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Abstract

In this paper we study strongly graded coalgebras and its relation to
the Picard group. A classification theorem for this kind of coalgebras is
given via the second Doi’s cohomology group. The strong Picard group of
a coalgebra is introduced in order to characterize those graded coalgebras
with strongly graded dual ring. Finally, for a Hopf algebra H we also
characterize the H∗-Galois coextensions with dual H-Galois extension
solving the question proposed in [7].

1 Introduction

In the theory of coalgebras and Hopf algebras, the notion of graded coalge-
bra appears in a natural way and many important examples exist (symmetric
algebras, path coalgebras, dual of group algebras, etc). These coalgebras are
normally graded by ZZ and the components of negative degree are zero. An
study of coalgebras graded by an arbitrary group has been carried out in [5],
[4], [6],[12], and [13]. The notion of strongly graded coalgebra plays an special
role in this theory since they present several interesting differences with the dual
concept of strongly graded ring. It emphasizes that a strongly graded coalgebra
is necessarily graded by a finite group, and that the graded dual ring is not,
in general, strongly graded. Another reason to go deeply into the study of this
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kind of coalgebras is the connection to Hopf-Galois coextensions and the Brauer
group of a coalgebra, see [7] and [20] respectively.

Let G be a finite group with identity element e and C = ⊕σ∈GCσ a strongly
graded coalgebra. As a consequence of Dade’s theorem for coalgebras (see [12,
Th. 5.4]) all Cσ are invertible (Ce, Ce)-bicomodules. Hence the theory of the
Picard group for coalgebras, developed in [18], applies to the study of strongly
graded coalgebras. In this paper we investigate strongly graded coalgebras using
this link and Picard group’s techniques.

After reviewing Morita-Takeuchi theory and the Picard group of a coalgebra,
in Section 2 we classify the isomorphism types of strongly graded coalgebras
with isomorphic degree e components, Theorem 3.6. These are represented by
the second Doi’s cohomology group H2(Z(Ce), (kG)∗) where Z(Ce) denotes the
cocenter of the degree e component. The class group and the generalized Rees
coalgebra associated to a coflat monomorphism is also introduced in this section.
In Section 3 we define a new subgroup of the Picard group, the strong Picard
group, which is related to the strong equivalences studied by I-Peng Lin in
[10]. This subgroup allows us to solve the problem of characterizing the graded
coalgebras with strongly graded dual ring, Theorem 4.6. A graded coalgebra
C = ⊕σ∈GCσ has strongly graded dual ring R = ⊕σ∈GRσ if and only if it is
strongly graded and all Cσ belong to Pics(Ce), the strong Picard group of Ce.
When [Cσ] ∈ Out(Ce) ⊆ Pics(Ce), the group of outer automorphisms, then the
strongly graded coalgebra is indeed a graded crossed coproduct, Theorem 4.8.
As a consequence of these results, we give an example of coalgebra where the
strong Picard group is a proper subgroup of the Picard group.

Noticing that strongly graded coalgebras (resp. rings) are Galois coexten-
sions (resp. extensions) by the group giving the grading, the answer of the
above problem leads us to a more general problem which was proposed in [4].
Let H be a finite dimensional Hopf algebra and C/D an H∗-Galois coextension.
When is the dual extension an H-Galois extension? In Theorem 4.11 we solve
this problem. A coextension of coalgebras C/D is H∗-Galois if and only if the
dual extension C∗/D∗ is H-Galois and C is finitely cogenerated as D-comodule.

2 Preliminaries

Throughout k is a fixed ground field. All coalgebras, algebras, vector spaces, and
unadorned ⊗ are over k. For general facts on coalgebras and comodules we refer
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to [16]. C always denotes a coalgebra with comultiplication ∆C and counit εC .
MC is the category of right C-comodules, and for M ∈MC , ρM : M →M ⊗C
is the C-comodule structure map. Given M,N ∈ MC , Com−C(M,N) is the
space of all C-colinear maps from M to N . For a (C,D)-bicomodule M , ρ+ :
M →M⊗D denotes the right D-comodule structure map and ρ− : M → C⊗M
denotes the left C-comodule structure map.

Morita Theory for coalgebras (see [17]): Let M be a right C-comodule and
N a left C-comodule with structure maps ρM and ρN respectively. The cotensor
product M2CN is the kernel of the map

ρM ⊗ 1− 1⊗ ρN : M ⊗N →M ⊗ C ⊗N.

The functors M2C− and −2CN are left exact and preserve direct sums. If M
is a (C,D)-bicomodule and N a (D,E)-bicomodule, then M2DN is a (C,E)-
bicomodule with comodule structures induced by those of M and N .

A comodule M ∈ MC is called quasi-finite if Com−C(N,M) is finite di-
mensional for any finite dimensional comodule N ∈ MC . Let M be a (C,D)-
bicomodule. Recall from [17, Prop. 1.10] that MD is quasi-finite if and only if
the cotensor functor −2CM : MC → MD has a left adjoint functor, denoted
by h−D(M,−), and called the co-hom functor. That is, for comodules N ∈MD

and P ∈MC ,

Com−C(h−D(M,N), P ) ∼= Com−D(N,P2CM). (1)

where
h−D(M,N) = lim

−→
λ

Com−C(Nλ,M)∗,

and {Nλ} is a directed system of finite dimensional subcomodules of N such
that N = lim−→

λ
Nλ.

When M = N then h−D(M,M) is denoted by e−C(M) and it becomes a
coalgebra, called the co-endomorphism coalgebra. Let θ denote the canonical
D-colinear map N → h−D(M,N) ⊗ N which corresponds to the identity map
h−D(M,N) → h−D(M,N) in (1) when C = k. The comultiplication of e−D(M)
corresponds to (1⊗ θ)θ : M → e−D(M)⊗ e−D(M)⊗M in (1), and the counit
corresponds to the identity map 1M . Let M be a (C,D)-bicomodule such that
M is quasi-finite as D-comodule. Then there is a unique coalgebra map λ :
e−D(M) → C such that the ρ− = (λ⊗ 1)θ.
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A Morita-Takeuchi context consists of coalgebras C,D, bicomodules CMD,

DNC and bicolinear maps f : C →M2DN and g : D → N2CM such that the
following diagrams are commutative:

M
ρ+

M - M2DD

ρ−M

? ?

12g

C2CM
f21

- M2DN2CM

N
ρ+

N - N2CC

ρ−N

? ?

12f

D2DN
g21

- N2CM2DN

The context is said to be strict if both f and g are injective (equivalently, isomor-
phisms). The following result, due to Takeuchi, characterizes the equivalences
between two categories of comodules, [17, Prop. 2.5, Th. 3.5]:

Theorem 2.1 Let C,D be coalgebras.

a) If F : MC →MD is a left exact linear functor that preserves direct sums,
then there exists a (C,D)-bicomodule M such that F (−) ∼= −2CM .

b) Let M be a (C,D)-bicomodule. The following assertions are equivalent:

i) The functor −2CM : MC →MD is an equivalence.

ii) M is a quasi-finite injective cogenerator as a right D-comodule and
e−D(M) ∼= C as coalgebras.

iii) There is a strict Morita-Takeuchi context (C,D,M,N, f, g)

When the conditions hold, the inverse equivalence is given by −2DN :
MD →MC , where N denotes the (D,C)-bicomodule h−D(M,D). In this case
C and D are called Morita-Takeuchi equivalent coalgebras.

