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Beta distributions have been applied in a variety of fields in part due to its similarity
to the normal distribution while allowing for a larger flexibility of skewness and kurtosis
coverage when compared to the normal distribution. In spite of these advantages, the
two-sided power (TSP) distribution was presented as an alternative to the beta distri-
bution to address some of its short-comings, such as not possessing a cumulative density
function (cdf) in a closed form and a difficulty with the interpretation of its parame-
ters. The introduction of the biparabolic distribution and its generalization in this paper
may be thought of in the same vein. Similar to the. TSP distribution, the generalized
biparabolic (GBP) distribution also possesses a closed form cdf, but contrary to the TSP
distribution its density function is smooth at the mode. We shall demonstrate, using a
moment ratio diagram comparison, that the GBP distribution provides for a larger flex-
ibility in skewness and kurtosis coverage than the beta distribution when restricted to
the unimodal domain. A detailed mean-variance comparison of GBP, beta and TSP dis-
tributions is presented in a Project Evaluation and Review Technique (PERT) context.
Finally, we shall fit a GBP distribution to an example of financial European stock data
and demonstrate a favorable fit of the GBP distribution compared to other distributions
that have traditionally been used in that field, including the beta distribution.
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1. Introduction

The treatment of uncertainty is a problem of common interest for scientists. In
general, going from uncertainty to risk is performed by assigning a probability dis-
tribution to the phenomenon to be studied and later by estimating its parameters.
In order to do this, researchers sometimes resort either to the information supplied
by experts or to the well-known elicitation methods. Following Garthwaite et al.,!
“Blicitation is the process of formulating a person’s knowledge and beliefs about
one or more uncertain quantities into a (joint) probability distribution for those
quantities”. Another problem is that of calibration, that is to say, “the methodol-
ogy (...) to reduce the level of variation among multiple experts participating in
the elicitation”.2 Due to its flexibility the beta distribution has found some appli-
cations in a wide variety of fields. For example, the beta distribution has found a
particular application in the context of the Project Evaluation and Review Tech-
nique (PERT) (see, e.g., Malcolm et al.) to model the uncertainty on an activity
duration. When modeling the uncertainty on physical variables, some examples in-
clude relative humidity,* soil moisture index,® and daily sunshine duration data.®
Applications of the beta distribution in other fields are provided by Kirkpatrick
and Levin” and, more recently, Sherrick et al.,® Ricciardi et al.® and Palekar.!? The
probability density function (pdf) of the beta distribution is given by:

I'a+08) (x—a)* 1 (b—z)P !

IED = rarE  @-a=st .

wherea <z <b, a>0, §>0.

In spite of its popularity, it has been documented that the beta pdf (1) suffers
from some problems perhaps impeding an even wider application.}?~1% These prob-
lems pertain to the evaluation of its cdf (which is not available in a closed form
and requires numerical procedures for its evaluation) and the interpretation of its
parameters. Kotz and van Dorp?° introduced a non-smooth alternative to the beta
distribution called the TSP distribution with pdf:
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which does have a closed form cdf. Kotz and van Dorp?® summarized this contri-
bution, together with others, enlarging the available family of distributions with
bounded support.

To facilitate beta parameters estimation, Malcolm et al® introduced a pro-
cedure to solve for the four parameters of the pdf (1) through the specifica-
tion of three (a lower bound a, a most likely value ¢, and an upper bound b).
This methodology of using three parameters to solve for four has been somewhat
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controversialll=1%:16:21,22 5nd resulted in Herrerias??® who suggested a modified pro-
cedure for estimating the parameters of the pdf (1) by adding a fourth confidence
parameter n to the lower and upper bounds, a and b, and the most likely value,
¢, as suggested by Malcolm et al.® As it turns out to be the case, the confidence
parameter n in the method of Herrerias® plays the same role in the mean value
calculation of the TSP distribution (2), which is given by:

a+(n—1)¢ +b

E[X] = . 3)

In this paper, we shall propose another alternative to the beta distribution and we
will refer to it as the generalized biparabolic (GBP) distribution. Its pdf will be
constructed in Section 3 and is given by:

