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a b s t r a c t

The analysis of long memory processes in capital markets has been one of the topics in
finance, since the existence of the market memory could implicate the rejection of an
efficient market hypothesis. The study of these processes in finance is realized through
Hurst exponent and the most classical method applied is R/S analysis. In this paper we
will discuss the efficiency of this methodology as well as some of its more important
modifications to detect the long memory. We also propose the application of a classical
geometrical method with short modifications and we compare both approaches.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

It is well known and accepted that some of the human and natural phenomena show long memory, and there are a wide
amount of papers about this topic in natural sciences. In economy, as it happened with other processes observed in physics
and in general in natural sciences, the study of long memory caught the interest of researchers during the seventies [20,18,
19]. Ref. [21] contains many of the early papers that Mandelbrot wrote on the application of the Hurst exponent in financial
time series.

Since those days, the application of the long memory processes in economy has been extended frommacroeconomics to
finance. Examples are Refs. [8,4,12,13,26,3,25,6] and recently Ref. [7] to quote some of them.

In finance, the discussion as to whether or not the stock market prices display long memory properties still continues
since this fact has important consequences on the capital market theories. So, if stock prices show long memory this means
that predictability is not a dream but a possibility. The main implication of this circumstance is that an efficient market
hypothesis is clearly rejected because stock market prices do not follow a random walk.

The study of the long memory processes is normally realized through the Hurst exponent that can be estimated using
three methods5:
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1. R/S Analysis.
2. Detrended Fluctuation Analysis.
3. Periodogram Regression.

Our main objective in this paper is to prove that the most popular method used to estimate the Hurst exponent, the R/S
analysis, exhibits serious problems and as a result it is possible to obtain evidence of longmemory in random series. To avoid
these problems, two geometrical methods are introduced to be applied in capital markets. One of them (GM1) is based on a
classical formulae of Hurst exponent while the other one (GM2) is based on a new formulae which is introduced in Section 4
and developed further in the Appendix. We will show how this methodology will allow us to study the presence of the long
memory processes in the capital markets from a stricter point of view. Regarding the R/S analysis, a new approach to the
application of the Anis and Lloyd’s formula in [1] is introduced to solve the problems presented when subintervals of small
lengths are used.

The organization of the paper is as follows: In Section 2we introduce theHurst exponent basis aswell as theR/S analysis to
calculate it. In Section 3 we study R/S analysis behavior in the particular case of random series. Section 4 presents a different
approach to obtain the Hurst exponent and it is compared with R/S and the modified R/S analysis. The paper continues with
an empirical application using the different approaches and finally Section 6 presents the main conclusions.

2. The Hurst exponent and long memory processes. Classical estimation via R/S analysis

The Hurst exponent is the classical test to detect long memory in time series. This analysis was introduced by English
hydrologist H.E. Hurst in 1951, based on Einstein’s contributions regarding Brownian motion of physical particles, to deal
with the problem of reservoir control near Nile River Dam. R/S analysis in economy was introduced by Mandelbrot [18,19,
21], who argued that thismethodologywas superior to the autocorrelation, the variance analysis and to the spectral analysis.

As we pointed out there are a wide range of papers about this topic in economy in general and in finance in particular.
It is curious that most of them concluded finding evidence of memory in financial data. Examples are Ref. [10] in New York
Stock Exchange, Ref. [24] in several stocks and Indexes such us S&P 500 Index, Ref. [22] in Athens Stock Exchange, Ref. [11]
in S&P 500 return series before the market crashed in 1987 and 1990 or Ref. [15] in London Stock Exchange. Only Refs. [16,
17] reported no evidence of long range dependence in stock returns.

The eldest and best-known method to estimate the Hurst exponent is R/S analysis. It was proposed by Mandelbrot and
Wallis [20], based on the previous work of Hurst [14].

