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Feedforward control problem

r u y

d

ΣΣΣ C(s) Pu(s)

−1

−F(s) Pd(s)

F(s) =
Pd(s)

Pu(s)

Y = (Pd − PuF)D
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Feedforward control problem

Perfect compensation is seldom realizable:

Non-realizable delay inversion.

Right-half plan zeros.

Integrating poles.

Improper transfer functions (high orders).

Classical solution

Ignore the non-realizable part of the compensator and implement the

realizable one. In practice, static gain feedfoward compensators are

quite common.
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Feedforward control problem

Motivation

Feedforward compensators are tuned according to open-loop rules,

F(s) = Pd(s)/Pu(s), but when perfect compensation is not possible

the feedback controller deteriorates the response.

r u y

d

ΣΣΣ C(s) Pu(s)

−1

−F(s) Pd(s)
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Feedforward control problem

Motivation

Lets consider the process and disturbance transfer functions are

first-order systems with time delay:

Pu(s) =
ku

τus + 1
e−sLu , Pd(s) =

kd

τds + 1
e−sLd

The feedback controller is a PID controller and the feedforward

compensator is evaluated as a static controller and as a lead-lag filter:

F(s) = K f f , F(s) = K f f
Tzs + 1

Tps + 1
e−sL f f
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Feedforward control problem

Motivation

Then, lets consider a delay inversion problem, i.e., Ld < Lu. Then, the

resulting feedforward compensators are given by:

F(s) = K f f =
kd

ku

F(s) = K f f
Tzs + 1

Tps + 1
e−sL f f =

kd

ku

τus + 1

τds + 1
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Feedforward control problem

Motivation

Example:

Pu(s) =
1

2s + 1
e−2s, Pd(s) =

1

s + 1
e−s

F(s) = 1, F(s) =
2s + 1

s + 1
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Feedforward control problem
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(a) Open-loop response
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(b) Closed-loop response
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Feedforward control problem

Motivation

Conclusion

There is a need for tuning rules that take the feedback controller into

account in the feedforward design.
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Feedforward control problem

Motivation

There are not only a few tuning rules for feedforward control in

literature:

D. Seborg, T. Edgar, D. Mellichamp, Process Dynamics and Control,

Wiley, New York, 1989.

Shinskey, Process Control Systems. Application Design Adjustment,

McGraw- Hill, New York, 1996.

C. Brosilow, B. Joseph, Techniques of Model-Based Control,

Prentice-Hall, New Jersey, 2002.

A. Isaksson, M. Molander, P. Modn, T. Matsko, K. Starr, Low-Order

Feedforward Design Optimizing the Closed-Loop Response, Preprints,

Control Systems, 2008, Vancouver, Canada.
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Feedforward control problem

Non-interacting control scheme or Brosilow scheme:

r u y

d

ΣΣΣ C(s) Pu(s)

−1

F(s)H(s) Pd(s)

F(s) =
Pd(s)

Pu(s)
, H(s) = Pd(s)− Pu(s)F(s)
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Feedforward tuning rules

Cases to be evaluated in this talk:

Non-realizable delay inversion.

Right-half plan zeros.

Integrating poles.
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Feedforward tuning rules: non-realizable delay
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(b) Closed-loop response
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Feedforward tuning rules: non-realizable delay

Two approaches:

r u y

d

ΣΣΣ C(s) Pu(s)

−1

F(s) Pd(s)

r u y

d

ΣΣΣ C(s) Pu(s)

−1

F(s)H(s) Pd(s)
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Feedforward tuning rules: non-realizable delay

First approach

To deal with the non-realizable delay case, the first approach was to

work with the following:

Use the classical feedforward control scheme.

Remove the overshoot observed in the response.

Proposed a tuning rule to minimize Integral Absolute Error (IAE).

The rules should be simple and based on the feedback and

model parameters.

17/89 José Luis Guzmán Advances in Feedforward Control



Feedforward tuning rules: non-realizable delay

To remove the overshoot, the feedback control action is taken into

account to calculate the feedforward gain, K f f .