2m m
T—a T—a

— ifa<z<@
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g{z|a,#,b,m} = C(m) x (4)
(3_—‘”>2m~2<3:3>m if6'<z<b
b--¢ b—0') - -
where C(m) = —% The pdf (4) is smooth over its entire domain as op-
posed to the TSP distribution which is non-differentiable at the threshold parameter
¢'. However, similar to the TSP pdf (2}, the GBP distribution has a closed form ex-
pression. Figure 1 presents the density function of the GBP distribution compared

with the density function of the TSP distribution, and the shape of the noteworthy
beta distribution presented by Malcolm et al.3

—— TSP wwees BETA (Maxokn} — GBP —— TSP =emee BETA (Maicon) — GBP

Fig. 1. Density function of the TSP distribution (thin solid), beta (Malcolm) distribution (dotted)
and GBP distribution (thick solid) with a common weight for the most likely value in mean
expressions. A. ' =0.25, B. ¢/ =0.5, C. ¢ = 0.75.

The particular beta distribution presented in Figure 1 (also known as the orig-
inal PERT beta distribution) is characterized by the weight for the most likely
value in the mean value calculation being equal to 4, ie., making n = 4 in (3).
For comparison purposes, in Figure 1 we present the TSP and the GBP density
functions with this same parameter. From Figure 1, observe that, while the TSP
distribution is an alternative to the PERT beta distribution with a lesser variance,
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the GBP distribution has a higher variance. In Section 4, we shall insist more on
the comparison between the distributions in Figure 1.

The rest of the paper is organized as follows. In Section 2 we present the bi-
parabolic (BP) distribution and its geometric derivation with support [a, ], which
is reminiscent of the geometric construction of the unimodal triangular distribution,
but forcing smoothness at the mode. Section 3 shows that the BP distribution can
be generalized through the generating density in the same manner proposed by van
Dorp and Kotz,2* giving rise to the generalized biparabolic (GBP) distribution in
a manner similar to the generalization of the triangular to a TSP distribution. The
moments of the standard generalized biparabolic (SGBP) distribution, the closed
forms of the mean, variance, as well as an analysis of its moment ratio diagram are
also provided in this Section. Section 4 introduces the GBP distribution within the
PERT methodology and provides a mean-variance comparison with other distri-
butions traditionally applied in this field. In an example involving European stock
data, in Section 5 we provide a favorable fit to the GBP distribution compared
to the beta, the TSP and the asymmetric Laplace distributions. Finally, Section 6
summarizes our findings and concludes.

2. The BP Distribution

The biparabolic (BP) distribution arises, hence its name, from the conjunction of
two parabolas which share the same vertex (see Figure 2). It can be constructed as
follows: the values a, 8’ and b determine the parabolas from (a, 0) and the vertex
(¢, h) and the parabola using the point (b, 0) and the vertex (¢, h). With the
result in bold (Figure 2.B), the BP density function is presented:

A ) B

/

a g b

Fig. 2. Construction of the BP density function from the left and the right branches of two
parabolas.
The density function of the BP distribution is defined as:
filz), fa<z<¥¢
f@) = o (5)
fo(z), if¢ <z<b
It can be deduced that:

fi() = Az — @)z — (260 — a)] and fo(a) = B(@ —b)lo — (20 =B).  (6)
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The expressions of parameters A and B can be derived by requiring that f(z) is
a density function, | ab f(z)dz = 1, and the continuity condition, f1(¢') = f2(¢').
Thus, it can be demonstrated that:

3 1 3 1

A= —art—a ™M =30 oo (™)

obtaining the BP density function as:

(6 — b)2[z% — 20’z + (20’ —a)a], fa<z <@
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where C(a,8',b) = —2 —7-—37—= and the distribution function as:
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F(z) = C(a,8,b) x ) ) (9)
1_1(:1:—b) (x — 36’ +2b) 0 <z<b
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By the change of variable X = a+T'(b—a), we can standardize the variable X and
so the expression of the pdf (8) and the cdf (9), using the new variable ¢ € {0, 1],
would be:

3 1 (6 ~ 1)%[t2 — 261, ifo<t<eo
f(t)=_§02 9 —1)2 X 91,2 . (10)
(0-1) 92[t2 — 20t +20 1], fO<t<1
and
1t2(30 - t)
i S i <t<L
5 0z , fo<t<e@
)= 1(t—1)%(t—-30+2) (1)
1L T2 we<t<t

2 6 -1)2 ’

where § is the standardized parameter corresponding to ¢’.