The Picard group (see [18]): A (C,C)-bicomodule M is called invertible if
there is a (C,C)-bicomodule N and two bicomodule isomorphisms f : C ∼=
M2CN and g : C ∼= N2CM such that (C,C,M,N, f, g) is a Morita-Takeuchi
context. Then M is a quasi-finite injective cogenerator and N ∼= h−C(M,C)
as (C,C)-bicomodules. Equivalently, M is invertible if and only if the functor
−2CM : MC →MC defines a Morita-Takeuchi equivalence.

The Picard group of C, denoted by Pic(C), was introduced in [18] and
it is defined as the set of all bicomodule isomorphism classes [M ] of invertible
(C,C)-bicomodules. Pic(C) becomes a group with the multiplication [M ][N ] =
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[M2CN ], identity element [C], and the inverse of [M ] is [M ]−1 = [h−C(M,C)].
In view of Theorem 2.1 a), the Picard group represents the set of self-equivalences
of MC .

The cocenter (see [19]): Let C be a coalgebra. If we view C as a right
Ce-comodule (Ce = Cop ⊗ C), then C is quasi-finite. The co-endomorphism
coalgebra Z(C) = e−Ce(C), called the cocenter of C, verifies the following pro-
perties:

i) Z(C) is a cocommutative coalgebra with a surjective coalgebra map 1d :
C → Z(C) which is cocentral, i.e.,∑

(c)

1d(c(1))⊗ c(2) =
∑
(c)

1d(c(2))⊗ c(1) ∀c ∈ C.

ii) For any cocentral coalgebra map f : C → D, there exists a unique
coalgebra map g : Z(C) → D such that f = g1d.

Proposition 2.2 Let M be an invertible (C,C)-bicomodule. Then e−Ce(M) ∼=
Z(C).

Proof: M is a (Z(C), Ce)-bicomodule with the structure maps ω+ = (τ ⊗
1)(ρ− ⊗ 1)ρ+ and ω− = (1d ⊗ 1)ρ−, where τ is the twist map. By the universal
property of the co-endomorphism coalgebra, there is a unique coalgebra map
λ : e−Ce(M) → Z(C) such that the following diagram commutes:

M
ρ−

- C ⊗M
1d ⊗ 1

- Z(C)⊗M

θ

? ������
λ⊗ 1

������*

e−Ce(M)⊗M

We are going to prove that λ is an isomorphism. M is a (e−Ce(M), C)-bicomodule
via θ and ρ+, and a (e−Ce(M), Cop)-bicomodule via θ and τρ−. Then, (θ⊗1)ρ+ =
(1⊗ρ+)θ, and (θ⊗1)τρ− = (1⊗τ)(1⊗ρ−)θ. Applying (1⊗τ) to the last equality,
we obtain:

(1⊗ ρ−)θ = (1⊗ τ)(θ ⊗ 1)τρ− = (τ ⊗ 1)(1⊗ θ)ρ−. (∗)
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By the universal property of the co-endomorphism coalgebra e−C(M), there is a
unique coalgebra map α : e−C(M) → e−Ce(M) such that the following diagram
is commutative (θ′ is the canonical map associated to e−C(M)):

M
θ - e−Ce(M)⊗M

θ′

? �
�

� α⊗ 1
�

�
��

e−C(M)⊗M

Since M is invertible, we may identify e−C(M) with C and θ′ with ρ−. Then

M
θ - e−Ce(M)⊗M

ρ−

?�
�

� α⊗ 1
�

�
��

C ⊗M

We check that α is cocentral.

[(α⊗ 1)τ∆⊗ 1]ρ− = (α⊗ 1⊗ 1)(τ ⊗ 1)(∆⊗ 1)ρ−

= (α⊗ 1⊗ 1)(τ ⊗ 1)(1⊗ ρ−)ρ−

= (τ ⊗ 1)(1⊗ α⊗ 1)(1⊗ ρ−)ρ−

= (τ ⊗ 1)(1⊗ θ)ρ−

= (1⊗ ρ−)θ by (∗)
= (1⊗ ρ−)(α⊗ 1)ρ−

= (α⊗ 1⊗ 1)(1⊗ ρ−)ρ−

= (α⊗ 1⊗ 1)(∆⊗ 1)ρ−

= [(α⊗ 1)∆⊗ 1]ρ−.

It follows that (α⊗1)τ∆ = (α⊗1)∆; i.e., α is cocentral. Now, by the universal
property of the cocenter, there is a unique coalgebra map β : Z(C) → e−Ce(M)
such that α = 1dβ. We see that β is the inverse of λ. We know that θ = (α⊗1)ρ−

and (λ⊗ 1)θ = (1d ⊗ 1)ρ−. Then,

(βλ⊗ 1)θ = (β ⊗ 1)(1d ⊗ 1)ρ− = (β1d ⊗ 1)ρ− = (α⊗ 1)ρ− = θ,
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(λβ1d ⊗ 1)ρ− = (λ⊗ 1)(β1d ⊗ 1)ρ− = (λ⊗ 1)(α⊗ 1)ρ− = (λ⊗ 1)θ
= (1d ⊗ 1)ρ−.

It follows that βλ = 1e−Ce (M) and λβ1d = 1d which implies λβ = 1Z(C). Hence
e−Ce(M) ∼= Z(C).

Proposition 2.3 Let M be an invertible (C,C)-bicomodule. If f : M → M is
a (C,C)-bicomodule map, then there is a unique linear map α : Z(C) → k such
that

f(m) =
∑
(m)

〈α, 1d(m(−1))〉m(0) ∀m ∈M.

Moreover, if f is an isomorphism, then α is a unit in Z(C)∗.

Proof: By the above lemma, we may identify e−Ce(M) with Z(C) and θ
with (1d ⊗ 1)ρ−. M is a right Ce-comodule and f a Ce-comodule map. There
is a unique linear map α : Z(C) → k such that the following diagram is com-
mutative:

M
f

- M ∼= k ⊗M

(1d ⊗ 1)ρ−

? �
�

� α⊗ 1
�

�
��

Z(C)⊗M

This gives the first part. As f = 1M then the map α is the counit ε : Z(C) → k.
Suppose that f is an isomorphism and α′ : Z(C) → k is the associated linear
map to f−1.

m = f−1f(m) =
∑

(m)〈α, 1d(m(−1))〉f−1(m(0))
=
∑

(m)〈α, 1d(m(−2))〉〈α′, 1d(m(−1))〉m(0)

= 〈α · α′, 1d(m(−1))〉m(0),

where · denotes the convolution product in Z(C)∗. On the other hand,

m = 1M(m) =
∑
(m)

〈ε, 1d(m(−1))〉m(0).