∆u =
K

Ti

∫

edt =
K

Ti
IE · d

So, in the new rule, the goal is to take the control signal to the correct

stationary level −∆u in order to take the feedback control signal into

account and reduce the overshoot. The gain is therefore reduced to

K f f =
K3

K1

− K

Ti
IE

Closed-loop design
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Feedforward tuning rules: non-realizable delay

IE estimation:

Y = (Pd − PuF)D = PdD − PuFD

y(t)− ysp =











kd

(

1 − e
− t

τd

)

d 0 ≤ t ≤ Lb

kd

(

(

1 − e
− t

τd

)

−
(

1 − e
− t−Lb

Tb

))

d Lb < t

Lb = max(0, Lu − Ld), Tb = τu + Tp − Tz
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Feedforward tuning rules: non-realizable delay

IE estimation:

IE · d =
∫ ∞

0
(y(t)− ysp)dt

= kd

∫ Lb

0

(

1 − e
− t

τd

)

d dt + kd

∫ ∞

Lb

(

−e
− t

τd + e
− t−Lb

Tb

)

d dt

= kd

[

t + τde
− t

τd

]Lb

0
d + kd

[

τde
− t

τd − Tbe
− t−Lb

Tb

]∞

Lb

d

= kd

(

Lb + τde−
Lb
Ta − τd − τde

− Lb
τd + Tb

)

d

= kd (Lb − τd + Tb) d
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Feedforward tuning rules: non-realizable delay

IE estimation:

IE =

{

kd(τu − τd + Tp − Tz) Ld ≥ Lu

kd(Lu − Ld + τu − τd + Tp − Tz) Ld < Lu

K f f =
K3

K1

− K

Ti
IE
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Feedforward tuning rules: non-realizable delay

Gain reduction rule:
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(b) Lead/Lag feedforward

 

 

0 5 10 15 20 25 30 35 40 45 50
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

t

u

 

 

Without Feedforward
No K

ff
 reduction

K
ff
 reduction

Without Feedforward
No K

ff
 reduction

K
ff
 reduction
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Feedforward tuning rules: non-realizable delay

Once the overshoot is reduced, the second goal is to design Tz and Tp

to minimize the IAE value. In this way, we keep Tz = τu to cancel the

pole of Pu and fix the pole of the compensator:

IAE =
∫ ∞

0
|y(t)|dt =

∫ t0

0
y(t)dt −

∫ ∞

t0

y(t)dt

where t0 is the time when y crosses the setpoint, with ysp = 0 and

d = 1.
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Feedforward tuning rules: non-realizable delay

y(t)− ysp =











kd

(

1 − e
− t

τd

)

d 0 ≤ t ≤ Lb

kd

(

(

1 − e
− t

τd

)

−
(

1 − e
− t−Lb

Tb

))

d Lb < t

IAE =
∫ ∞

0
|y(t)|dt =

∫ t0

0
y(t)dt −

∫ ∞

t0

y(t)dt

t0

τd
=

t0 − Lb

Tb
=

τdLb

τd − Tb
=

τd

τu − Tp
Lb
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Feedforward tuning rules: non-realizable delay

IAE =
∫ Lb

0

(

1 − e
− t

τd

)

dt +
∫ t0

Lb

(

−e
− t

τd + e
− t−Lb

Tb

)

dt −
∫ ∞

t0

(

−e
− t

τd + e
− t−Lb

Tb

)

dt

=

[

t + τde
− t

τd

]Lb

0

+

[

τde
− t

τd − Tbe
− t−Lb

Tb

]t0

Lb

−
[

τde
− t

τd − Tbe
− t−Lb

Tb

]∞

t0

= Lb − τd + Tb + 2τde
− t0

τd − 2Tbe
− t0−Lb

Tb

= Lb − τd + Tb + 2τde
− Lb

τd−Tb − 2Tbe
− Lb

τd−Tb

= Lb − τ

(

1 − 2e−
Lb
τ

)

with τ = τd − Tp.
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Feedforward tuning rules: non-realizable delay

d

dτ
IAE = −1 + 2e−

Lb
τ + 2

Lb

τ
e−

Lb
τ = −1 + 2(1 + x)e−x = 0

where x = Lb/τ. A numerical solution of this equation gives x ≈ 1.7,

which gives

Tp = Tb − τd + τu = τd − τ ≈ τd −
Lb

1.7

Tp =











τu Lu − Ld ≤ 0

τd −
Lu − Ld

1.7
0 < Lu − Ld < 1.7τd

0 Lu − Ld > 1.7τd
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Feedforward tuning rules: non-realizable delay

Gain and Tp reduction rule:
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Feedforward tuning rules: non-realizable delay