3. The GBP Distribution

Van Dorp and Kotz2* demonstrate that, if p(y|¥) is an appropriate density function
defined on the interval [0, 1], with parameter or vector of parameters ¥, the following
unimodal density function can be constructed as a function of :

p<§|\ll), fo<t<@
g{t|6, p(y|¥)} = (12)

1-¢ :
p(ml@), fo<t<l1
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where p(y|¥) is the generating density of 9{t16,p(y|¥)}. The cdf associated with
(11) is:

ep(é;\p), fo<t<o
G{t10,p(y|0)} = - (13)
1—(1—0)P(ﬁ|\1!), fo<t<1

where P(y|¥) is the cdf of the generating density p(y|¥). From (13), the following
quantile function is obtained:

oP—l(gw), ifo<z<6
G20, P (y|0)} = (14)

1—(1—9)13—1(1:;;@), ifo<z<1

Expression (15), presented by van Dorp and Kotz,25 relates the moments of the
generating variable Y with those of the variable T

k .
E[T* = ¢**' B[y *|5] 4 Z (?) (—=1)(1 - )" Ey*|u). (15)

=0

This framework shall allow us to construct the GBP distribution obtaining its pdf
and cdf expressions as well as its moments expressions. Taking into account Eq.
(8), we can’ choose the following generating dénsity and its cdf:

PWIY) = ~ (4 - 29), (16)
P(19) = 5(34° —?) (17)

and then g{t|M, p(y|¥)} will be the density function (10) of the standardized bi-
parabolic (SBP) distribution, denoted by SBP(0, 6, 1). By the change of variable,
we obtain the BP distribution, denoted by BP(a, ¢, b). Finally, by introducing a
fourth exponential parameter m and imposing the usual conditions of a density
" function, we obtain the following generating density and its cdf:

(2m+1)(m +1)

o B C TR S (18)

p(ylm) =
and

2ym+1(2m+ 1 _y2m+1 m+1
Plym) = 3n)7,+1 .

(19)
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The generating density (17) allows us to construct densities that are smoother at
the threshold parameter 6. In effect, the so-called standard generalized biparabolic
(SGBP) distribution is obtained, whose density function will be:

2m m
t t
b — — i <
(9) 2(9) , f0<t<o

ol ptmy =0m 3 > N (20)
-1 -1 .
where C(m) = me;le(i"l“). Finally, the cdf associated to (20) will be:

(1 2™

C(m)6-~-2 - 28 : fo<t<o
2m+1  m+1
G{t18, p(ylm)} = (it (st (21)
1=t 2(1=%
1—-0 1—-6 .
L+ C(m)(0 ~ 1)~5 7 o, iff<t<]

Unstandardizing expression (20), we can obtain expression (4) which was provided
in the introduction. As shown in Figure 1, the GBP distribution adopts some shapes
similar to the normal distribution with the difference that the GBP can be asymmet-
ric. Letting m — oo, the GBP distribution converges to a degenerate distribution
with all the probability mass located at a point, and, when m — 0, it adopts the
shape of the uniform distribution.

