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SUMMARY 
 

In classical PERT, concrete values are assigned to the parameters 
determining the expected value and the variance (of a task, cash flow, etc.) 
based on the least possible, greatest possible and modal values provided by the 
expert. The use of these parameters has led to successful conclusions in 
numerous practical applications; nevertheless, their theoretical foundations have 
been debated from the start. This article attempts to find an explanation for the 
practical success of the classical PERT model, with an indepth study of its 
theoretical premises. A logical path towards the classical PERT parameters is 
presented; furthermore, this is shown to be the only constant variance model that 
has the same kurtosis as the normal one. A method is proposed for a better fit to 
the data provided by the expert, improving on that of the classical model. 
 
KEY-WORDS: PERT, kurtosis, constant variance. 
 
 
1. INTRODUCTION 
 

Ever since PERT method (Program Evaluation and Review Technique) was 
first used in the 1950s to estimate the duration of tasks in a ballistic missile 
programme, this technique has been satisfactorily used by experts both for the 
theoretical treatment of the duration of tasks within a project and for the cash 
flow within an investment, as well as for other types of problem. However, 
during the 1960s and 1970s, various authors proposed a revision of the 
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hypotheses put forward by the creators of the PERT method: Heally (1961), 
Clark (1962), Grubbs (1962), MacCrimmon (1964), Pulido et al. (1964), Tomas 
(1964), Vazsonyi (1970), among others. In the 1980s, Sasieni (1986) reopened 
the debate, questioning the reasoning behind the classical values of the PERT 
parameters. Immediate replies carne from Gallagher (1987) and Littlefield and 
Randolph (1987). Since then, numerous authors have participated in the same 
debate expressing similar doubts: Farnun and Stanton (1987), Berny (1989), 
Herrerías (1989), Troutt (1989), Chae and Kim (1990), Moitra (1990), Keefer 
and Verdini (1993) and many more. 

Nevertheless, in practice the methodology has been used with great success 
in projects of diverse types and by different organizations. In the USA the 
methodology has been applied by companies such as Lockheed, General 
Electric, Douglas Aircraft Corporation, Texas Instruments, and General Motors 
etc.1 With good results. 

The present study consists of three elements: first, an investigation into the 
underlying reasons behind this practical success; secondly, it offers a new 
answer to the question posed by Sasieni (1986); finally, a procedure 15 
proposed to improve the fit of the probabilistic model underlying the PERT 

method when the variance is assumed and equal to 36)( 2ab − . 

It is well known that the basis for the methodology is the use of the first kind 
beta distribution as the underlying probabilistic model. Such a distribution has 
the following density function 
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where a  is the minimum value, b  the maximum value of the random variable 
and p and q  are the characteristic parameters of the random variable. 

The stochastic characteristics of this distribution (Dumas de Rauly, 1968) are 
as follows: 
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 1 Cited by Pulido and others in their article: "Un método de la I.O.: Teoría de grafos".  Ana1es 
de Economía, July-September 1964. 
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The PERT method requires the "expert" to assign three different values (time 
(T ) in the case of tasks, cash flow (Q ) in the case of investments, etc.) to 

identify 0T  ( 0Q ) the optimistic value, mT  ( mQ ) the modal value and pT  ( pQ ) 

the pessimistic value. Each of these estimates relates directly to the problem and 
enables us to identify a and b directly, making them coincide in each case with 
the pessimistic and optimistic values. Furthermore, if the most probable value is 
identified with the mode (see equation 2) then we have the following equation, 
relating p  and q : 
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Obviously, this expression does not exactly determine the values of p and q. 
Classical PERT sacrifices rigour at this point in favour of simplicity, with the 
implicit acceptance that 

 23 +=p   and  23−=q ,  if  2)( bam +>  (6) 

or  23 −=p   and  23 +=q ,  if  2)( bam +<  (7) 

In the case where the mode is 2)( ba +  symmetric distribution β (4, 4, a , 

b ) is used. 
It may easily be shown that from equation (5) and relations (6) and (7), the 

formulas for the parameters of classical PERT may be obtained directly, i.e. 
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without needing any kind of additional hypothesis, simplifying relations or 
logical reasoning. 