The procedure is as follows. The time series (of returns) of length L has to be divided into d sub series (Zi,m) of length n,
and for each sub seriesm = 1, . . . , d. Then,

1. It is necessary to find the mean (Em) and the standard deviation (Sm) of the sub series (Zi,m).
2. The data of the sub series (Zi,m) has to be normalized by subtracting the sample mean Xi,m = Zi,m − Em for i = 1, . . . , n.
3. Create the cumulative time series Yi,m =

∑i
j=1 Xj,m for i = 1, . . . , n.

4. Find the range Rm = max
{
Y1,m, . . . , Yn,m

}
− min

{
Y1,m, . . . , Yn,m

}
.

5. Rescale the range (Rm/Sm).
6. Calculate the mean value (R/S)n of the rescaled range for all sub series of length n.

Considering that the R/S statistic asymptotically follows the relation (R/S)n ≈ cnH , the value of H can be obtained by
running a simple linear regression over a sample increasing time horizons.

log (R/S)n = log c + H log n. (1)

When the process is a Brownianmotion, H has to be 0.5, when it is persistent H will be greater than 0.5, and finally when
it is anti-persistent H will be less than 0.5. For a white noise, H = 0, while for a simple linear trend, H = 1. Note that H
must lie between 0 and 1.

3. Testing R/S analysis

To test the R/S analysis we have applied theMonte Carlomethodmaking 10,000 randomwalk series. Table 1 contains the
mean and standard deviation of the Hurst exponent considering different n values (n is theminimum length of the sub series
used in R/S analysis). Results (for n = 2) shows that the Hurst exponent average value is 0.68 with a standard deviation of
0.02. It is clear that this alteration in average is a consequence of n value, because when n is large enough the mean value is
nearer to 0.5.

As it can be observed, the length of the series influences the standard deviation obtained, but also the mean. To obtain
values near to the real 0.5 it is needed to choose a large n, which is impossible for short series.

Table 2 compares the influence of the series length on the calculation of the Hurst exponent for 1000 randomwalks. For
the R/S analysis, nwere chosen so that the estimation of the mean were the most accurate (but then the standard deviation
was greater).
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Table 1
Mean and standard deviation of Hurst exponent, using R/S analysis, for different n values (where n is the length of the shortest subinterval used in the
calculation of the Hurst exponent)

n Mean Standard deviation Series length

2 0.68 0.02 1,000
4 0.63 0.02 1,000
8 0.6 0.03 1,000

16 0.58 0.04 1,000
16 0.53 0.01 100,000a

32 0.56 0.06 1,000
32 0.54 0.03 5,000
64 0.55 0.1 1,000

128 0.53 0.1 2,000
256 0.52 0.12 3,000
512 0.51 0.13 5,000

a Only 100 random walks were simulated.

Table 2
Influence of the series length in Hurst exponent using R/S analysis (n is the length of the shortest subinterval used in the calculation of the Hurst exponent)

Length R/S analysis
Mean Std n

100 0.67 0.12 8
200 0.61 0.12 16
500 0.57 0.11 32

1,000 0.55 0.10 64
5,000 0.51 0.08 256

10,000 0.50 0.13 1,024

It seems that R/S analysis shows important problems to study long range dependence when series is not large enough.
In this line Lo [16] indicated some inconvenience of the methodology and he proposed a new statistic based on R/S analysis.
However, Teverovsky, Taqqu and Willinger [27] proved that Lo’s modification of R/S statistic is too strict.