3.1. The inverse cumulative distribution function

In order to obtain the inverse of the BP cdf, the inverse of the generating density
(17) is calculated as:

P;Nz)=1+ % + C(2), (22)

1

where C(z) = (mlj—mf) °. By substituting (22) in (14), the inverse of the
BP cdf can be constructed. Unfortunately, the quantile functions G=1{z} of the
GBP distribution are not available in a closed form. However, a numerical algorithm
has been developed whose Microsoft Excel spreadsheet is available from the authors
upon request. The aim of this algorithm is to obtain the value of y that makes
expression (19) equal to z. Nexﬁ, we present the proposed algorithm step by step:

STEP 1: By = 271, By = g7,

STEP 2: If E4 < E2 then LB = E;,UB = E;. Else LB = E,,UB = E;.
STEP 3: § = (LB + UB)/2.

STEP 4: If |P(g|m) — z| < € then STOP.

STEP 5: If |P(jlm) — z| < z then UB = §.

STEP 6: If |P(g|m) — z| > z then LB = §. (23)
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The starting interval for the bisection method is determined in Steps 1 and 2. Note
that E; and Es in Step 1 are the quantile functions of the mixture components
of P(y|lm) and the interval [LB,UB], constructed in Step 2, by design needs to
contain the solution of equation 2 = P(y|/m). From Step 3 to 6, the structure of a
standard bisection algorithm is constructed.

As an example, we calculate the median of the GBP distribution displayed in
Figure 1.A, whose parameters are § = 0.25 and m = 0.8165. By using the algorithm
above presented and implemented in Excel by the authors, we can obtain that
G~1(0.5) = 0.4331 as showed in Figures 3.A and 3.B.

1 2
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Fig. 3. Representation of the median value of the GBP distribution presented in Figure 1.A on
the cumulative distribution function (A) and the probability distribution function (B).

Through this example we demonstrate that,although the GBP distribution does not
have a closed expression for the inverse cumulative distribution function, a straight-
forward and computationally efficient algorithm (23) can be applied to evaluate the
quantile function of this distribution.

3.2. Moments expressions of the GBP distribution

We can obtain the relation between the means and variances of variables T and Y":
ET)|=(20-1)E(Y|m)+ (1-9) (24)

and
var[T] = [8° + (1 — 6)%]var(Y'|m) + (1 — O)[E(Y|m) — 1)°. (25)

At the same time, the moment of order k of the generating variable Y, defined on
the interval [0, 1], is:

2m+1)(m+1) Im+k+1
Im+1 Cm+k+1)(m+k+1)

ElYY = (26)
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Finally, the expressions of the expected value and the variance of the variable T
that follows a GBP distribution are:

_ 6m20+Tm+2

El|= ——7—
7] 6m2 + 1dm +4

(27)

and

1

T = G T 1 (m F 2R Gm + 9)(m +3) |

[(148m* 4 244m® + 40m?)(6% — 0) + (82m* + 24Tm> + 24Tm? + 96m + 12)]. (28)

The expressions of the asymmetry and kurtosis coefficients could be obtained
from (24), (26) and the well-known relation between the central and ordinary
moments.?6 Closed form expressions for skewness and kurtosis of the GBP dis-
tribution are cumbersome and have been omitted. They are available from the
authors upon request.

3.3. The moment ratio diagram

The moment ratio diagram?’ shall allow us to show the flexibility of the GBP
distribution in terms of skewness and kurtosis coverage. In order to compare, Figures
4.A and 4.B present the moment ratio diagram of the GBP and beta densities,
respectively. The parameter range of the GBP distribution is 0.01 < m < 1,000
and 0 < § < 1, and a comparable range of parameters o and § in (1)} becomes
0.01 < a < 1,000 and 0.01 < 8 < 1,000. Note that, in order to conserve the
sign of us, abscissa in Figures 4.A. and 4.B is /B instead of $81.2% On the other
hand, theses figures present an infeasible (shaded) region, since for all distributions,
B2 > (vB)® +1 holds.

The horizontally hatched area indicates the coverage of the unimodal GBP
and beta distributions. It is observed that the beta family is richer than the GBP
family when restricted to the U-shaped and the J-shaped regions since the GBP
family does not exhibit these shapes. However, the coverage area of the beta family
restricted to unimodal shapes in Figure 4.B is completely contained within the
coverage area of the GBP family. Finally, possibly most important, the values of the
kurtosis (82) for symmetric unimodal beta distributions with parameters restricted
to1 < @ < 1,000 and 8 = « are strictly less than 2.88679, while, for symmetric
unimodal GBP distributions, the values of the kurtosis can reach the value 5.0199.
Therefore, it could be said that the GBP distribution has a larger flexibility in
modeling skewed and peaked unimodal uncertainty phenomena.