Gain and Tp reduction rule:
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IAE 9.03 1.76 1.37 0.59
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Feedforward tuning rules: non-realizable delay

First approach: Guideline summary

1 Set Tz = T1 and calculate Tp as:

Tp =











T3 L1 − L3 ≤ 0

T3 −
L1 − L3

1.7
0 < L1 − L3 < 1.7T3

0 L1 − L3 > 1.7T3

2 Calculate the compensator gain, K f f , as

K f f =
K3

K1

− K

Ti
IE

IE =

{

K2K3(T1 − T3 + Tp − Tz) L3 ≥ L1

K2K3(L1 − L3 + T1 − T3 + Tp − Tz) L3 < L1
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Feedforward tuning rules: non-realizable delay

Second approach

To deal with the non-realizable delay case, the second approach was

to work with the following:

Use the non-interacting feedforward control scheme (feedback

effect removed).

Obtain a generalized tuning rule for Tp for moderate, aggressive

and conservative responses.

The rules should be simple and based on the feedback and

model parameters.
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Feedforward tuning rules: non-realizable delay

Second approach

The main idea of this second approach relies on analyzing the residual

term appearing when perfect cancelation is not possible:

y

d
= Pd − PuF = Pd − Pf f , Pf f = PuF

y

d
=

kd

τds + 1
e−Lds − kd

Tps + 1
e−Lus
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Feedforward tuning rules: non-realizable delay

0 5 10 15 20 25

0

0.1

0.2

0.3

0.4

0.5

0.6

time

ou
tp

ut

 

 
P

3
 output

P
ff
 output

Initial Error
Overshoot Error

0 5 10 15 20 25
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

time

ou
tp

ut

 

 
Process output
Initial Error
Overshoot Error

y

d
=

kd

τds + 1
e−Lds − kd

Tps + 1
e−Lus
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Feedforward tuning rules: non-realizable delay

From the previous analysis, it can be concluded that in order to totally

remove the overshoot for the disturbance rejection problem by using a

lead-lag filter, the settling times of both transfer functions must be the

same:

y

d
=

kd

τds + 1
e−Lds − kd

Tps + 1
e−Lus

Tp =
4τd + Ld − Lu

4
= τd −

Lb

4

Tp = τd −
Lu − Ld

1.7
= τd −

Lb

1.7
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Feedforward tuning rules: non-realizable delay

Notice that the new rule for Tp implies a natural limit on performance.

If parameter Tp is chosen larger, performance will only get worse

because of a late compensation. The only reasons why Tp should be

even larger is to decrease the control signal peak:

Tp = τd −
Lb

4
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Feedforward tuning rules: non-realizable delay

So, two tuning rules are available:

Tp =
4τd + Ld − Lu

4
= τd −

Lb

4

Tp = τd −
Lu − Ld

1.7
= τd −

Lb

1.7

And a third one (a more agreessive rule) can be calculated to minimize

Integral Squared Error (ISE) instead of IAE such as proposed in the

first approach.
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Feedforward tuning rules: non-realizable delay

ISE minimization:

ISE =
∫ ∞

Lb

(

e
− (t−Lb)

Tp − e
− t

T3

)2

dt

=
∫ ∞

Lb

(

e
− 2(t−Lb)

Tp − 2e
− τd(t−Lb)+Tpt

τd Tp + e
− 2t

τd

)

dt

=− Tp

2

[

e
− 2(t−Lb)

Tp

]∞

Lb

+ 2
τdTp

τd + Tp

[

e
− τd(t−Lb)+Tpt

τd Tp

]∞

Lb

− τd

2

[

e
− 2t

τd

]∞

Lb

=
Tp

2
− 2τd

Tp

τd + Tp
e
− Lb

τd +
τd

2
e
− 2Lb

τd
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Feedforward tuning rules: non-realizable delay

ISE minimization:

d ISE

d Tp
=

1

2
− 2τde

− Lb
τd

(

1

τd + Tp
+

−Tp

(τd + Tp)2

)

=
1

2
− 2τ2

d

(τd + Tp)2
e
− Lb

τd = 0

T2
p + 2τdTp + τ2

d (1 − 4e
− Lb

τd ) = 0

Tp =
−2τd +

√

4τ2
d − 4τ2

d (1 − 4e
− Lb

τd )