The loss of accuracy in some specific cases has also been remarked by other authors. In this line Anis and Lloyd [1] and
afterwards Peters [23] introduced a new formulation to improve the performance for small n. Weron [29] indicates that the
procedure consists of obtaining E(R/S)n as is shown in the next formula:

E(R/S)n =


n −

1
2

n
Γ

( n−1
2

)
√

πΓ
( n
2

) n−1∑
i=1

√
n − i
i

for n ≤ 340

n −
1
2

n
1√
nπ

2

n−1∑
i=1

√
n − i
i

for n ≥ 340.
(2)

FollowingWeron, once (2) is calculated, the Hurst exponent H will be 0.5 plus the slope of (R/S)n − E(R/S)n. However, if
we calculate this modified R/S analysis in this way, results show a Hurst exponent, for some random series, with values
higher than 1, which makes no sense. For this reason, we have followed a different procedure than in Ref. [29]. This
procedure6 lies in adding a final step to the classical R/S analysis which consist in calculating

logHn = log (R/S)n − log E (R/S)n + log(n)/2

where E (R/S)n is given by (2).
Then find H by linear regression on

logHn = log c + H log n. (3)

The distribution for the Hurst exponent calculated as stated previously (which we will note by R/S-AL), resembles in this
case a normal7 one with a mean of 0.49 and a standard deviation of 0.04 (with n = 16). Note that the distribution of the
Hurst exponent calculated using standard R/S analysis cannot be approximated by a normal distribution.

We would like to remark that since formula (2) was derived for the series with underlying normal distribution, modified
R/S analysis should be studied deeply to check its correctness for other series (for example, the series with Hurst exponent
different from 0.5).

To conclude this section, Tables 3 and 4 show the sensibility to the length of the series and to n of classical and modified
R/S analysis.

6 As far as we know this methodology has not been applied before. Only in Ref. [29] we have found how to apply [1] formulation of R/S analysis.
7 It is even interesting that the data obtained passed the Kolmogorov–Smirnov good-of-fitness test.
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Table 3
Hurst exponent values using R/S andmodified R/S analysis (R/S-AL) (n is the length of the shortest subinterval used in the calculation of the Hurst exponent)

n R/S classical R/S-AL Series length
Mean Std Mean Std

2 0.68 0.02 – – 1,000
4 0.63 0.02 0.46 0.02 1,000
8 0.6 0.03 0.48 0.03 1,000

16 0.58 0.04 0.49 0.04 1,000
16 0.53 0.01 0.50 0.01 100,000a

32 0.56 0.06 0.49 0.06 1,000
32 0.54 0.03 0.50 0.03 5,000
64 0.55 0.1 0.49 0.11 1,000

128 0.53 0.1 0.50 0.10 2,000
256 0.52 0.12 0.50 0.12 3,000
512 0.51 0.13 0.49 0.14 5,000

a Only 100 random walks were simulated.

Table 4
Influence of series length in Hurst exponent values using R/S and modified R/S analysis (n is the length of the shortest subinterval used in the calculation
of the Hurst exponent)

Length Classical R/S R/S-AL
n Mean Std n Mean Std

100 8 0.67 0.12 8 0.46 0.12
200 16 0.61 0.12 16 0.49 0.12
500 32 0.57 0.11 16 0.49 0.11

1,000 64 0.55 0.10 16 0.49 0.10
5,000 256 0.51 0.08 16 0.50 0.08

10,000 1,024 0.50 0.13 16 0.50 0.13

4. Hurst exponent estimation via geometrical interpretation

In geometry there is awell-knownmethodused to estimate theHurst exponentwhich is based in the following formulae8

∆B α TH
S (4)

where: ∆B = B(t + TS) − B(t) and it represents the mean of the variation of B on intervals of length TS .

B: the price series in log.
TS : the length of the time intervals.
H: Hurst exponent.
α: ‘‘is proportional to’’.

The procedure to estimateH is as follows. The time series (Xi) (of log-prices) of length L has to be divided into d sub series
of length n, and for each sub seriesm = 1, . . . , d:

(1) Dm = Xmn − X(m−1)n+1
(2) Calculate the mean Hn = mean{Dm : m = 1, . . . , d}.