4. The GBP Distribution in PERT Methodology

The beta distribution was proposed to be the underlying distribution of activity-
time uncertainty in PERT methodology.'! In the paper of Ben-Yair,?® the use of
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Fig. 4. (v/P1,B2) moment ratio diagram A. GBP distributions with parameter range 0.01 <
m < 1,000 and 0 € # < 1. B. Beta distributions with parameter range 0.01 < a < 1,000,
0.01 < 8 < 1,000.

a beta distribution is theoretically justified. As we are presenting the GBP distri-
bution as an alternative to the beta and the TSP distributions, we shall compare
their behavior within the PERT context.

PERT methodology originally assumed the beta distribution (1) as the underly-
ing distribution and Malcolm et al.3 suggested the following estimates of the mean
and the variance values: .

E[X] = a_—t4_69'_+_b_ (29)
and
_(b—a)?
var[X] = T (30)

Expressions (29) and (30) were suggested to overcome the difficulties with the
interpretations and assessment of parameters o and 3 in (1). While the use of (29)
and (30) results in the same kurtosis value as that of the normal distribution (i.e., 3),
for the beta distribution, expressions (29) and (30) do not naturally follow from (1)
and hence they have been subject to criticism since their introduction.16:17:21,22,30
Several researchers have proposed some modifications in the original PERT
expressions. Most of them assume that the beta distribution is used to model the
uncertainty in activity times. Herrerias®® suggested a modification equivalent to
(the original suggestion can be obtained substituting n — 1 = s):
8—a b—-0

a=1+(n—1)b_a andﬂ=1+(n—1)b_a

; (31)
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where n > 0 and @ < 6 < b in the beta pdf (1). The expressions of the mean and
variance are given by:

a+(n-—1)0+b
and
var[X] = n{b—a)?+(n—1)%2(b—0)(6 — a) (33)

(n+2)(n+1)2

On the other hand, various alternatives to the beta distribution have been suggested
over time, such as triangular and, more recently, the two-sided power distribution
and their generalizations®® with the following expressions for the mean and the
variance:

E[X]= ﬂ(l;_!—ll)e_"'_b (34)
and
var[X] = n(b — a)? —2(n—1)(b—9)(0—a)' (35)

(n+2){n+1)2

One of the main advantages of these alternatives is primarily that the c¢df and
quantile functions can be expressed in a closed form. Garcia et al.3! compared
the use of the TSP and the beta distributions in a PERT context and concluded
that the TSP distribution improves the behavior of the beta distribution in PERT
methodology. However, the variance of the TSP distribution (34) in a unimodal
domain is less than (33), as proposed by Herrerias.?3

By taking the linear change 6 = %I_': in expression (27), we obtain the following
expression for the mean of a GBP distribution:

_(Tm + 2)a + 6m26' + (Tm + 2)b
- 6m?2 + 1dm + 4 '

E[X]a,¢,b,m] (36)
To facilitate the comparison, we reparameterize (36) such that 6m? =n — 1. The
effect of the reparameterization above leads to the following expression for the mean
value of a GBP distribution:

_ fmat (n—18 + f(m)b
n—1+2f(n) ’

E[X|a,6',b,n) (37)
where f(n) = 7\/@—% 2 and n > 1.

Notice that expressions (32), (34) and (37) have in common that each mean
expression is a weighted average of parameters a, ' and b, where the weights sum
up to 1. Moreover, each expression weighs the most likely value with the value
(n — 1} in its numerator. Only the GBP distribution weighs the bounds with the
value f(n) in the numerator, whereas both, the TSP and beta distributions, assign
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Fig. 5. Mean and variance of the GBP, TSP and beta distributions with a common weight of
(n — 1) for the mode in mean value calculations. A. § =0.25, B. § =0.5, C. 8 =0.75, D. 8 = 0.25,
E. 9=0.5,F. 6 =0.75.

here the value 1. Since f{n) > 1, as n > 1, it is deduced that the GBP distribution
assigns a higher weight to the most likely value in the mean value calculation.