2
= τd

(

2

√

e
− Lb

τd − 1

)
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Feedforward tuning rules: non-realizable delay

Thus, three tuning rules are available:

Tp = τd −
Lb

4

Tp = τd −
Lb

1.7

Tp = τd

(

2

√

e
− Lb

τd − 1

)

which can be generalized as:

Tp = τd −
Lb

α
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Feedforward tuning rules: non-realizable delay

Second approach: Guideline summary

1 Set Tz = T1, K f f = kd/ku and calculate Tp as:

Tp =







T3 Lb ≤ 0

T3 − Lb
α 0 < Lb < 4T3

0 Lb ≥ 4T3

2 Determine Tp with Lb/T3 < α < ∞ using:

α =























Lb

2T3

(

1−
√

e−Lb/T3

) aggressive (ISE minimization)

1.7 moderate (IAE minimization)

4 conservative (Overshoot removal)
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Feedforward tuning rules: non-realizable delay
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Feedforward tuning rules: non-realizable delay

ISE IAE uinit J1 J2

Hast and Hägglund 0.0739 0.6423 38.7800 2.5710 0.8979

ISE Minimization 0.0896 0.6021 8.0090 0.9993 0.8615

IAE Minimization 0.0975 0.5641 5.3680 0.9113 0.8315

Overshoot Removal 0.1277 0.6833 3.6920 0.9323 0.8870

J1(F, B) =
1

2

(

ISE(F)

ISE(B)
+

ISC(F)

ISC(B)

)

, ISC =
∫ ∞

0
u(t)2 dt

J2(F, B) =
1

2

(

IAE(F)

IAE(B)
+

IAC(F)

IAC(B)

)

, IAC =
∫ ∞

0
|u(t)|dt
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Feedforward tuning rules: non-realizable delay

Second approach: A switching solution

It is clear that if the compensation is made too fast, the output will

suffer a bigger overshoot error, while if it is too slow, the compensator

will take too much time to reject the disturbance and it will have a

bigger residual error. Therefore, a switching rule can be proposed in

such a way that the feedforward compensator reacts fast before the

outputs cross in order to decrease the residual error, and slower after

this time to avoid the overshoot because of the residual error.
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Feedforward tuning rules: non-realizable delay

Second approach: A switching solution
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Feedforward tuning rules: non-realizable delay

Second approach: A switching solution
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Feedforward tuning rules: non-realizable delay
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Feedforward tuning rules: non-realizable delay

Second approach: the switching solution guideline

1 Set Tp to a value as close to 0 as possible (tradeoff with the

control signal peak).

2 Wait until a step load disturbance is detected at time instant td.

Define tcross and trestore. Set tchange = tcross − L1.

3 Using a non-interacting scheme, set C f f and H as follows:

C f f (s) =























K3

K1

1 + T1s

1 + T3s
tchange ≤ t ≤ tr

K3

K1

1 + T1s

1 + Tps
otherwise

4 Go to step 2.
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Feedforward tuning rules: non-realizable delay
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Feedforward tuning rules: non-realizable delay

ISE IAE uinit J1 J2

ISE Minimization 0.0896 0.6021 8.0090 0.9993 0.8615

IAE Minimization 0.0975 0.5641 5.3680 0.9113 0.8315

Switching 0.0889 0.4252 6.2160 0.9062 0.7527
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Feedforward tuning rules: non-realizable delay

0 5 10 15 20 25
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time

ou
tp

ut

 

 
Hast and Hägglund
Switching

0 5 10 15 20 25
-40

-35

-30

-25

-20

-15

-10

-5

0

time

co
nt

ro
l s

ig
na

l

 

 

Hast and Hägglund
Switching

ISE IAE uinit J1 J2
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Feedforward tuning rules: RH plane zeros

Right-half plane zeros

Pu(s) =
ku (−βus + 1)

D−
u (s)

e−Lus βu > 0

Pd(s) =
kd

D−
d (s)

e−Lds

such that D−
u (s) = 1 + ∑

nu
i=1

au[i]si and D−
d (s) = 1 + ∑

nd

i=1
ad[i]s

i

are polynomials with nu and nd degree, respectively, such that all their

roots are located in the LHP (left-half plane). Moreover, Lu ≤ Ld.
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Feedforward tuning rules: RH plane zeros

r u y

d

ΣΣΣ C(s) Pu(s)