From the uniqueness, it follows that α · α′ = ε. Similarly, α′ · α = ε.

Corollary 2.4 Let C be a coalgebra. The dual Z(C)∗ is equal to the center of
C∗, Z(C∗).
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Proof: Let c∗ ∈ C∗ and d∗ ∈ Z(C)∗. Then, for any c ∈ C,

〈c∗ · d∗, c〉 =
∑
(c)

〈c∗, c(1)〉〈d∗, 1d(c(2))〉 =
∑
(c)

〈c∗, c(2)〉〈d∗, 1d(c(1))〉 = 〈d∗ · c∗, c〉,

where we have used that 1d is cocentral. Hence Z(C)∗ ⊆ Z(C∗).

It is well known that Com−C(C,C) ∼= C∗ via the map c∗ 7→ Θc∗ defined by
Θc∗(c) =

∑
(c)〈c∗, c(1)〉c(2). By restricting this map to Z(C∗), there is an iso-

morphism between Z(C∗) and ComC−C(C,C), the space of (C,C)-bicomodule
maps from C into itself. Given d∗ ∈ Z(C∗), consider the (C,C)-bicomodule
map Θd∗ . By Lemma 2.3, there is a unique linear map β ∈ Z(C)∗ such that
Θd∗(c) =

∑
(c)〈β, 1d(c(1))〉c(2). Then,

∑
(c)〈d∗, c(1)〉c(2) =

∑
(c)〈(1d)∗(β), c(1)〉c(2).

It follows that d∗ = (1d)∗(β), then d∗ ∈ Z(C)∗.

In the next section we will use the Picard group in the study of graded
coalgebras. For this reason, we include a brief paragraph with several facts on
graded coalgebras. For other results on graded coalgebras we refer to the reader
to [12], [4], or [5].

Graded coalgebras: In the sequel G will denote a group with identity element
e. A coalgebra C is called a G-graded coalgebra if C admits a decomposition as
a direct sum of spaces C = ⊕σ∈GCσ such that:

i) ∆(Cσ) ⊆ ∑
λµ=σ Cλ ⊗ Cµ for any σ ∈ G;

ii) ε(Cσ) = 0 for any σ 6= e.

For any σ ∈ G we write πσ : C → Cσ for the canonical projection and
iσ : Cσ → C for the inclusion map.

1) If σ, τ ∈ G there exists a unique linear map uσ,τ : Cστ → Cσ ⊗ Cτ such
that uσ,τπστ = (πσ ⊗ πτ )∆. Indeed, uσ,τ = (πσ ⊗ πτ )∆iστ .

2) For any σ, τ, λ ∈ G: (uσ,τ ⊗ 1)uστ,λ = (1⊗ uτ,λ)uσ,τλ.
3) If σ ∈ G, (1⊗ ε)uσ,e = 1.
4) If we write ∆e = ue,e : Ce → Ce ⊗ Ce, then (Ce,∆e, ε) is a coalgebra and

πe : C → Ce is a coalgebra map. Moreover, Cσ is a (Ce, Ce)-bicomodule with
structure maps ρ+ = uσ,e and ρ− = ue,σ.

As uσ,τ : Cστ → Cσ ⊗ Cτ are injective for all σ, τ ∈ G,C = ⊕σ∈GCσ is
called a strongly graded coalgebra. In this case all Cσ are invertible (Ce, Ce)-
bicomodules with inverse Cσ−1 , [12, Cor. 5.5]. Graded crossed coproducts,
studied in [4], are a particular case of strongly graded coalgebra. A graded
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coalgebra C = ⊕σ∈GCσ is called a graded crossed coproduct if for any σ ∈ G,
there are linear maps uσ : Cσ → k, vσ : Cσ−1 → k such that∑
(c)

uσ(πσ(c(1)))vσ(πσ−1(c(2))) =
∑
(c)

vσ(πσ−1(c(1)))vσ(πσ(c(2))) = ε(c), ∀c ∈ Ce.

3 Cofactor sets and cohomology

Let C be a coalgebra and Pic(C) its Picard group. Recall from [18, Th. 2.10]
that there is a group homomorphim Φ : Pic(C) → Aut(Z(C)) defined as follows:
for [M ] ∈ Pic(C), there exists a unique coalgebra automorphism ΦM : Z(C) →
Z(C) such that∑

(m)

m(0) ⊗ ΦM1d(m(1)) =
∑
(m)

m(0) ⊗ 1d(m(−1)) ∀m ∈M.

Suppose now that G is a finite group and Π : G → Pic(C) is a group homo-
morphism. For any σ ∈ G, we will write [Mσ] instead Π(σ). Z(C) has structure
of left (kG)∗-comodule coalgebra with the coaction

ρ : Z(C) → (kG)∗ ⊗ Z(C), c 7→
∑
σ∈G

pσ ⊗ ΦMσ−1 (c).

where {pσ : σ ∈ G} is the dual basis of {σ : σ ∈ G}. We consider the
second Doi’s cohomology group H2(Z(C), (kG)∗) (see [8] or [11]) defined as
follows: any linear map α : Z(C) → (kG)∗ ⊗ (kG)∗ can be expressed as
α(c) =

∑
x,y∈G αx,y(c)px⊗py where αx,y ∈ Z(C)∗ for all x, y ∈ G. α is convolution

invertible if and only if αx,y ∈ U(Z(C)∗) for all x, y ∈ G. Let Z2(Z(C), (kG)∗)
be the set of convolution invertible linear maps α : Z(C) → (kG)∗ ⊗ (kG)∗

which verifies the cocycle condition:

(C)
∑
(c)

αx,yz(c(2))αy,z(ΦMx−1 (c(1))) =
∑
(c)

αx,y(c(1))αxy,z(c(2)).

A cocycle β ∈ Z2(Z(C), (kG)∗) is said to be a coboundary if there exists a
convolution invertible linear map α : Z(C) → (kG)∗, (α(c) =

∑
g∈G αg(c)pg ∀c ∈

Z(C)) such that

βx,y(c) =
∑
(c)

〈αxy, c(1)〉〈α−1
x , c(2)〉〈α−1

y ,ΦMx−1 (c(3))〉
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for all x, y ∈ G, c ∈ Z(C). The set of coboundaries, denoted by B2(Z(C), (kG)∗)
is a subgroup of Z2(Z(C), (kG)∗) and the second Doi’s cohomology group is
defined as

H2(Z(C), (kG)∗) = Z2(Z(C), (kG)∗)/B2(Z(C), (kG)∗).

For any class [α] ∈ H2(Z(C), (kG)∗) we can choose a representative element
which verifies the normalized cocycle condition.

(CU) αx,e(c) = ε(c) αe,x(c) = ε(c) ∀x ∈ G, c ∈ Z(C).