Now the Hurst exponent H can be calculated by running a simple linear regression

logHn = log c + H log n. (5)

Note that while R/S analysis uses the (log) return of the series, the previous formula uses the log price values.
We will use the notation GM1 to refer to this method of calculating the Hurst exponent hereafter.
If we have more information (maximum and minimum price for each period), then we propose to apply the following

modification of GM1.

range(B) α TH
S (6)

where:

range(B) = max {B(s) : t ≤ s ≤ t + Ts} − min {B(s) : t ≤ s ≤ t + Ts}

and it represents the mean of the range B in each interval.

8 See for example Ref. [2].
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Table 5
Influence of series length in Hurst exponent values using R/S analysis and geometrical methods (n is the length of the shortest subinterval used in the
calculation of the Hurst exponent)

Length GM1 GM2 R/S analysis
Mean Std Mean Std Mean Std n

100 0.48 0.12 0.52 0.04 0.67 0.12 8
200 0.48 0.09 0.52 0.03 0.61 0.12 16
500 0.49 0.06 0.51 0.02 0.57 0.11 32

1,000 0.49 0.05 0.51 0.02 0.55 0.10 64
5,000 0.49 0.04 0.51 0.02 0.51 0.08 256

10,000 0.49 0.04 0.51 0.02 0.50 0.13 1,024

Fig. 1. Hurst exponent distribution using GM2.

The detailed procedure is as in GM1, except that Dm is defined as the maximum of the log-price in the period
X [(m − 1) n,m · n]minus theminimumof the log-price in the sameperiod. Note that this is similar to the usual R/S analysis,
but themaximumandminimumof each period is used, instead of just the closed prices. See the Appendix for amathematical
justification of the method which will be referred to as GM2.

Before applying this formulation in capital markets we will test its accuracy via the Monte Carlo Method as follows. In
the case of GM1, we have generated 10,000 random walks with a length of 1000 and have calculated the Hurst exponent.
The mean of the Hurst exponent was 0.49 and the standard deviation 0.05.

The same study was carried out for GM2, generating 2000 random walks with lengths of 1000, considering that prices
change 100 times per day. Fig. 1 shows that the distribution of Hurst exponent resembles in this case a normal9 one with a
mean of 0.51 and a standard deviation of 0.02. This is obviously interesting since it will allow us to build confidence intervals.

This means, first of all, that both, original approach GM1 as well as its modification GM2, work appropriately because the
value of the Hurst exponent is around 0.5 in the case of random samples. On the other hand, in spite that GM2 needs more
data (maximum and minimum of each period), it has a better accuracy than GM1, since the standard deviation is lower.

Table 5 compares the influence of the length of the series using GM1, GM2 and R/S analysis (see also Table 4 for a
comparison of the modified R/S analysis).

Another point to remark is that the Hurst exponent can be greater than 0.5 even with a ‘‘random walk’’, but with an
average distinct from 0 (that is, for a process of the form xt+1 = xt + ε, where ε follows a normal distribution with a non-
null mean). Table 6 and Fig. 2 show the effect of the mean (in fact, the variation coefficient, that is, the standard deviation
over the mean) on the Hurst exponent. Results were calculated using GM1 for 1000 random walks with a length of 1000.

Note that when there exists an average distinct from 0, the series does not verify (4), so it makes no sense of the Hurst
exponent. Indeed, the previous table was intended only to prove that to calculate the Hurst exponent in a series with amean
distinct from 0, yields values distinct from 0.5. In this case, we should eliminate the mean from the series and perform the
calculation of the Hurst exponent to the resulting data. Note that R/S and R/S-AL analysis eliminate themean from the series
in their own formula.

9 It is even interesting that the data obtained passed the Kolmogorov–Smirnov good-of-fitness test.
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Table 6
Effect of the mean in Hurst exponent values

Variation coefficient H

0.1 1
1 0.98
5 0.7
10 0.58
20 0.52
50 0.5
100 0.49

Fig. 2. Effect of the mean on the Hurst exponent.

