+

IAC(F)

IAC(B)

)

, IAC =
∫

∞

0
|u(t)|dt
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Nominal feedforward design: non-realizable delay

Second approach: A switching solution

It is clear that if the compensation is made too fast, the output will

suffer a bigger overshoot error, while if it is too slow, the compensator

will take too much time to reject the disturbance and it will have a

bigger residual error. Therefore, a switching rule can be proposed in

such a way that the feedforward compensator reacts fast before the

outputs cross in order to decrease the residual error, and slower after

this time to avoid the overshoot because of the residual error.
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Nominal feedforward design: non-realizable delay

Second approach: A switching solution
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Nominal feedforward design: non-realizable delay

Second approach: A switching solution
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Nominal feedforward design: non-realizable delay

Second approach: A switching solution
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Nominal feedforward design: non-realizable delay

Second approach: A switching solution

The idea is to set τf f to a small value until the time when the

responses of both transfer functions cross. After this time, the new

value of τf f will be τd. Once the load disturbance is rejected, τf f will

be set again to the small initial value in order to be ready for new

coming disturbances.
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Nominal feedforward design: non-realizable delay

Second approach: A switching solution

Thus, the first step is to calculate the time it takes since a step change

in d appears at time instant td until the outputs of both transfer

functions cross. This time, tcross, corresponds to the point when the

step responses of Pf f and Pd are equal:

κdd

(

e
−(tcross−td−λd)

τd − e
−(tcross−td−λu)

τf f

)

= 0

where it is straightforward to see that:

tcross =
τdλu − τf f λd

τd − τf f
+ td
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Nominal feedforward design: non-realizable delay

Second approach: A switching solution

On the other hand, notice that the time event of the switching rule is

really given at tchange = tcross − λu.

Once the disturbance has been rejected, the feedforward switching

controller should return to its original value in order to be ready for

possible new coming load disturbances. This change must be done at

a time instant, tr, which can be proposed as the settling time of

process Pd such as follows:

tr = 4τd + λd + td

Thus, τf f should be equal to τd when td + tcross − λu ≤ t ≤ td + tr

and it must be tuned for a faster response otherwise, specially for

t < tchange.
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Nominal feedforward design: non-realizable delay
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Nominal feedforward design: non-realizable delay

Second approach: the switching solution guideline

1 Set τf f to a value as close to 0 as possible (tradeoff with the

control signal peak).

2 Wait until a step load disturbance is detected at time instant td.

Define tcross and trestore. Set tchange = tcross − λu.

3 Using a non-interacting scheme, set C f f and H as follows:

C f f (s) =























κd

κu

1 + τus

1 + τds
tchange ≤ t ≤ tr

κd

κu

1 + τus

1 + τf f s
otherwise

4 Go to step 2.

75/119 José Luis Guzmán Sánchez Advances in Feedforward Control for Measurable Disturbances



Nominal feedforward design: non-realizable delay
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Nominal feedforward design: non-realizable delay

ISE IAE uinit J1 J2

ISE Minimization 0.0896 0.6021 8.0090 0.9993 0.8615

IAE Minimization 0.0975 0.5641 5.3680 0.9113 0.8315

Switching 0.0889 0.4252 6.2160 0.9062 0.7527
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Nominal feedforward design: non-realizable delay
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Performance indices for feedforward control

There exist metrics to evaluate feedback controllers for load

disturbance rejection problem based on the controller parameters. For

instance:

Gy/d =
Pu(s)

1 + C f b(s)Pu(s)
=

C f b(s)Pu(s)

1 + C f b(s)Pu(s)

1

C f b(s)
ω ↓↓

Gy/d ≈ 1

C f b(s)
≈ s

κi
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Performance indices for feedforward control
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Performance indices for feedforward control
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Performance indices for feedforward control

Objective

To proposed indices such that the advantage of using a feedforward

compensator with respect to the use of a feedback controller only can

be quantified.

Methodology

Propose different indices

Calculate the indices based on the process parameters
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Performance indices for feedforward control

The two feedforward schemes are considered:

r u y

d

ΣΣΣ C f b Pu

−1

C f f Pd

r u y

d

ΣΣΣ C f b Pu

−1

C f fH Pd
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Performance indices for feedforward control

Assumptions:

Pu =
κu

1 + τu
e−sλu , Pd =

κd

1 + sτd
e−sλd

Only, the non-inversion delay problem is analyzed:

Lead-lag: C f f =
κd

κu

1 + sτu

1 + sτd
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Performance indices for feedforward control

Assumptions:

C f b = κ f b

(

1 +
1

sτi

)

The lambda tuning rule is considered:

κ f b =
τi

κu(λu + τbc)
, τi = τu

where τbc is the closed-loop time constant.
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Performance indices for feedforward control

The following index structure is proposed

IFF/FB = 1 − IAEFF

IAEFB
,

where IAEFB is the integrated absolute value of the control error

obtained when only feedback is used, and IAEFF is the corresponding

IAE value obtained when feedforward is added to the loop.