Definition 3.1 Let Π : G → Pic(C) be a group homomorphism. We set
Π(σ) = [Mσ] for any g ∈ G. A cofactor set F associated to Π is a fam-
ily F = {fλ,µ : λ, µ ∈ G} consisting of C-bicomodule isomorphisms fλ,µ :
Mλµ → Mλ2CMµ, ω : Me → C such that the following diagrams commute for
all λ, µ, τ ∈ G.

Mµλτ

fµλ,τ
- Mµλ2CMτ

?

fµ,λτ fµ,λ21τ

?

Mµ2CMλτ

1µ2fλ,τ
- Mµ2CMλ2CMτ

Mλ2CMe
12ω- Mλ2CC

I@
@

@

fλ,e
@

@
@ �

�
�

ρ+
λ �

�
��

Mλ

Me2CMλ
ω21- C2CMλ

I@
@

@

fe,λ
@

@
@ �

�
�

ρ−λ �
�

��

Mλ

The set of cofactor sets associated to Π will be denoted by Fs(Π). For
F ∈ Fs(Π), a strongly graded coalgebra C〈F ,Π, G〉 may be defined as follows
(see [9, p. 39]): as a vector space C〈F ,Π, G〉 = ⊕σ∈GMσ; for m ∈ Mσ, the
comultiplication ∆(m) =

∑
λµ=σ fλ,µ(m); the counit ε(Mσ) = {0} if σ 6= e, and

ε(m) = εCω(m) if m ∈Me.

Following [9], C〈F ,Π, G〉 is called a divisorially graded coalgebra but the
definition there is much more general. Divisorially graded coalgebras are defined
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respect to a torsion theory T in MC . Our definition coincides with that when
the torsion theory is the trivial one T = {0}. In this case the class of divisorially
graded coalgebras is just the class of strongly graded coalgebras with component
of degree e isomorphic to C.

Examples 3.2

1.- [9, Remark p. 39] Let C = ⊕σ∈GCσ be a strongly graded coalgebra. The
map Π : G → Pic(Ce), σ 7→ [Cσ] is a group homomorphism and the family
U = {uσ,τ}σ,τ∈G of canonical Ce-bicomodule maps uστ : Cστ → Cσ2CeCτ is a
cofactor set associated to Π. Moreover, C = Ce〈U ,Π, G〉 as graded coalgebras.

2.- Let p : C → D be a surjective coalgebra map. A two-sided D-subbicomo-
dule of C is a subspaceX of C such thatX is a (D,D)-bicomodule. Let B(C,D)
denote the set of all two-sided D-subbicomodules of C. Any subcoalgebra of C
belongs to B(C,D) by considering it as a (D,D)-bicomodule via p. X ∈ B(C,D)
is said to be invertible if there is Y ∈ B(C,D) such thatX∧Y = Y ∧X = Ker(p)
(∧ denotes the wedge). We write Y = X−1. The set of all invertible X ∈
B(C,D), denoted by I(C,D), is a group under the multiplication X∗Y = X∧Y
with identity element Ker(p). This group is called the class group of C respect
to D.

There is a canonical map from I(C,D) to Pic(D) mapping X ∈ I(C,D) to
[C/X]. We check that C/X is an invertible (D,D)-bicomodule. It is a (D,D)-
bicomodule with structure maps,

ρ+(c+X) =
∑
(c)

(c(1)+X)⊗p(c(2)) ρ−(c+X) =
∑
(c)

p(c(1))⊗(c(2)+X) ∀c ∈ C.

We define a map η : C → C/X2DC/X
−1, c 7→ ∑

(c)(c(1)+X)⊗(c(2)+X
−1) which

is a (D,D)-bicomodule map with kernel X ∧ X−1 = Ker(p). The canonical
coalgebra map p̄ : C/Ker(p) ∼= D is a D-bicomodule map. In this way, we have
two D-bicomodule maps

f = ηp̄−1 : D → C/X2DC/X
−1, g = η′p̄−1 : D → C/X−12DC/X.

with η′ : C → C/X−12DC/X similarly defined as η. It is easy to check that
(D,D,C/X,C/X−1, f, g) is a strict Morita-Takeuchi context. By [17, Th. 2.5],
f and g are isomorphisms, and so [C/X] ∈ Pic(D).

We can not claim, in general, that the map can : I(C,D) → Pic(D), X 7→
[C/X] is a group homomorphism. However, it is true when C is injective as
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a right D-comodule via p, and the map ∆̄ : C → C2DC, c 7→
∑

(c) c(1) ⊗ c(2)
is an isomorphism (this happens if p is a coflat monomorphism, see [14]). Let
X, Y ∈ I(C,D) and define η : C → C/X2DC/Y as before. The kernel of
η is X ∧ Y and denoting by qX : C → C/X, qY : C → C/Y the canonical
projections, the following square is commutative:

C
η

- C/X2DC/Y

∆̄

? ?

12qY

C2DC
qX21

- C/X2DC

Since C and C/X are injective as a left and right D-comodules respectively, the
functors −2DC,C/X2D− are exact. Thus qX21 and 12qY are surjective. It
follows that η is surjective. Hence, [C/X ∧ Y ] = [C/X2DC/Y ].

Let G be a finite group and π : G → I(C,D) be a group homomorphism.
We set π(σ) = Xσ for all σ ∈ G. Let Π = canπ : G → Pic(D). The family
F = {fσ,τ}σ,τ∈G where

fσ,τ : C/Xστ → C/Xσ2DC/Xτ , (c+Xστ ) 7→
∑
(c)

(c(1) +Xσ)⊗ (c(2) +Xτ )

is a cofactor set associated to Π. The strongly graded coalgebraR(Π) = D〈F ,Π, G〉
is called the generalized Rees coalgebra associated to Π.

3.- Let Aut(C) be the group of automorphisms of the coalgebra C. An
automorphism f ∈ Aut(C) is said to be inner if there is a unit u ∈ C∗ such
that f(c) =

∑
(c) u(c(1))c(2)u

−1(c(3)) for all c ∈ C. The group of inner automor-
phisms of C, Inn(C), is a normal subgroup of Aut(C) and the factor group
Out(C) = Aut(C)/Inn(C) is called the group of outer automorphisms of C. If
f ∈ Aut(C), fC1 is the (C,C)-bicomodule defined as follows: fC1 = C as right
C-comodule and the left comodule structure map is ρ− = (f ⊗ 1)∆. From [18,
Th. 2.7] we recall that there is an exact sequence:

1 - Inn(C) - Aut(C)
ω- Pic(C), (2)

where ω(f) = [fC1] for all f ∈ Aut(C). Hence, ω induces a group monomor-
phism from Out(C) to Pic(C). We say that C has the Aut-Pic property if ω is
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surjective. In this case Pic(C) ∼= Out(C). An study of coalgebras having Aut-
Pic property was carried out in [3]. It was proved that basic coalgebras have
the Aut-Pic property, see [3, Th. 2.6]. We remember from [1] that a coalgebra
is said to be basic if the dual of any simple subcoalgebra is a division algebra.
In particular, pointed or cocommutative coalgebras are basic coalgebras, and
then they have the Aut-Pic property.