Table 7
Hurst exponent calculation for different indexes

Groups
All data I group II group III group IV group

Cac 40 0.54 0.58 0.53 0.56 0.53
FTSE 100 0.52 0.6 0.52 0.55 0.49
Nikkei 0.53 0.56 0.53 0.58 –
Nasdaq 0.54 0.55 – – –
Ibex 35 0.57 0.64 0.62 0.51 –
S&P 500 0.55 0.55 0.47 0.57 0.52

Table 8
Hurst Exponent calculation using different approaches

GM1 GM2 R/S analysis R/S-AL

Cac 40 0.51 0.54 0.57 0.50
FTSE 100 0.5 0.52 0.47 0.46
Nikkei 0.5 0.53 0.55 0.48
Nasdaq 0.52 0.54 0.55 0.49
Ibex 35 0.55 0.57 0.55 0.53
S&P 500 0.55 0.55 0.45 0.45

5. An empirical application

In this section, we calculate the Hurst exponent for several international indexes: Cac40 (From 1989), FTSE (From 1987),
Nikkei (From 1992), Nasdaq (From 1998), Ibex 35 (From 1991) and S&P500 (From 1987).

Table 7 shows the results of the analysis (using GM2). It can be observed that the analysis is presented for all data and
different groups. Each of these groups includes 1000 observations. The realization of groups will allow us to identify the
memory in different trends.

If the indexes are random variables, the Hurst exponent value must be, with a confidence level of 99%, in the interval
(0.464; 0.556).

If results obtained in this first approach are analysedwe can observe that in 70% of cases the indexes behaviour is random.
Only IBEX35 shows some evidence of longmemorywhen all the data is considered, but the value is quite close to the interval
limit.

Table 8 shows the Hurst exponent comparison using GM1, GM2, R/S analysis (with n greater enough, depending on the
series length) and the modified R/S analysis (with n = 16).
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Table 9
Mean influence in Hurst exponent results

Mean Std Variation coefficient

Cac 40 0.00025 0.0137 55
FTSE 100 0.00024 0.0115 48
Nikkei −0.0002 0.0145 −73
Nasdaq 0.00023 0.0246 107
Ibex 35 0.00041 0.0132 32
S&P 500 0.00033 0.0126 38

Table 10
Refined Hurst exponent values

H (GM1)

Cac 40 0.48
FTSE 100 0.45
Nikkei 0.48
Nasdaq 0.51
Ibex 35 0.53
S&P 500 0.5

Finally, to analyze the average influence in the Hurst exponent results, average values have been calculated. Table 9
shows the results.

It can be observed that average influences are low but it does exist. Table 10 shows the new Hurst exponent for GM1,
once we have eliminated the mean in the series.

Then, once we eliminated the mean in the series, we cannot conclude that the Hurst exponent is distinct from 0.5 in any
case.

6. Conclusions

To conclude, we will like to point out that this paper presents several theoretical and empirical results about the
calculation of the Hurst exponent.

Twomethods, GM1 and GM2, are proposed.We prove that in both cases they are correct in an asymptotic way (Appendix
contains the proof for GM2) and show empirical evidence via Monte Carlo simulations that they are also accurate for short
series. Any other result provided, for example the distribution of theHurst exponent calculated byGM2 can be approximated
by a normal one; that GM1 and specially GM2 aremore accurate than R/S analysis, or the sensibility ofH to a non-zeromean,
is also empirical.

A theoretical proof of these results should be very interesting as a base for further research. Since the calculation of H is
used in other fields, the two methods proposed can be useful, especially if the series contains few data.

From our point of view, it is clear that using R/S analysis to determine the Hurst exponent can lead to incorrect results if
it is not carried out carefully, and evidence of long memory can be obtained in random series.