Introducing the parameter 2−+= qpk , Golenko~Ginzburg (1988) 

obtained 
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and from these, they deduced expressions that are more general than those of (8) 
for the parameters of the probabilistic PERT model:  
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Note that these probabilistie models give a variable weighting to the modal 
value determined by the expert. Subsequently, Herrerías (1989) established the 
following relation using equations (10) and (11): 
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As 1p >  and 1q >  , it is clear that k  varies within the interval (0, ∞ ) and, 

therefore, for given values of a , b  and m , there exists a different beta 
distribution for each value of k that is greater than 0. 

As can be seen on comparing the mean expressions from (8) and (10), the 
classical PERT case corresponds to the value of k  = 4. 

However, as Sasieni has stated, it is always possible to consider the most 
general cases according to equations (10) and (11) instead of equations (8). On 
the other hand, if one substitutes  
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(where αt  = 0, βt  = 1 and only the standardized mode, between 0 and 1, will 

vary), the above equations (1), (2), (3) and (4) are reduced to the following 
expressions: 
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and the exp ressions (9), (10), (11) and (12) are reduced to: 
 kmp +=1  , )1(1 mkq −+=  (18) 
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Note that if p  and q  fulfil relation (6) or (7), then the mode m (which is the 

only one that can vary, in the standardized case) is perfectly well determined, 
and there is no need to enquire of the expert, as it is possible to obtain from (15), 
according to the asymmetry of beta distribution, that: 



THE PARAMETERS OF THE CLASSICAL PERT … 203 

 
4

2

2

1
±=m  (22) 

Clearly if either of the values for m given in (22) is substituted in (20), and 

assuming k  = 4, then we have 361ó =2  a value that coincides with the 
standardized one obtained from (8). Conversely, assuming k  = 4 and that (20) 
is 361  then (22) is obtained. 

 
 
2. SOME HYPOTHESES TO JUSTIFY THE VALUES OF P, Q AND K IN 

CLASSICAL PERT 
 

Historically, the PERT method has been linked to the normal distribution, as 
made plain in the initial report on the PERT method (Appendix A, p. 2)2: "The 
duration of each activity is a normally distributed random variable...". 

Nevertheless, on page six of Appendix B, the beta distribution is analyzed: 
"As a distribution model for the duration of an activity we shall introduce the 
beta distribution ...". Indeed, this link provides a justification frequently used for 
the classical PERT values, since in the normal distribution 997 thousandths of 
the whole lies between σµ 3± . Also, since it is impossible to determine a , b , 

p  and q  with the information from tbe expert's three estimates, a fourth 

hypothesis is added3: a beta distribution is chosen, in which ó6=− ab  (see Yu 
Chuen Tao (1980)). Thus, using expression (17), the following equation can be 
established: 
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which, together with (15), constitutes a two-equation system for the unknowns 
p  and q . This system leads to a cubic equation for which, without attempting 

to solve it due to the difflculty of the task, Romero (1991) proposed the values 
(6) and (7) as a solution, following Kauffman and Dezbazeille (1965). 

Other authors, such as Suárez (1988), have used simplifying relations: 

 6=+ qp  and 1=
−+ 1qp

pq
 (24) 

 
 2 PERT, Program Evaluation Researcli Task, Pliase 1 Summary Report, SpecialProjects 
Office, Bureau of Ordenance, Department of the Navy, Washington D. C., July 1958 (cited by 
MacCrimmon, K. R. and Ryavec, C. A., 1964). 
 3 Widely used, even in manuals, snch as those by Hillier, 1. and Lieberman, G. J. (1980), or 
that by Daellenbach, H. G. George, G. A. and McNickle, D. C. (1987), etc.. 
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which have been strongly criticized for lacking a convincing theoretical justi-
fication and for having as their sole basis the ease of computation provided; 
whilst others, such as Hillier and Lieberman (1982) simply rely on logical 
reasoning. 

A more recent solution consists  in disregarding the variance, and testing the 
coherence of the classical values by giving the beta of the PERT the same 
kurtosis as normal distribution. In other words, the coefflcient of kurtosis of the 
beta must be zero, as it is in the following (see Canavos (1984)): 
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where 2µ  is the moment of the second order of the distribution. 