Let G be a finite group, and suppose that there is a group homomorphism
π : G → Aut(C). For σ ∈ G, we write πσ instead π(σ). Let Π : G → Pic(C)
be the composite of π with ω : Aut(C) → Pic(C). For σ, τ ∈ G, consider the
C-bicomodule isomorphism

fσ,τ : 1Cπστ → 1Cπσ2C1Cπτ , c 7→
∑
(c)

c(1) ⊗ πσ(c(2)).

The family F = {fσ,τ}σ,τ∈G is a cofactor set associated to Π.

Proposition 3.3 Let Π : G → Pic(C) be a group homomorphism, and F =
{fx,y}x,y∈G a cofactor set associated to Π. Let α ∈ Z2(Z(C), (kG)∗) a norma-
lized cocycle. Given λ, µ ∈ G and m ∈Mλµ, we define

gλ,µ(m) =
∑
(m)

〈αλ,µ, 1
d(m(−1))〉fλ,µ(m(0)).

Then α ? F = {gx,y}x,y∈G is a cofactor set associated to Π.

Proof: In order to prove that α ? F is a cofactor set associated to Π, we
need several previous facts.

Let µ, λ, τ ∈ G, and fµλ,τ : Mµλτ → Mµλ2CMτ the C-bicomodule isomor-
phism. For any m ∈ Mµλτ , we can set fµλ,τ (m) =

∑
imi ⊗ ni. Using that fµλ,τ

is a bicomodule map, from∑
imi(−1) ⊗mi(0) ⊗ ni =

∑
fµλ,τ (m)(−1) ⊗ fµλ,τ (m)(0),∑

fµλ,τ (m)(−1) ⊗ fµλ,τ (m)(0),=
∑

(m)m(−1) ⊗ fµλ,τ (m(0))

we deduce the formula,∑
i

mi(−1) ⊗mi(0) ⊗ ni =
∑
(m)

m(−1) ⊗ fµλ,τ (m(0)). (3)

13



Similarly, if we set fµ,λτ (m) =
∑

j m
′
j ⊗ n′j for any m ∈Mµλτ , then∑

j

m′
j(−1) ⊗m′

j(0) ⊗ n′j =
∑
(m)

m(−1) ⊗ fµ,λτ (m(0)). (4)

Since (fµ,τ21)fµλ,τ = (12fλ,τ )fµ,λτ , then∑
i

fµ,λ(mi)⊗ ni =
∑
j

m′
j ⊗ fλ,τ (n

′
j).

Applying ρ− ⊗ 1 and the fact that fµ,λ is a bicomodule map,∑
i

mi(−1) ⊗ fµ,λ(mi(0))⊗ ni =
∑
j

m′
j(−1) ⊗m′

j(0) ⊗ fλ,τ (n
′
j).

Finally, applying ∆⊗ 1⊗ 1, we obtain∑
i

mi(−1)(1)⊗mi(−1)(2)⊗fµ,λ(mi(0))⊗ni =
∑
j

m′
j(−1)(1)⊗m′

j(−1)(2)⊗m′
j(0)⊗fλ,τ (n

′
j).

(5)
On the other hand, since fµ,λτ (m) =

∑
j m

′
j ⊗ n′j ∈ Mµ2CMλτ we have that∑

j m
′
j(−1) ⊗m′

j(0) ⊗ n′j ∈ C2CMµ2CMλτ . Then,

∑
j

m′
j(−1) ⊗m′

j(0)(0) ⊗m′
j(0)(1) ⊗ n′j =

∑
j

m′
j(−1) ⊗m′

j(0) ⊗ n′j(−1) ⊗ n′j(0). (6)

14



Now, we are ready to check that α ? F is a cofactor set.

(gλ,µ21)gλµ,τ (m) = (gλ,µ21)(
∑

(m)〈αµλ,τ , 1
d(m(−1))〉fµλ,τ (m(0)))

=
∑〈αµλ,τ , 1

d(mi(−1))〉gµ,λ(mi(0))⊗ ni by (3)

=
∑〈αµλ,τ , 1

d(mi(−1))〉〈αµ,λ, 1
d(mi(0)(−1))〉fµ,λ(mi(0)(0))⊗ ni

=
∑〈αµλ,τ , 1

d(mi(−1)(1))〉〈αµ,λ, 1
d(mi(−1)(2))〉fµ,λ(mi(0))⊗ ni

by comodule property

=
∑〈αµλ,τ , 1

d(mi(−1)(2))〉〈αµ,λ, 1
d(mi(−1)(1))〉fµ,λ(mi(0))⊗ ni

since 1d is cocentral

=
∑〈αµ,λτ , 1

d(mi(−1)(2))〉〈αλ,τ ,ΦMµ−11
d(mi(−1)(1))〉fµ,λ(mi(0))⊗ ni

by cocycle condition

=
∑〈αµ,λτ , 1

d(m′
j(−1)(2))〉〈αλ,τ ,ΦMµ−11

d(m′
j(−1)(1))〉m′

j(0) ⊗ fλ,τ (n
′
j) by (5)

=
∑〈αµ,λτ , 1

d(m′
j(−1))〉〈αλ,τ ,ΦMµ−11

d(m′
j(0)(−1))〉m′

j(0)(0) ⊗ fλ,τ (n
′
j)

by comodule property

=
∑〈αµ,λτ , 1

d(m′
j(−1))〉〈αλ,τ , 1

d(m′
j(0)(1))〉 ⊗m′

j(0)(0) ⊗ fλ,τ (n
′
j)

by definition of ΦMµ−1

=
∑〈αµ,λτ , 1

d(m′
j(−1))〉〈αλ,τ , 1

d(n′j(−1))〉m′
j(0) ⊗ fλ,τ (n

′
j(0)) by (6)

=
∑〈αµ,λτ , 1

d(m′
j(−1))〉m′

j(0) ⊗ gλ,τ (n
′
j)

= (12gλ,τ )(
∑〈αµ,λτ , 1

d(m′
j(−1))〉fµ,λτ (m

′
j(0)))

= (12gλ,τ )gµ,λτ (m).

Let ω : Me → C be the isomorphism given together the cofactor set F =
{fλ,µ}λ,µ∈G. Then, (12ω)fλ,e(m) =

∑
(m)m(0) ⊗m(1). Now, using this and the

normalized cocycle condition of α, we have:

(12ω)gλ,e(m) = (12ω)(
∑

(m)〈αλ,e, 1
d(m(−1))〉fλ,e(m(0)))

=
∑

(m)〈ε,m(−1)〉(12ω)fλ,e(m(0)) = (12ω)fλ,e(m) =
∑

(m)m(0) ⊗m(1).

Similarly, (ω21)fe,λ = ρ−.

Proposition 3.4 Let Π : G → Pic(C) be a group homomorphism and F =
{fλ,µ}λ,µ∈G, G = {gλ,µ}λ,µ∈G two cofactor sets. Then there is a unique α ∈
Z2(Z(C), (kG)∗) such that

fλ,µ(m) =
∑
(m)

〈αλ,µ, 1
d(m(−1))〉gλ,µ(m(0))
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for all m ∈Mλµ.