The value of n that equals the weights of both endpoints and the mode is
calculated letting f(n) = n— 1. This valle is n = 1.40407148. Hence, for values of n
greater than 1.40407148, the GBP distribution will weight the mode more than the
endpoints, while, for lesser values, the GBP distribution will weight the endpoints
more than the mode. The BP distribution, with pdf (8), is included in this last
case.

Figure 5 plots on the y-axis the standardized mean (A, B and C) and the
standard deviation (D, E and F) as a function of n for n > 1 (this coincides with
the unimodal domain of the TSP and beta distributions), for different values of
parameter 8. This is important to understand the effect of the choice of a certain
distribution describing the uncertainty of completion time distribution in a network.
From Figure 5, we can immediately conclude that, given a constant n, there is a
strict order between the variance of these three families of distributions. Thus, the
TSP variance is the smallest and the GBP is the largest one. On the other hand,
the mean values of the beta and the TSP distributions agree for all values of n,
whereas the mean value of the GBP distribution is larger (smaller), when 8 < 0.5
(6 > 0.5), than that of the beta and the TSP distributions. The main conclusion
from Figure 4 is that the GBP distribution exhibits a larger variance but a more
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moderate mean than TSP and beta distributions, while keeping the parameter n
constant. Hence, regardless of the parameter value n, one can think of the GBP
distributions being more conservative from an uncertainty analysis perspective than
beta and TSP distributions, given the same lower bound, upper bound and most
likely estimates.

5. An Example

We shall provide a data example within the financial field and compare the re-
sults using both the TSP and the beta distributions, as well as the asymmetric
Laplace given by (38) which was recently proposed to be applied in this field by
Kotz et al.3%:

25 [vile-u) wz<o
f(z]0,k,0) = (38)
_\r/r—gl—ffsz [—\/ig(z——t?)], ifz>0

where &, 0 > 0 and § € R. More concretely, our database contains information
about 1,000 daily price returns of BAY stock (DJ ES 50 market: for more details,
see http://www.stoxx.com) from June 2001 to the end of May 2005. Fama3? noted
that the variable to be studied is R; = In (;2-), where x, is the daily stock price
int(t=2,3,4,...). The values z; and one-step log differences (R:) are displayed
in Figures 6.A and 6.B, respectively.

With respect to the main characteristics of the data set, the mean is 0.00047,
with a lower bound of —0.1843572 and an upper bound of 0.3228808. The standard
deviation is 0.0006771. The coefficients of skewness and kurtosis are, respectively,
1.747 and 30.65. Because of the high coefficient of kurtosis, the normal distribution
is not considered in this empirical application. Figure 7.A provides the empirical
kernel density®* and the empirical cdf is displayed in Figure 7.B.

The use of time series data requires to test for the existence of serial correlation
which has been examined by using the auto-correlation function together with the
Ljung-Box Q statistic. Table 1 contains the values of the auto-correlation function
with lags equal to 1,2,...,7% together with the Ljung-Box Q statistic (LBQ).
From the corresponding p-values, it immediately follows that the null hypothesis

Table 1. Auto-correlation function, Ljung-Box Q statistic and p-value for one step
log differences.

Lag 1 2 3 4 5 6 7

ACF 0.0184 —-0.028  0.0312 - 0.0170 -0.0351  —0.0424  —0.0003
LBQ 0.3387 1.1589  2.1371  2.4294 3.6678 5.4840 5.4841
p-value  0.5606 0.5602  0.5444  0.6573 0.5982 0.4834 0.6011
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Fig. 7. A. Empirical kernel density estimate of R, B. Empirical cdf of R:.