It can easily be shown that the classical values (6) and (7) are solutions to the 
equation: 
 02)(1()2)(1( =−++−+ p)qqqqppp  (26) 

and that for these 
0504)32 ≠=++++ q)(pqpq(p , and so 02 =γ . 

 
 
3. THE CONSTANT VARIANCE MODELS 
 

From tbe study of the constant variance modeis for the PERT the following 
result can be obtained: subjectively estimating a , b  and m , and if the 

variance is fixed at 36)( 2ab −  ( 361 if the substitution is made in equation 

(13)): 
a) There exists 0n1y one solution for k  ( 2−+= qpk ), that fuiflís (19) and 

(20),  and 
2b) ∈k (2.872...,6). 

To prove this, the standardized model formulas are used; taking into account 
expressions (19) and (21), then 
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from which is derived the cubic expression 

 [ ] 02420)(367 223 =−−−−+ kmmkk  (28) 

This equation is similar to the one given by Littlefield and Randolph (1987), 
but is simpler, with the final two terms of the sum being unaifected by the 
square and cube powers, respectively, of m . 
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It is now the intention of this work to prove that equation (28) has one and 
only one positive solution for k . First, it can be shown that, for all m ∈[0,1], 

the polynomial )(367 2mm −−=ω takes its values at (-2,7) (see graph 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Graph 1. Graph of polynomial )(367 2mm −−=ω  

If ω  = -2, (28) has a single positive root, that is k  = 6; and if ω  = 7, then 
(28) has a single positive root, that is k  = 2.872.... Furthermore, independently 
of the value of w, equation (28) presents just one variation in the signs of the 
coefficients; the rule of Descartes4 allows us to state that when there is a positive 
root then there is only one such root. Finally, it is intended to prove that, for all 
m ∈  (0,1) (which implies )7,2(−∈ϖ ), the equation (28) has one and only one 

positive root, and that this root lies between 2.872... and 6. 
It can be shown that if 1k , 2k and 3k are the roots of equation (28), then by 

using the fundamental theorem of Algebra and the sign of the independent term, 
the only possibilities for the roots are: 
a)  The three roots are real, in which case: 
 a.1) The three are positive. 
 a.2) Two roots are negative and one is positive. 
b) Two of the roots are complex and conjugated and the third is real and 

positive. 

 
 4 Descartes’ well-known rule of signs: The number of positive roots of a polynomial f  with 

real coefficients coincides witli the number of alternances or is lower by an even number. 
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As a) cannot exist, since it contradicts the Descartes' rule of signs, there must 
be just one positive root. Furthermore, if α  is the positive root of the 

polynomial 0242023 =−−+ kkk ω , when )(367 2mm −−=ω  and m ∈ (0,1), 
α  is decreasing function of ω . Indeed, as α  > 0,  from 

0242023 =−−+ αωαα , isolating 
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Therefore, it can be concluded that the positive root of equation (28) always 
lies between 6, corresponding to the lower value of ω  ( ω  = -2), and 2.872..., 
corresponding to the upper value of ω  ( ω  = 7). Note that this is a restriction 
which does not arise in the mesokurtic models. Thus, assuming the constant 
variance hypothesis and that it is equal to 361 , the correct procedure to adjust 

the beta is as follows: Given a , b  and m , normalized according to (13), the 
value of mt  is substituted for m  in equation (28), the cubic equation is solved, 

and the value of k  obtained; from this value, p  and q  are obtained using (18). 

Nevertheless, this procedure may become excessively tedious when the 
project to be evaluated contains a large number of tasks (more than 50.000 in 
the case of the ballistic missile programme) and, consequently, a shortcut may 
be sought. Table 1 illustrates the differences and similarities between PERT 
models with constant variance and the classical model. 