Proof: Given λ, µ ∈ G, consider the C-bicomodule map g−1
λ,µfλ,µ : Mλµ →

Mλµ. By Proposition 2.3, there exists a unique linear map αλ,µ ∈ U(Z(C)∗)
such that

g−1
λ,µfλ,µ(m) =

∑
(m)

〈αλ,µ, 1
d(m(−1))〉m(0), ∀m ∈Mλµ.

Then,
fλ,µ(m) =

∑
(m)

〈αλ,µ, 1
d(m(−1))〉gλ,µ(m(0)) ∀m ∈Mλµ.

We set gλ,µτ (m(0)) =
∑

imi ⊗ ni. Since gλ,µτ is a C-bicomodule map,∑
m(0)(−1)⊗gλ,µτ (m(0)(0)) =

∑
gλ,µτ (m(0))(−1)⊗gλ,µτ (m(0))(0) =

∑
mi(−1)⊗mi(0)⊗ni.

Applying (1212gµ,τ ) yields:∑
m(0)(−1) ⊗ (12gµ,τ )gλ,µτ (m(0)(0)) =

∑
mi(−1) ⊗mi(0) ⊗ gµ,τ (ni). (7)

A similar equality follows for gλµ,τ (m(0)) =
∑

j m
′
j ⊗ n′j.

Again from Proposition 2.3, we may find a unique β ∈ U(Z(C)∗) such that

(12fµ,τ )fλ,µτ (m) =
∑
(m)

〈β, 1d(m(−1))〉(12gµ,τ )gλ,µτ (m(0)).

Now,

(12fµ,τ )fλ,µτ (m) = (12fµ,τ )(
∑

(m)〈αλ,µτ , 1
d(m(−1))〉gλ,µτ (m(0)))

=
∑〈αλ,µτ , 1

d(m(−1))〉〈αµ,τ , 1
d(ni(−1))〉mi ⊗ gµ,τ (ni(0))

=
∑〈αλ,µτ , 1

d(m(−1))〉〈αµ,τ , 1
d(mi(1))〉mi(0) ⊗ gµ,τ (ni)

since
∑

imi ⊗ ni ∈Mλ2CMµτ

=
∑〈αλ,µτ , 1

d(m(−1))〉〈αµ,τ ,ΦMλ−11
d(mi(−1))〉mi(0) ⊗ gµ,τ (ni)

=
∑〈αλ,µτ , 1

d(m(−1))〉〈αµ,τ ,ΦMλ−11
d(m(0)(−1))〉(12gµ,τ )gµ,λτ (m(0)(0))

by (7)

=
∑〈αλ,µτ , 1

d(m(−1)(1))〉〈αµ,τ ,ΦMλ−11
d(m(−1)(2))〉(12gµ,τ )gµ,λτ (m(0))

by comodule property

=
∑〈αλ,µτ · (αµ,τΦMλ−1 ), 1

d(m(−1))〉(12gµ,τ )gµ,λτ (m(0)).

16



The uniqueness of β yields, β = αλ,µτ · (αµ,τΦMλ−1 ). On the other hand,

(fλ,µ21)fλµ,τ (m) =
∑

(m)〈αλµ,τ , 1
d(m(−1))〉(fλ,µ21)gλµ,τ (m(0))

=
∑〈αλµ,τ , 1

d(m(−1))〉〈αλ,µ, 1
d(m′

j(−1))〉gλ,µ(m′
j(0))⊗ n′j

=
∑〈αλµ,τ , 1

d(m(−1))〉〈αλ,µ, 1
d(m′

(0)(−1))〉(gλ,µ21)gλµ,τ (m(0)(0))

=
∑〈αλµ,τ , 1

d(m(−1)(1))〉〈αλ,µ, 1
d(m(−1)(2))〉(gλ,µ21)gλµ,τ (m(0))

=
∑〈αλµ,τ · αλ,µ, 1

d(m(−1))〉(gλ,µ21)gλµ,τ (m(0)).

From the uniqueness of β it is deduced that

β = αλ,µτ · (αµ,τΦMλ−1 ) = αλµ,τ · αλ,µ,

which is just the cocycle condition for α defined as α(d) =
∑

x,y∈G αx,y(d)px⊗py

for all d ∈ Z(C).

Proposition 3.5 In the conditions of the above proposition, the map α ∈
B2(Z(C), (kG)∗) if and only if there is a C-bicolinear isomorphism of graded
coalgebras from C〈F ,Π, G〉 into C〈α ? F ,Π, G〉.

Proof: Suppose that α ∈ B2(Z(C), (kG)∗), then there is a convolution
invertible map β : Z(C) → (kG)∗ (β(d) =

∑
g∈G βg(d) ∀d ∈ Z(C)) such that

〈αλ,µ, d〉 =
∑
〈αλµ, c(1)〉〈α−1

λ , c(2)〉〈α−1
µ ,Φλ−1(c(3))〉 ∀d ∈ Z(C).

Let m ∈Mσ, we define ησ : C〈F ,Π, G〉 → C〈α ? F ,Π, G〉 as

ησ(m) =
∑
(m)

〈β−1
σ , 1d(m(−1))〉m(0).

We check that η = ⊕σ∈Gησ is a C-bicolinear isomorphism of graded coalgebras.
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It is not difficult to see that it is C-bicolinear.

∆(η(m)) = ∆(ησ(m)) = ∆(
∑

(m)〈β−1
σ , 1d(m(−1))〉m(0))

=
∑

(m)

∑
ab=σ〈β−1

σ , 1d(m(−1))〉〈αa,b, 1
d(m(0)(−1))〉fa,b(m(0)(0))

=
∑

(m)

∑
ab=σ〈β−1

σ , 1d(ma
i(−1)(1))〉〈αa,b, 1

d(ma
(−1)(2))〉ma

i(0) ⊗ nb
i

where we have set fa,b(m) =
∑

im
a
i ⊗ nb

i

=
∑

(m)

∑
ab=σ〈β−1

σ , 1d(ma
i(−1)(1))〉〈βσ, 1

d(ma
i(−1)(2))〉〈β−1

a , 1d(ma
i(−1)(3))〉

〈β−1
b ,ΦMa−11

d(ma
i(−1)(4))〉ma

i(0) ⊗ nb
i

=
∑

(m)

∑
ab=σ〈β−1

a , 1d(ma
i(−1)(1))〉〈β

−1
b ,ΦMa−11

d(ma
i(−1)(2))〉ma

i(0) ⊗ nb
i

=
∑

(m)

∑
ab=σ〈β−1

a , 1d(ma
i(−1))〉〈β

−1
b ,ΦMa−11

d(ma
i(0)(−1))〉ma

i(0)(0) ⊗ nb
i

=
∑

(m)

∑
ab=σ〈β−1

a , 1d(ma
i(−1))〉〈β

−1
b , 1d(ma

i(0)(1))〉ma
i(0)(0) ⊗ nb

i

by definition of ΦMa−1

=
∑

(m)

∑
ab=σ〈β−1

a , 1d(ma
i(−1))〉〈β

−1
b , 1d(nb

i(−1))〉ma
i(0) ⊗ nb

i(0)

since
∑

im
a
i(0) ⊗ nb

i ∈Ma2CMb

=
∑

ab=σ(ηa ⊗ ηb)(
∑

im
a
i ⊗ nb

i) =
∑

ab=σ(ηa ⊗ ηb)fa,b(m)

= (η ⊗ η)∆(m).