Results contained in this paper shows that the influence of series length is very important in the Hurst exponent
calculation when R/S analysis is used. Table 1 shows that Hurst exponent is nearer 0.5 when more than 5000 data are
used, which, in financial series, means data from about 20 years. However, even in this case, standard deviation is 0.13
which means that a Hurst exponent of 0.64 does not necessarily involve the presence of memory in the series. It is clear
that exhibited deviations by R/S analysis are more significant if we bear in mind that several articles such as Refs. [15,22,
24] or Ref. [14], obtain the Hurst exponent values close to 0.7. In the case of the Spanish market, for example, Blasco and
Santamaria [5] reported evidence of long range dependence in Madrid Stock Exchange with the Hurst exponent values
around 0.60 in the different sectorial indexes. The study represents a sample of 14 years, which means around 3500 data. If
we observe Table 3 in the case of 3000 data the Hurst exponent calculated using R/S analysis has an average of 0.52 with a
standard deviation of 0.12.

With regard to our formulation, by the opposite, gives satisfactory results when it is applied over random series, so it
seems to be suitable.

On the other hand, we proved that if GM2 is used, the distribution of the Hurst exponent of a random series can be
approximated by a normal one, which allows determining confidence intervals forH . Previous papers in the line of studying
the underlying distribution of the Hurst exponent of random walks are Refs. [6,28].

It seems clear that H , calculated using GM1 and GM2 is sensible to the series average value (in fact, to the variation
coefficient), so this fact has to be considered in robust analysis, because this means that a random series could apparently
show memory, when what really happens is that the mean is not zero. In financial series, it means that in large horizons
there will be a positive (or negative if the mean was negative) gain.

Regarding the methodology proposed to apply modified R/S analysis introduced by Anis and Lloyd [1], the obtained
results show better accuracy than classic R/S analysis, but, as it can be observed in Tables 4 and 5, GM2 gives better results,
especially with short series.
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Fig. 3. Computation of H by GM2.

The empirical application shows that, once the influence of the average is deleted, there is no evidence of long memory
in the analysed financial data, so we cannot conclude that the series are not random. If these results are accepted as valid,
Indexes follows a random walk in which the mean of the returns can be different from 0.

Finally, we would like to remark that the main goal of this paper is just to indicate that results obtained for H using R/S
analysis can lead to erroneous conclusions, as well as to provide simple tools for more consistent and accurate results in
financial data.
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Appendix. Justification of GM2 method

Let f : [0, 1] → R be a Brownian sample function with Hurst exponent equal to H .
We will use Theorem 16.7 of [9], which can be stated as follows:

Theorem. With probability 1 a Brownian sample function f : [0, 1] → R with Hurst exponent H has graph with Hausdorff and
box dimension 2 − H.

Then H = 2 − d, where d is the fractal (box-counting or Hausdorff) dimension of the graph of the function.
On the other hand, by Section 3.1 of [9], d can be computed by

d = lim
h→0

logNh

− log h
where h is the time increment, and Nh is the number of h-mesh cubes that intersect the graph of the function.

Let us take h of the form 1
2n . Let Rh be the mean of the range of the function in all intervals [0, h], . . . , [kh, (k +

1)h], . . . , [1 − h, 1].
The Hurst exponent given by GM2 is

H ′
= lim

h→0

log Rh

log h
.

Assuming that the function f is continuous, in each subinterval [kh, (k + 1)h] there will be a mean of approximately Rh
h

cubes. Since there are 1
h subintervals, that makes a total of approximately Rh

h2
cubes, and hence it follows that Rh = Nhh2.

Then

H ′
= lim

h→0

log Rh

log h
= lim

h→0

logNh + log h2

log h
= lim

h→0

logNh

log h
+ 2 = 2 − d = H

and therefore GM2 computes the right Hurst exponent.
Let us see it with an example:
For the function in Fig. 3, h = 0.25,Nh = 12. In each interval there are a mean of 3 cubes (marked by a star), and there

are 4 = 1/h subintervals. Note that Rh is approximately 3/4, so it approximately follows that Rh = Nhh2.
Fig. 3 shows an illustration of the example.
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