−1

F(s)H(s) Pd(s)

H(s) = Pd(s)− Pu(s)F(s)
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Feedforward tuning rules: RH plane zeros

y(s)

d(s)
= e−Lds

(

kd

D−
d (s)

− F(s)
ku (−βus + 1)

D−
u (s)

e−(Lu−Ld)s

)

F(s) =
kd

κu
· D−

u (s)

D−
d (s)

·

(

1 + ∑
m f f

i=1
β f f [i]s

i
)

(

Tps + 1
)n f f

e−(Ld−Lu)s

y(s)

d(s)
=

kde−Lds

D−
d (s)



1 −

(

1 + ∑
m f f

i=1
β f f [i]s

i
)

(−βus + 1)
(

Tps + 1
)n f f
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Feedforward tuning rules: RH plane zeros

y(s)

d(s)
= e−Lds

(

kd

D−
d (s)

− F(s)
ku (−βus + 1)

D−
u (s)

e−(Lu−Ld)s

)

F(s) =
kd

κu
· D−

u (s)

D−
d (s)

·

(

1 + ∑
m f f

i=1
β f f [i]s

i
)

(

Tps + 1
)n f f

e−(Ld−Lu)s

y(s)

d(s)
=

kde−Lds

D−
d (s)



1 −

(

1 + ∑
m f f

i=1
β f f [i]s

i
)

(−βus + 1)
(

Tps + 1
)n f f
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Feedforward tuning rules: RH plane zeros

y(s)

d(s)
= e−Lds

(

kd

D−
d (s)

− F(s)
ku (−βus + 1)

D−
u (s)

e−(Lu−Ld)s

)

F(s) =
kd

κu
· D−

u (s)

D−
d (s)

·

(

1 + ∑
m f f

i=1
β f f [i]s

i
)

(

Tps + 1
)n f f

e−(Ld−Lu)s

y(s)

d(s)
=

kde−Lds

D−
d (s)



1 −

(

1 + ∑
m f f

i=1
β f f [i]s

i
)

(−βus + 1)
(

Tps + 1
)n f f
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Feedforward tuning rules: RH plane zeros

By using the binomial theorem, the previous expression results in:

y(s)

d(s)
=

kdP0s
(

Tps + 1
)nu

· P(s)

D−
d (s)

e−Lds

with

P(s) = P−1
0

(

βu

nd

∑
i=1

β f f [i]s
i −

nd−1

∑
i=1

β f f [i + 1]si +
nu−1

∑
i=1

nu!

(i + 1)! (nu − i − 1)!
T i+1

p si

)

+ 1

(1)

P0 = nuTp + βu − β f f [1]
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Feedforward tuning rules: RH plane zeros

After solving β f f [i] coefficients and cancelling D−
d (s), it is obtained

that

Gd(s) =
y(s)

d(s)
=

κy/ds
(

Tps + 1
)nu

e−Lds

with

κy/d = kd

β
nd−nu+1
u

(

βu + Tp

)nu

β
nd
u + ∑

nd

l=1
ad[l]β

nd−l
u

And where the unitary step response is given by

y(t) =
κy/d (t − Ld)

nu−1

Tnu
p (nu − 1)!

e
− (t−Ld)

Tp
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Feedforward tuning rules: RH plane zeros

After solving β f f [i] coefficients and cancelling D−
d (s), it is obtained

that

Gd(s) =
y(s)

d(s)
=

κy/ds
(

Tps + 1
)nu

e−Lds

with

κy/d = kd

β
nd−nu+1
u

(

βu + Tp

)nu

β
nd
u + ∑

nd

l=1
ad[l]β

nd−l
u

And where the unitary step response is given by

y(t) =
κy/d (t − Ld)

nu−1

Tnu
p (nu − 1)!

e
− (t−Ld)

Tp
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Feedforward tuning rules: RH plane zeros

Three different tuning rules are proposed for Tp looking for

Obtaining a desired settling time.

Minimize the H∞ norm.