As long as the feedforward improves control, i.e. IAEFF < IAEFB,

the index is in the region 0 < IFF/FB < 1.
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Performance indices for feedforward control

Calculation of IAE f b

In the feedback only case, the transfer function between disturbance d
and process output y is

Gy/d(s) =
Pd(s)

1 + Pu(s)C f b(s)
=

κd
e−sλd

1 + sτd

1 + κu
e−sλu

1 + sτu
κ f b

1 + sτi

sτi

Assuming that r = 0 and d is a step with magnitude Ad and using the

final value theorem, the Integrated Error (IE) value becomes (note that

e = −y, with r = 0)

IEFB =
∫

∞

0
e(t)dt = lim

s→0
s · 1

s
E(s) = lim

s→0
−Gy/d(s)

Ad

s
= − τiκd

κuκ f b
Ad
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Performance indices for feedforward control

Calculation of IAE f b

The magnitude of the IE value can be set equal to the IAE value

provided that the controller is tuned so that there are no oscillations:

IAEFB =
τiκd

κuκ f b
Ad

Finally, considering the lambda tuning rule, it becomes

IAEFB = κd Ad(λu + τbc)
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Performance indices for feedforward control

Calculation of IAEFF for classical FF scheme

In this case, the transfer function from the disturbance to the error is

Gy/d(s) = −Pd(s) + Pu(s)C f f (s)

1 + Pu(s)C f b(s)
=

κd
e−sλd

1 + sτd
− κd

e−sλu

1 + sτd

1 + κu
e−sλu

1 + sτu
κ f b

1 + sτi

sτi

Considering the lambda tuning rule and that the delays are

approximated as

e−λus ∼= 1 − λus, e−λds ∼= 1 − λds

It results in:

Gy/d(s) = −κd(λu + τbc)(λu − λd)s
2

(1 + τds)(1 + τbcs)
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Performance indices for feedforward control

Calculation of IAEFF for classical FF scheme

The IE value for this case becomes

IEFF =
∫

∞

0
e(t)dt = lim

s→0
s · 1

s
Gy/d(s)

Ad

s
= 0.

which demonstrates that zero steady-state error can be achieved by

using feedforward control.
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Performance indices for feedforward control

Calculation of IAEFF for classical FF scheme
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Performance indices for feedforward control

Calculation of IAEFF for classical FF scheme

Now, it is worth determining the expression of the error in the time

domain when a step signal of amplitude Ad is applied as a

disturbance. We have

e(t) =



















κd Ad(λu + τbc)(λu − λd)

τbcτd(τbc − τd)

(

τde−t/τbc − τbce
−t/τd

)

τbc 6= τd

κd Ad(λu + τbc)(λu − λd)

τ2
d

(

1 − t

τd

)

e−t/τd τbc = τd
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Performance indices for feedforward control

Calculation of IAEFF for classical FF scheme
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Performance indices for feedforward control

Calculation of IAEFF for classical FF scheme

We can therefore calculate the area of the first part of the transient as

A1 =
∫ t0

0
e(t)dt =















κd Ad

τd
(λu + τbc)(λu − λd)

(

τbc

τd

)−
τbc

τbc − τd τbc 6= τd

κd Ad

τd
(λu + τbc)(λu − λd)e

−1 τbc = τd
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Performance indices for feedforward control

According to

IEFF =
∫

∞

0
e(t)dt = lim

s→0
s · 1

s
Gy/d(s)

Ad

s
= 0.

the area |A2| in the previous figure is equal to |A1|, and the IAE
value can finally be determined as

IAEFF = 2|A1| =















2
κd Ad

τd
(λu + τbc)(λu − λd)

(

τbc

τd

)−
τbc

τbc − τd τbc 6= τd

2
κd Ad

τd
(λu + τbc)(λu − λd)e

−1 τbc = τd
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Performance indices for feedforward control

Calculation of IAEFF for non-interacting FF scheme

In this case, the IAEFF estimation can be obtained in a straightforward

manner, as the effect from the feedback controller is removed.