By assuming ω  = 2.5 (i. e. the midpoint of the possible values of ω ) in alí 
cases, the possible overalí error when numerous tasks are estimated is 
minirnized, and we obtain: 

 )(3675.2 2mm −−=   (29) 

that implies 
2

2

2

1
±=m and so the cubic equation becomes 

 024205.2 23 =−−+ kkk , (30) 
from which 1k =4, 2k < 0 and 3k < 0, and using (18), 

 23 m=p   and  23 ±=q ,  (31) 

p  < q  for positively skewed distribution, and p  > q  for other cases. 
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4. OBTAINING THE CLASSICAL MODEL 
 

If equation (28) is solved for m , then: 
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and so k  < 6 it is the same in the case of symmetric distribution, and when (18) 
is taken into account, it can be concluded that p  = q = 4.  Note that  if we take 

k  = 4, this leads to (22), and that m ∈  [0,1], if 2.872... ≤  k ≤  6. 
Furthermore, if the model is required to have the same kurtosis as the normal 

distribution, i. e., equation (26) is satisfied, then (26) together witl (15) provides 
a system which, by making the (18) substitution, gives the cubic equation: 

 045)21616()155( 2223 =−−+−++− kmmkmmk  (33) 

which characterizes the mesokurtic models. Solving this equation for m , we 
obtain: 
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It can be shown that the only solutions  for system (32) and (34)  ar k = 4, 
k = -2 and k = -3.  As the last two are unacceptable and k = 4 is the parameter 
value in the classical model, it can be concluded that th only model which has a 
constant variance and is, moreover, mesokurtic, the classical PERT model. In 
consequence, the classical PERT model is th intersection between the constant 
variance and the mesokurtic models. 
 
 
5. PRACTICAL CASE 
 

The practical case that is presented here is the reduced version of a real case, 
about the valuation of the loss of profits of a company, held in the Court of 
Madrid (Spain) in 1999. The loss of profits' years were from 199 to 1999. 

In this case, the experts accepted that the least possible, the modal an the 
great possible expected profits during these years would be a percentage of the 
total volumes of sales for each one of the years. More specifically the 
pessimistic, the more probable and the optimistic profits of the year x  ( x  = 
1995,...,1999) would be, respectively, the 4.2%, the 4.4% and th 6.4% of the 
contracted volume of sales of this company during the year x . So, the following 
table shows the minimum (a ), more probable (m ) an maximum (b ) values of 
the expected profit for each year, from 1995 to 1999 starting from their 
contracted volume of sales (in millions of pesetas). 
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Years  
Percs %  

Profit 
values  1995 1996 1997 1998 1999 

4.2 a  93.895 160.444 136.728 172.598 190.660 
4.4 m  97.900 167.288   142.560 179.960 198.792 

6.4 b  143.290 244.849   208.656  263.396   290.959 

Volumes of sales  2,225 3,802 3,240 4,090 4,518 

Table 2. Minimum, more probable and maximum values 
    of the expected proflt, from 1995 to 1999. 

Taking into account that we want go from a uncertainty situation to stochastic 
model, we can apply the PERT methodology with, at least, threq models: 

1. Classical. 
2. Of constant variance. 
3. Mesokurtic. 

 
 
5.1 CLASSICAL MODEL 
 

The following table shows the expected value and the variance for each on of 
the years, from 1995 to 1999, using the steps described in the right sid of table 
1. 

Years  Mean and 
Variance 1995 1996 1997 1998 1999 

µ  104.798   179.074   152.604   192.639   212.798 
2σ  67.774    197.892   143.712   229.008   279.445 

Table 3. Expected values and variances, from 1995 to 1999. 
 
 

5.2 CONSTANT VARIANCE MODEL 
 

Note that, in alí years, from 1995 to 1999, the standardized value of the mode 

ab

am
t m −

−=  

is equal to 0.081 and that the value of polynomial ω  is )(367 2
mm tt −−  = 4.318. 

So, the solution of the cubicequation 02420318.4 23 =−−+ kkk  is k  = 3.432.  
The following table shows the expected value and the variance for each one 

of the years, from 1995 to 1999, using the steps described in the left side of 
table 1. 
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Years  Mean and 
 Variance 1995 1996 1997 1998 1999 

µ  105.519 180.307 153.654 193.965 214.263 
2σ  67.764 197.864 143.692 228.975 279.405 

Table 4. Expected values and variances, from 1995 to 1999. 
 
 
5.3 MESOKURTIC MODEL 
 

Solving the equation (33), we obtain the value k  = 2.65. So the following 
table shows the expected value and the variance for each one of the years, from 
1995 to 1999. 