Minimize the H2 norm.
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Feedforward tuning rules: RH plane zeros

Settling time rule

y(t) =
κy/d (t − Ld)

nu−1

Tnu
p (nu − 1)!

e
− (t−Ld)

Tp

The settling time is defined as the time that the system takes to reach

around 5% of its maximum value

y(t5%) = 0.05Mpeak

dy(t)

dt
= 0 ⇒ tpeak ⇒ Mpeak ⇒ t5%
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Feedforward tuning rules: RH plane zeros

Settling time rule

t5% = Ld + xTp, 0.05 − xnu−1

(nu − 1)nu−1
e−x+nu−1 = 0

Tp =
(t5% − Ld)

x

For nu = 1, the following solution is obtained

Tp ≈ t5%−Ld

3
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Feedforward tuning rules: RH plane zeros

Settling time rule: Example

Pu(s) =
−0.8s + 1

s2 + s + 1
, Pd(s) =

0.45

0.75s + 1

C f f (s) = 0.45
s2 + s + 1

0.75s + 1
· β f f [1]s + 1
(

τf f s + 1
)2

To cancel the stable pole of Pd(s), it is necessary to set

β f f [1] = −0.6452τ2
f f + 0.9677τf f + 0.3871

Then, Tp is selected according to the desired settling time

Tp ≈ t5%

5.74
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Feedforward tuning rules: RH plane zeros
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Feedforward tuning rules: RH plane zeros

Feedforward controller β f f [1] Tp

t5% = 4 0.75 0.70

t5% = 3 0.72 0.52

t5% = 2 0.65 0.35
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Feedforward tuning rules: RH plane zeros

H∞-norm rule

y(t) =
κy/d (t − Ld)

nu−1

Tnu
p (nu − 1)!

e
− (t−Ld)

Tp

An H∞ optimal feedforward compensator to minimize the maximum

value of the disturbance response can be found by minimizing the

absolute value of the maximum peak:

d ‖y(t)‖∞

dTp
= 0

(

βu + Tp

)nu−1 (

nuTp −
(

βu + Tp

))

= 0 ⇒ Tp =
βu

nu − 1
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Feedforward tuning rules: RH plane zeros

H2-norm rule

y(t) =
κy/d (t − Ld)

nu−1

Tnu
p (nu − 1)!

e
− (t−Ld)

Tp

An H2 optimal feedforward compensator of the disturbance response

can be found by minimizing the absolute value of the output:

d ‖y(t)‖2

dTp
= 0

T−1.5
p

(

βu + Tp

)nu−1 (
nuTp − 0.5

(

βu + Tp

))

= 0 ⇒ Tp =
βu

2nu − 1
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Feedforward tuning rules: RH plane zeros

H∞ and H2 rules: Example

Pu(s) =
−s + 1

(0.25s + 1)4
, Pd(s) =

0.85

(0.9s + 1)3

C f f (s) = 0.85
(0.25s + 1)4

(0.9s + 1)3
· 1 + ∑

3
i=1 β f f [i]s

i

(

τf f s + 1
)4

Feedforward controller β f f [1] β f f [2] β f f [3] Tp

H2 1.32 0.77 0.18 0.14

H∞ 1.87 1.30 0.32 0.33
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Feedforward tuning rules: RH plane zeros
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Feedforward tuning rules: RH plane zeros

Feedforward controller ‖y(t)‖1 ‖y(t)‖2 ‖y(t)‖∞

Gain 80.47 3.85 0.33

Lead-lag 51.51 2.39 0.16

H2 12.68 1.33 0.20

H∞ 23.50 1.61 0.16
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Feedforward tuning rules: RH plane zeros

1 Set Tp according to the desired specification:

Settling time : Tp = (t5% − Ld) /x

H∞ : Tp =
βu

nu − 1

H2 : Tp =
βu

2nu − 1
.

2 Obtain the coefficients β f f [i] to cancel D−
d (s).

3 Define the feedforward compensator F(s) as

F(s) =
kd

ku
· D−

u (s)

D−
d (s)

·

(

1 + ∑
m f f

i=1
β f f [i]s

i
)

(

Tps + 1
)n f f

e−(Ld−Lu)s

4 Set H(s) = Pf f (s) = Pd(s)− F(s)Pu(s).
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Feedforward tuning rules: integrators

Integrating poles

Pu(s) =
ku

Du(s)stu

Pd(s) =
kd

D−
d (s)

such that Du(s) = 1 + ∑
nu
i=1

au[i]si is a polynomial of degree nu and

D−
d (s) = 1 + ∑

nd

i=1
ad[i]s

i is a polynomial of degree nd with all its

roots in the left half plane (LHP), and tu is the type of process Pu(s).
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Feedforward tuning rules: integrators

r u y

d

ΣΣΣ C(s) Pu(s)

−1

F(s) Pd(s)
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Feedforward tuning rules: integrators

In this case, the feedback controller will be defined as follows

C f b(s) = κ f b

N f b(s)

D f b(s)s
t f b

such that t f b is the type of C f b(s).