The IAE result obtained in the non-invertible delay case can be

reformulated as

IAEFF = κd Ad

(

(λu − λd)− (τd − τu − τu + τu)

(

1 − 2e
− λu−λd

τd−τu−τu+τu

))

= κd Ad

(

1 − τd − τu − τu + τu

λu − λd

(

1 − 2e
− λu−λd

τd−τu−τu+τu

))

(λu − λd)

= κd Ad

(

1 − 1

a
+

2

a
e−a

)

(λu − λd)

= κd Adα(λu − λd)

where

α = 1 − 1

a
+

2

a
e−a, a =

λu − λd

τd − τu − τu + τu
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Performance indices for feedforward control

Analysis and discussion on the indices

Feedback control without feedforward:

IAEFB = κd Ad(λu + τbc)

Feedforward with classical control scheme and classical tuning:

IAEFF = 2
κd Ad

τ
(λu + τbc)(λu − λd) f (τbc/τd) (1)

where

f (τbc/τd) =















(

τbc

τd

)−
τbc

τbc − τd τbc 6= τd

e−1 τbc = τd

(2)

Feedforward with non-interacting control scheme:

IAEFF = ακd Ad(λu − λd)

where α can vary based on the τf f value.
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Performance indices for feedforward control

Analysis and discussion on the indices

The ratio between the IAE value of the classical scheme and the

noninteracting scheme is

IAEclassical

IAEnoninteracting
=

2(λu + τbc) f (τbc/τd)

τdα

Therefore, the classical scheme gives a smaller IAE value when

τd >
2(λu + τbc) f (τbc/τd)

α
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Performance indices for feedforward control

Index interpretation

For the classical feedforward control case, the index becomes

IFF/FB = 1 − IAEFF

IAEFB
= 1 − 2(λu − λd)

τd
f (τbc/τd)

For the noninteracting feedforward control scheme, the index is given

by

IFF/FB = 1 − IAEFF

IAEFB
= 1 − α(λu − λd)

λu + τbc
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Performance indices for feedforward control

Example 1

Pu(s) =
e−2s

10s + 1
Pd(s) =

e−s

5s + 1

Using lambda tuning with τbc = τu = 10 gives the PI controller

parameters κ f b = 0.83 and τi = 10.

The feedforward compensators are defined as

C f f (s) =
10s + 1

5s + 1

for the classical feedforward control scheme and as

C f f =
10s + 1

4.4s + 1

for the non-interacting feedforward control scheme (to minimize IAE).
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Performance indices for feedforward control

Example 1

Control scheme IAEr IAEe IFF/FB

Feedback 11.99 12 –

Classical FF 1.21 1.2 0.9

Non-interacting FF 0.63 0.63 0.95
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Performance indices for feedforward control

Example 1
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Performance indices for feedforward control

Example 2

The differences between the pure feedback scheme and the

feedforward schemes can be reduced by retuning the PI controller to

obtain a more aggressive response. Lets retune the PI controller only

for the case when pure feedback is used, by using τbc = 0.25τu.
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Performance indices for feedforward control

Example 2

Control scheme IAEr IAEe IFF/FB

Feedback 4.5 4.5 –

Classical FF 1.21 1.2 0.73

Non-interacting FF 0.63 0.63 0.86
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Performance indices for feedforward control

Example 2
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Performance indices for feedforward control

Example 3

Assume that τbc = τu = λu. It means that we have a process model

Pu(s) where the delay is equal to the time constant and that the

lambda tuning rule is used with τbc = τu. Two different values of the

time constant τd = ηλu, where η = 1 or 10.

107/119 José Luis Guzmán Sánchez Advances in Feedforward Control for Measurable Disturbances



Performance indices for feedforward control

Example 3
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Performance indices for feedforward control

Example 3

τd Control scheme IAEr IAEe Ir
FF/FB Ie

FF/FB

λu Feedback 2.04 2.0

Classical FF 1.43 1.47 0.30 0.26

Non-interacting FF 0.63 0.63 0.69 0.69

10λu Feedback 2.00 2.0

Classical FF 0.34 0.31 0.83 0.85

Non-interacting FF 0.63 0.63 0.69 0.69
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Performance indices for feedforward control

Example 3
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Performance indices for feedforward control

Example 3
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Conclusions

The motivation for feedforward tuning rules was introduced.

The feedback effect on the feedforward design was analyzed.

The different non-realizable situations were studied.

The two available feedforward control schemes were used.

Simple tuning rules based on the process and feedback

controllers parameters were derived.

Performance indices for feedforward control were proposed.
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Conclusions

Future research

What else can be done?

Nominal tuning. Unified methodology for low-order feedforward

controllers tuning

Robust tuning. Scale up to other feedforward structures

DTC with feedforward action. Extension to MIMO processes

Experimental results. Validate the theoretically claimed benefits

Distributed parameter systems. Feedforward tuning rules to

deal with resonance dynamics
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4 J.L. Guzmán, T. Hägglund, A. Visioli. Feedforward Compensation for PID Control Loops.

In PID Control in the Third Millennium, Springer, 2012, pp. 207-234. ISBN

978-1-4471-2424-5.

5 J.L. Guzmán, T. Hägglund, M. Veronesi, A. Visioli. Performance indices for feedforward

control. Journal of Process Control, 2014 (Under review).
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End of the presentation

Thank you for your attention
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