(i.e., the autocorrelations for all lags are equal to zero) is accepted. Therefore, we
may reasonably conclude that the time series presented in Figure 6.B is serially
uncorrelated.
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The method of least squares is used to determine the shape parameters
(a, b, a, B) for the beta distribution, (a, #',b,n) for the TSP distribution, (a, §’, b, m)
for the GBP distribution, and (0, ¢, k) for the asymmetric Laplace, that best fit to
the data. The aim is to minimize the difference between the theoretical and the em-
pirical cdf. We consider the lowest and highest value of the data set as the starting
points for the lower bound (a) and the upper bound (b), respectively. The rest of
the parameters have been changed until getting a relatively close fit to the empirical
kernel density in Figure 7.A. Table 2 provides the starting solutions and resulting
least squares estimates for the applied distributions.

Figure 8 depicts the QQ Plot of the empirical cdf and the optimal cdf of each
distribution fitted to data. Figure 9 displays the pdf optimal solution. The GBP,
the TSP and the asymmetric Laplace distributions appear to represent the sample
data reasonably well, but the beta distribution appears to fit the data poorly.

While the plots of the empirical and the optimal fitted pdf provide useful visual
evidence, the formal goodness of fit test is used to assess the adequacy of each
distribution in representing the sample data with additional statistical evidence.
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Fig. 9. Optimal pdf. A. GBP distribution, B. TSP distribution, C. Asymmetric Laplace distri-
bution, D. Beta distribution.

Table 2. Starting points and optimal solutions obtained by the least squares method.

GBP TSP AL BETA
Start Optimal Start Optimal Start Optimal Start Optimal
1= ~—0.18436 a = 0.32012 [(a = —0.18436 a = —0.32665 |9 =0 6 = —0.00027 | a = —0.1844 a = —0.18836
¥ =0 9’ = —0.0006}89" =0 ¢ = —0.00032 |0 = 0.03 o =0.02418 {b = 0.3228 b = 0.33054
» = 0.32288 b = 0.32288 = 0.32288 b = 0.32288 k=1 « =1.07132 a = 65.25468 « = 65.25469
n=15 m = 21.5496 |n =11 n = 18.50599 B =114.74532 [ = 114.7453

The Chi-square statistic is calculated utilizing 32 bins;3¢ therefore, its expression is
given by:

Z (0; — E ) (39)

where O; is the number of observations of each bin and E; the expected number of
observations calculated as:
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Table 3. Bin boundaries and construction of the Chi-Square statistic (39) for the different
applied distributions.

GBP TSP AL BETA

LB; UB; 0; (QuzB)' OB OBy (0B
1 < —0.18 —4.61E-02 31 5.05 0.00 0.51 128.11
2 —4.61E-02 —3.44E—-02 31 0.02 0.40 0.32 1.42
3 —3.44E-02 —-2.67TE—-02 31 2.36 1.97 1.52 3.97
4 —2.67TE—-02 —2.24E-02 32 0.22 0.00 0.02 1.96
5 —2.24E-02 —1.95E-02 32 0.22 1.06 1.46 0.25
6 —1.95E-02 —1.67E—02 31 0.05 0.14 0.28 1.24
7 —1.67TE-02 —1.43E-02 30 0.29 0.01 0.04 1.59
8 —1.43E-02 —1.24E—-02 32 0.04 0.62 0.82 0.15
9 —1.24E-02 —1.05E-02 31 0.02 0.14 0.21 0.29
10 -—-1.05E-02 —-98.07E-03 31 0.87 1.90 2.08 0.50
11 —9.07TE-03 —7.86E—03 31 2.32 3.51 3.67 2.05
12 —7.86E—~03 —6.06E—-03 32 0.72 0.41 0.39 0.60
13 —6.06E—-03 —4.63E—03 31 0.00 0.00 0.00 0.05
14 —4.63E-03 -3.35E-03 31 0.14 0.03 0.02 0.52
15 -3.35E-03 -1.77E-03 31 0.81 1.91 2.13 0.20
16 —-1.77E-03 0.00E+4-00 52 2.54 0.20 0.09 5.15
17 0.00E4-00 1.07TE—-03 11 7.96 11.35 11.99 6.21
18 1.07E—-03 2.43E—-03 31 0.00 0.36 0.50 0.18
19 2.43E-03 3.84E-03 31 0.01 0.16 0.23 0.08
20 3.84E-03 5.45E-03 32 0.18 0.24 0.29 0.02
21 5.45E—-03 6.48E—03 31 4.35 4.77 4.70 5.03
22 6.48E—03 8.21E-03 31 0.22 0.06 0.05 0.19
23 8.21E—~03 9.77E-03 31 0.22 0.72 0.79 0.14
24 9.77TE—-03 1.15E-02 32 0.29 0.98 1.12 0.07
25 1.15E-02 1.31E-02 31 1.44 2.90 3.24 0.63
26 1.31E-02 1.61E-02 31 2.57 1.11 0.87 4.71
27 1.61E--02 1.87E-02 31 0.03 0.52 0.76 0.29
28 1.87E—-02 2.18E-02 - 32 0.04 0.51 0.80 0.37
29 2.18E-02 2.51E-02 31 0.80 1.76 2.29 0.01
30 2.51E-02 3.25E—~02 31 3.12 2.40 1.87 5.53
31 3.25E-02 4,.39E—-02 31 0.27 0.67 0.51 0.00
32 4.39E—-02 > 0.32 32 2.80 0.02 0.65 48.01
Total 1,000 40.00 40.80 44.20 219.55