And the reference tracking response can be expressed as

y(s)

r(s)
=

N f b(s)

Dcl(s)

where Dcl(s) is a polynomial of degree ncl that represents the

closed-loop system dynamics.
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Feedforward tuning rules: integrators

y(s)

d(s)
=

(

kd

D−
d (s)

− F(s)
ku

Du(s)
s−tu

)

Du(s)stu D f b(s)s
t f b

Dcl(s)

=

(

kddDu(s)stu

D−
d (s)

− F(s)ku

)

D f b(s)s
t f b

Dcl(s)

F(s) =
kd

ku

1

D f b(s)D−
d (s)

1 + ∑
m f f

i=1
β f f [i]s

i

(

Tps + 1
)n f f
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Feedforward tuning rules: integrators

y(s)

d(s)
=

(

kd

D−
d (s)

− F(s)
ku

Du(s)
s−tu

)

Du(s)stu D f b(s)s
t f b

Dcl(s)

=

(

kddDu(s)stu

D−
d (s)

− F(s)ku

)

D f b(s)s
t f b

Dcl(s)

F(s) =
kd

ku

1

D f b(s)D−
d (s)

1 + ∑
m f f

i=1
β f f [i]s

i

(

Tps + 1
)n f f
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Feedforward tuning rules: integrators

By substituting the proposed compensator in the disturbance rejection

response, it is obtained that

y(s)

d(s)
= Gy/d(s) =

−kddst f b

(

Tps + 1
)n f f

P(s)

Dcl(s)D−
d (s)

with

P(s) = 1 +
m f f

∑
i=1

β f f [i]s
i −
(

Tps + 1
)n f f D f b(s)Du(s)s

tu

The idea is to cancel all stable roots of Dcl(s) and D−
d (s) with β f f [i]

coefficients.
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Feedforward tuning rules: integrators

So, the resulting response will not present any undesired dynamics or

undershoot. This fact can be clearly observed by its consequent time

response against unitary step

y(t) =
−kdtn f f −1

τ
n f f

f f

(

n f f − 1
)

!
e
− t

Tp
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Feedforward tuning rules: integrators

Three different tuning rules are proposed for Tp looking for

Obtaining a desired settling time.

Optimal solution for a tradeoff between maximum peak and

settling time.
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Feedforward tuning rules: integrators

Settling time rule

y(t) =
−kdtn f f −1

τ
n f f

f f

(

n f f − 1
)

!
e
− t

Tp

The settling time is defined as the time that the system takes to reach

around 5% of its maximum value

y(t5%) = 0.05Mpeak

dy(t)

dt
= 0 ⇒ tpeak ⇒ Mpeak ⇒ t5%
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Feedforward tuning rules: integrators

Settling time rule

t5% =
x

Tp
, 0.05 − xn f f −1

(

n f f − 1
)n f f−1

e−x+n f f−1 = 0

Tp =
t5%

x

For nu = 1, the following solution is obtained

Tp ≈ t5%

3

75/89 José Luis Guzmán Advances in Feedforward Control



Feedforward tuning rules: integrators

Settling time rule: Example

Pu(s) =
1

s (0.25s + 1)

Pd(s) =
0.5

0.9s + 1

To obtain a reference tracking response with the closed-loop dynamics

given by Dcl(s) =
(

0.25s2 + 0.75s + 1
)2

, the feedback controller is

selected as a PID controller with a filter in the derivative term such that

C f b(s) = 2
0.56s2 + 1.5s + 1

s (0.5s + 1)
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Feedforward tuning rules: integrators

Settling time rule: Example

Then, the feedforward compensator is defined as

F(s) =
0.5

(0.025s + 1) (0.9s + 1) (0.5s + 1)