Assume that σ 6= e, then ε(m) = 0 = εη(m). If σ = e, then,

εη(m) = εCωη(m) = εCω(
∑
(m)

〈β−1
e , 1d(m(−1))〉m(0)) = εCω(m) = ε(m),

since β−1
e = εC .

Conversely, assume that η : C〈F ,Π, G〉 → C〈α ? F ,Π, G〉 is a C-bicolinear
isomorphism of graded coalgebras. Then η = ⊕σ∈Gησ where ησ is a C-bicolinear
isomorphism of Mσ. By Proposition 2.3 there is a unique βσ ∈ U(Z(C)∗) such
that

η−1
σ (m) =

∑
(m)

〈βσ, 1
d(m(−1))〉m(0) ∀m ∈Mσ.

Let σ, τ ∈ G be fixed, and m ∈ Mστ . Given a, b ∈ G, we set fa,b(m) =
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∑
im

a
i ⊗ nb

i ∈Ma2CNb. Then,

(η−1 ⊗ η−1)∆(m) = (η−1 ⊗ η−1)(
∑

ab=στ 〈αa,b, 1
d(m(−1))〉fa,b(m(0))

=
∑

ab=στ 〈αa,b, 1
d(m(−1))〉〈βa, 1

d(ma
i(0)(−1))〉〈βb, 1

d(nb
i(−1))〉ma

i(0)(0) ⊗ nb
i(0)

=
∑

ab=στ 〈αa,b, 1
d(ma

i(−1))〉〈βa, 1
d(ma

i(0)(−1))〉〈βb, 1
d(ma

i(1))〉ma
i(0)(0) ⊗ nb

i

since
∑

im
a
i(0) ⊗ nb

i ∈Ma2CNb

=
∑

ab=στ 〈αa,b, 1
d(ma

i(−3))〉〈βa, 1
d(ma

i(−2))〉〈βb,ΦMa−11
d(ma

i(−1))〉ma
i(0) ⊗ nb

i

=
∑

ab=στ 〈αa,b, 1
d(ma

i(−1)(1))〉〈βa, 1
d(ma

i(−1)(2))〉〈βb,ΦMa−11
d(ma

i(−1)(1))〉ma
i(0) ⊗ nb

i

=
∑

ab=στ 〈αa,b · βa · (βbΦMa−1 ), 1
d(ma

i(−1))〉ma
i(0) ⊗ nb

i

=
∑

ab=στ 〈αa,b · βa · (βbΦMa−1 ), 1
d(m(−1))〉fa,b(m(0)).

On the other hand,

∆η−1(m) =
∑

ab=gh

∑
(m)

〈βgh, 1
d(m(−1))〉fa,b(m(0)).

Since η is a coalgebra map, fσ,τ an isomorphism, and βστ is unique, we obtain
that βστ = ασ,τ · ασ · (βτΦMσ−1 ). From this, ασ,τ = βστ · β−1

σ · (β−1
τ ΦMσ−1 ) and

thus α ∈ B2(Z(C), (kG)∗).

Let P = {C〈F ,Π, G〉}F∈Fs(Π) be the set of divisorially graded coalgebras.
We denote by C(C,Π) the set of isomorphism classes of divisorially graded
coalgebras. D,D′ ∈ C(C,Π) are isomorphic if there exists a C-bicolinear iso-
morphism of graded coalgebras from D into D′.

Theorem 3.6 Let F ∈ Fs(Π). The map from H2(Z(C), (kG)∗) into C(C,Π),
[α] 7→ C〈α ? F ,Π, G〉 is bijective.

Proof: Follows from Propositions 3.3, 3.4, 3.5.

4 The strong Picard group: Applications

Besides Morita-Takeuchi theory, another Morita theory for coalgebras was de-
veloped by I-Peng Lin in [10]. For two coalgebras C,D, this theory studies the
equivalences from MC into MD which arise from an equivalence from C∗M
into D∗M where MC and MD are considered as full subcategories of C∗M and

D∗M respectively via rational modules. A right C-comodule M is called an
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ingenerator if it is a finitely cogenerated injective cogenerator. It is said that
C is strongly equivalent to D if MC is equivalent to MD via inverse equiva-
lences f : MC → MD and g : MD → MC , f(C) is an ingenerator in MD

and g(D) is an ingenerator in MC . If both coalgebras have finite dimensional
coradical, then strongly equivalent is the same as equivalent, see [10, p. 322].
The following is the theorem characterizing strong equivalences, [10, Th. 5]:

Theorem 4.1 Let C and D be coalgebras.

If MC is strongly equivalent to MD via f : MC →MD and g : MD →MC,
then there are ingenerators P ∈MC and Q ∈MD such that C∗M is equivalent
to D∗M via

F (−) = D∗P
∗
C∗ ⊗C∗ − : C∗M→ D∗M,

G(−) = C∗Q
∗
D∗ ⊗D∗ − : D∗M→ C∗M.

Moreover, f and g are naturally isomorphic to F and G respectively.

A subgroup of Pic(C) can be defined by considering invertible bicomodules
which are ingenerators.

Definition 4.2 The strong Picard group of C, denoted by Pics(C), is defined
as the subset consisting of [M ] ∈ Pic(C) such that M and M−1 are ingenerators
as right C-comodules.

We prove in the following lemma that the definition does not depend of the
right or left side.

Lemma 4.3 Let M be a right C-comodule.

i) M is finitely cogenerated if and only if M∗ is finitely generated.

ii) Assume that M is an injective cogenerator. Then, M is an ingenerator
if and only if M∗ is a progenerator.

iii) If M is an invertible (C,C)-bicomodule, then MC is an ingenerator if
and only if CM is an ingenerator.

Proof: i) If M is finitely cogenerated, it is clear that M∗ is finitely gene-
rated. Conversely, suppose that M∗ is finitely generated, then there is a finite
dimensional vector space W and a surjective C∗-module map g : W⊗C∗ →M∗.
The dual map g∗ : M∗∗ → (W ⊗ C∗)∗ ∼= W ∗ ⊗ C∗∗ is injective. Consider the
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canonical embeddings λM : M → M∗∗, λC : C → C∗∗. Let {ei}n
i=1 be a basis

for W and {e∗i }n
i=1 its dual basis in W ∗. For m ∈M, we define

ḡ(m) =
n∑

i=1

∑
(m)

e∗i ⊗ 〈g(ei ⊗ ε),m(0)〉m(1).