Years  Mean and 
Variance 1995 1996 1997 1998 1999 

µ  106.800 182.496 155.520 196.320 216.864 
2σ  83.316 243.272 176.668 281.524 343.527 

Table 5. Expected values and variances, trom 1995 to 1999. 

Using the legal interest rates (r) in Spain during the period from 1995 to 
1999, we can deduce the capitalization factors for the mean  (U)and the ( 

variance (U
2
) for each one of these years 

Models  
Rates and factors  

1995 1996 1997 1998 1999 
R 0.090 0.090 0.075 0.055 0.043 
U 1.090 1.188 1.277 1.347 1.347 
U2 1.188 1.412 1.631 1.816 1.816 

Table 6. Capitalization factors for the mean and the variance. 

in order to calculate one mean and one variance for each PERT model: 

Models  Mean and 
Variance Classical Constant Variance Mesokurtic  

µ  667.242 671.835 679.992 
2σ  565.377 565.297 695.029 

Table 7. Mean and variance for each PERT model. 

Finally, at 5% level of significance, we can obtain a confidence interva 
where, for each model, the profits values will be included. 
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Models  Confidence 
intervals  Classical Constant Variance Mesokurtic  

µ ± 1.96 σ  (620.637,713.846) (625.234,718.436) (628.319,731.664) 

Table 8. Confidence intervals according to the models 
Observe that: 

a) he value k  decreases, the confidence interval moves around ti right: 

 

                 (           [                        )            ] 
             620.637   625.234     628.319   713.846    718.436   731.664 
 

 
2. The mean of the classical model is minor than the mean in the consta] 

variance model and this is less than the mean of mesokurtic model. 
Moreover, the variance of the mesokurtic model is greater than ti variance of 
the other two models. This property is not general but it is true in this case. 
So we can work with more moderate models with respect to the mean or 
more conservative models with respect to the variance, choosing, in each 
case, the more suitable model. Because, when one works in an uncertainty 
situation, it is preferable to get right approximately than to make a mistake 
exactly. 
So we can propose, as interval of negotiation, the smallest among the lower 

extremes and the biggest of the upper extremes of the three intervals, obtaining 
the following interval:  (620.637, 731.664) where, with more probability, the 
loss of profits will be located. 
 
 
5. CONCLUSIONS 
 

As previously described, the creators of the PERT method used a beta with 
given p and q parameters, (6) or (7), thereby determining a mode. Though some 
authors have claimed that the success of the PERT method is largely due to the 
fact that the times of many of the tasks analyzed for the ballistic missile 
construction programme fltted the proposed beta distribution, what in fact 
happened was that the overail error rate was reduced by always choosing the 
central point of the interval [-2,7] forω . This method, almost certainly due to its 
simplicity, has been employed without variation and with equal success for 
numerous tasks and applications in industry, public administration, commerce, 
etc.. The explanation for this is that any other simplification which avoids 
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solving the cubic equation (28), or giving k a constant value different from k = 
4 produces, in repeated use, a greater degree of error than the k = 4 option. 

Furthermore, if the correctness of the constant variance hypothesis is 
accepted, the errors of fit of the classical PERT method can be still further 
reduced by solving the cubic equation (28) for each case, a procedure which 
today may easily be implemented with the aid of computers. 

The final conclusions may be summarized as: 
1ª  The classical PERT values come from the midpoint of the [-2,7] interval 

forω , providing an answer to Sasieni's question (1986). 
2ª  The selection of the midpoint of this interval explains why PERT has 

functioned so well in numerous and varied cases. 
3ª  The parameters of the classical PERT model are obtained by the si-

multaneous application of the conditions that the variance is equal to 

36)( 2ab −  and that kurtosis, as in the normal distribution, is zero. 

4ª  When the model is a beta with constant variance, the solution for each modal 
value m  of the cubic equation (28) determines a beta which provides a better 
fit to the data provided by the expert than does the classical model. 
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Table 15. Differences and similarities between PERT modeis with constant 

variance and tlie classical model. 
 

 

 
 5 In the classical PERT model the third step is not necessary, but  is included for the similarity 
to be emphasized.  
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