The bin boundaries are presented in Table 3 and are selected to be the same for
every analyzed distribution in a similar way that the “equal probability method of
constructing classes”.37

We have found that the beta distribution produces the worst ﬁt with a joint
contribution of about 176 to the tail bins 1 and 32. This fact indicates that the beta
distribution is not able to fit distributions with high kurtosis and, at the same time,
heavy tails. While the TSP distribution offers the lowest contribution to the tail
bins, the GBP distribution is the best capturing the “peak” in this data set with
the lowest contribution in bins 16 and 17. Taking into account that the degrees of
freedom is 32 — k — 1 (k = number of fitted parameters), we can calculate the p-
value for the Chi Square Statistic, reported in Table 4, and conclude that the GBP
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Table 4. Goodness of fit analysis of least squares fitted distributions.

GBP TSP AL BETA
p-value Chi-Square Test 0.0513 0.0430 0.0266 4.46E-32
LSQ 0.0269 0.0944 0.1246 0.1298
KS-Statistic 0.0132 0.0225 0.0243 0.0342

distribution outperforms the other distributions for the data example in question.
Table 4 also includes the least square value and the Kolmogorov-Smirnov Statistic
which lead to the same conclusion.

6. Concluding Remarks

For the treatment of risk and uncertainty several alternatives to the beta distri-
bution have been suggested over time such as the rectangular, the triangular and,
more recently, the two-sided power distributions and their generalizations.?® All
these distributions are unimodal and defined on a restricted domain which can be
determined from the lower and upper bounds, and the most likely estimate sup-
plied by an expert. This paper presents the GBP distribution which has these same
characteristics and, moreover, is differentiable at the mode.

From the analysis of the moment ratio diagram, we can conclude that the family
of beta distributions is richer than the family of GBP distributions when restricted
to the U-shaped and the J-shaped areas. However, the coverage area of the beta
family restricted to unimodal shapes is completely contained within the coverage
area of the GBP family restricted to unimodal shapes. Therefore, as the beta dis-
tribution is applied to different fields, we propose the GBP distribution as an alter-
native to model unimodal phenomens and, concretely, when the smooth behavior
of the density function at its mode is a requirement. We provide a favorable fit of
the GBP distribution in the financial field when compared to the beta, the TSP
and the asymmetric Laplace distributions.

Finally, we have compared the GBP distribution to the beta and the TSP distri-
butions in a PERT context. Within such a context, the GBP distribution resulted
in a higher variance than the beta and the TSP distributions given the same lower,
upper and most likely estimates.
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