1 + ∑
6
i=1 β f f [i]s

i

(

Tps + 1
)3

Tp = 0.13t5%

Feedforward controller β f f [1] β f f [2] β f f [3] β f f [4] β f f [5] β f f [6] Tp

t5% = 5 3.42 5.17 4.25 1.90 0.43 0.04 0.65

t5% = 4 3.42 4.78 3.50 1.38 0.27 0.02 0.52

t5% = 3 3.42 4.39 2.85 0.98 0.17 0.01 0.39
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Feedforward tuning rules: integrators

Settling time rule: Example
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Feedforward tuning rules: integrators

Settling time rule: Example

Feedforward controller ‖y(t)‖1 ‖y(t)‖2 uinit

Gain 18.57 1.16 −0.30

Lead-Lag 22.91 1.32 −0.08

t5% = 5 15.14 0.83 −3.47

t5% = 4 15.10 0.92 −3.60

t5% = 3 15.05 1.06 −3.96
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Feedforward tuning rules: integrators

Optimal tuning rule

A tradeoff arises from the fact that by making Tp small, the settling

time is reduced but the maximum peak is increased.

So, a cost function to find a tradeoff between settling time and

maximum peak can be proposed as follows

J = αt5% + (1 − α)
∣

∣Mpeak

∣

∣ α ∈ (0, 1)

where α is a weighting parameter.
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Feedforward tuning rules: integrators

Optimal tuning rule

Then, substituting Mpeak and t5% equations previously calculated in J,
when J is derivative with respect to Tp and is taken equal to zero

dJ

dTp
= 0

the following solution is obtained

Tp =

√

√

√

√|kd|
(1 − α)

α

e1−n f f
(

n f f − 1
)n f f−1

x
(

n f f − 1
)

!

α can be easily used as a tuning parameter to find a desired tradeoff

between settling time and maximum peak values.

81/89 José Luis Guzmán Advances in Feedforward Control



Feedforward tuning rules: integrators

Optimal tuning rule: Example

Pu(s) =
1

s (s + 1)

Pd(s) =
0.75

(0.35s + 1)3

To obtain a reference tracking response with the closed-loop dynamics

given by Dcl(s) =
(

0.25s2 + 0.75s + 1
)2

, the feedback controller is

selected as a PID controller with a filter in the derivative term such that

C f b(s) = 3.2
0.75s2 + 1.5s + 1

s (0.2s + 1)
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Feedforward tuning rules: integrators

Optimal tuning rule: Example

Then, the feedforward compensator is defined as

F(s) =
0.75

(0.35s + 1)3 (0.2s + 1)

1 + ∑
7
i=1 β f f [i]s

i

(

τf f s + 1
)3

Feedforward β f f [1] β f f [2] β f f [3] β f f [4] β f f [5] β f f [6] β f f [7] Tp

α = 0.25 3.55 5.05 3.54 1.39 0.32 0.04 0.01 0.28

α = 0.10 3.55 5.67 4.75 2.17 0.53 0.06 0.01 0.49

α = 0.01 3.55 9.06 15.95 15.52 6.89 6.88 0.01 1.62
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Feedforward tuning rules: integrators

Optimal tuning rule: Example
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Feedforward tuning rules: integrators

Optimal tuning rule: Example

Feedforward controller ‖y(t)‖1 ‖y(t)‖2 uinit

Gain 23.35 1.40 −0.45

Lead-Lag 23.60 1.41 −0.43

α = 0.25 14.06 1.15 −6.31

α = 0.10 14.06 0.87 −1.21

α = 0.01 14.06 0.48 −0.03
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Feedforward tuning rules: integrators

1 Set Tp according to the desired specification:

Settling time : Tp = t5%/x

Optimal : tuning rule

2 Obtain the coefficients β f f [i] to cancel D−
d (s)Dcl(s).

3 Define the feedforward compensator as

F(s) =
kd

ku

1

D f b(s)D−
d (s)

1 + ∑
m f f

i=1
β f f [i]s

i

(

Tps + 1
)n f f
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Conclusions

The motivation for feedforward tuning rules was introduced.

The feedback effect on the feedforward design was analyzed.

The different non-realizable situations were studied.

The two available feedforward control schemes were used.

Simple tuning rules based on the process and feedback

controllers parameters were derived.
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End of the presentation

Thank you for your attention
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