It is easy to check that ḡ is a C-comodule map. We claim that the following
diagram is commutative:

M∗∗ g∗
- W ∗ ⊗ C∗∗

6 6

λM 1⊗ λC

M
ḡ

- W ∗ ⊗ C

Let c∗ ∈ C∗,

〈(1⊗ λC)ḡ(m), ej ⊗ c∗〉 =
∑n

i=1

∑
(m)〈(1⊗ λC)(e∗i ⊗ 〈g(ei ⊗ ε),m(0)〉m(1)), ej ⊗ c∗〉

=
∑n

i=1

∑
(m)〈e∗i , ej〉〈g(ei ⊗ ε),m(0)〉〈c∗,m(1)〉

= 〈g(ei ⊗ ε)c∗,m〉
= 〈g(ei ⊗ c∗),m〉
= 〈λM(m), g(ei ⊗ c∗)〉
= 〈(g∗λM)(m), ej ⊗ c∗〉

It follows that ḡ is injective and hence M is finitely cogenerated.

ii) It was remarked in [10, p. 319] that if M is an ingenerator, then M∗ is
a progenerator. The converse straightforward follows from i).

iii) Since M is an invertible (C,C)-bicomodule, by [17, Th. 3.5], MC is a
quasi-finite injective cogenerator if and only if CM is so. If CM is an ingenerator,
then M∗ is a progenerator as left C∗-module. Since M∗ is an invertible (C∗, C∗)-
bimodule (Theorem 4.1), from classical Morita theory, M∗ is a progenerator as
right C∗-module. From ii), MC is an ingenerator.

In view of Theorem 2.1 a), Pics(C) represents the set of strong self-equiva-
lences of MC . Pics(C) is a subgroup of Pic(C) since any strong equivalence
maps ingenerators to ingenerators. If C has finite dimensional coradical, then
Pics(C) = Pic(C). Note that the image of ω in (2) lies in Pics(C). In parti-
cular if C has the Aut-Pic property, then Pics(C) = Pic(C) = Out(C). From
Theorem 4.1 follows that:
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Proposition 4.4 The map (−)∗ : Pics(C) → Pic(C), [M ] 7→ [M∗] is injective.
Hence Pics(C) may be viewed as a subgroup of Pic(C∗).

We apply the theory of the Picard group to the study of strongly graded
coalgebras. We give an hypothesis to characterize those graded coalgebras with
strongly graded dual ring. We recall from [12] the notion of graded dual ring.
Let C = ⊕σ∈GCσ be a graded coalgebra. For any σ ∈ G we put Rσ = {f ∈
C∗ | f(Cτ ) = 0 for all τ 6= σ}, (note that Rσ

∼= C∗
σ as vector spaces). We

define R =
∑

σ∈GRσ = ⊕σ∈GRσ. R is a G-graded ring with the convolution
product and unit ε. R is called the graded dual ring of the graded coalgebra C.
A graded coalgebra having a strongly graded dual ring is necessarily strongly
graded by [4, Cor. 2.2]. However, the converse is not true, see example below.
The strong Picard group allows us to characterize those coalgebras having a
strongly graded dual ring.

Proposition 4.5 Let C = ⊕σ∈GCσ be a strongly graded coalgebra and Π :
G → Pic(Ce), σ 7→ [Cσ] the canonical group homomorphism. Suppose that
Im(Π) ⊆ Pics(Ce).

i) The graded dual ring R = ⊕σ∈GRσ is strongly graded with canonical group
homomorphism Π∗ = (−)∗Π : G→ Pic(Re).

ii) Let Fs(Π
∗) denote the set of factor set associated to Π∗, and C(Re,Π

∗)
the set consisting of isomorphism classes of strongly graded rings Re〈F ,Π∗, G〉
with F ∈ Fs(Π

∗). Then, C(Ce,Π) ∼= C(Re,Π
∗) as sets.

Proof: i) Given σ, τ ∈ G, let uσ,τ : Cστ → Cσ2CeCτ be the canonical
cofactor set. Consider the dual map u∗σ,τ : (Cσ2CeCτ )

∗ ∼= Rσ ⊗Re Rτ → Rστ

(note that [Cσ] ∈ Pics(Ce) by hypothesis). The family U∗ = {u∗x,y}x,y∈G is a
factor set associated to Π∗ : G→ Pic(Re), σ 7→ Rσ = C∗

σ and R ∼= Re〈U∗,Π, G〉.
ii) Let σ ∈ G and d∗ ∈ Z(Re). We define an action σd∗ = Φ∗

Mσ−1
(d∗).

This action is just the dual of the coaction ρ : Z(Ce) → (kG)∗ ⊗ Z(Ce), d 7→∑
σ∈G pσ ⊗ΦCσ−1 (d) for all d ∈ Z(Ce). In light of Corollary 2.4 we may identify

Z(Ce)
∗ with Z(Re). Let d∗ ∈ Z(Re), d ∈ Z(Ce) and τ ∈ G. Then

〈ρ∗(τ ⊗ d∗), d〉 = 〈τ ⊗ d∗, ρ(d)〉
=
∑

σ∈G〈τ ⊗ d∗, pσ ⊗ ΦCσ−1 (d)〉
=
∑

σ∈G〈τ, pσ〉〈d∗,ΦCσ−1 (d)〉
= 〈d∗,ΦCτ−1 (d)〉
= 〈Φ∗

Cτ−1
(d∗), d〉

= 〈τd∗, d〉.
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If α ∈ H2(Z(Ce), (kG)∗), then α∗ : kG⊗ kG→ U(Z(Re)) defined as α∗(g, h) =
αg,h is a cocycle. Moreover, the map (−)∗ : H2(Z(Ce), (kG)∗) → H2(G,U(Z(Re))),
α 7→ α∗ is a group isomorphism (see [20, Lem. 3.1]. By Theorem 3.6, C(Ce,Π) ∼=
H2(Z(Ce), (kG)∗) and by [15, Cor. I.3.18], C(Re,Π

∗) ∼= H2(G,U(Z(Re))).
Hence C(Ce,Π) ∼= C(Re,Π

∗).

Theorem 4.6 Let C = ⊕σ∈GCσ be a graded coalgebra and R = ⊕σ∈GRσ its
graded dual ring. R is strongly graded if and only C is strongly graded and
Im(Π) ⊆ Pics(Ce). Equivalently, C is finitely cogenerated as right Ce-comodule.

Proof: Suppose that C = ⊕σ∈GCσ is a strongly graded coalgebra and
let Π : G → Pic(Ce), σ 7→ [Cσ] be the canonical group homomorphism. By
hypothesis, Im(Π) lies in Pics(Ce). From Proposition 4.5, the dual graded ring
R = ⊕σ∈GRσ is strongly graded.

Conversely, let C = ⊕σ∈GCσ be a graded coalgebra such that the graded
dual ring R = ⊕σ∈GRσ is strongly graded. From [4, Cor. 2.2], C is a strongly
graded coalgebra. Then, all Cσ are invertible (Ce, Ce)-bicomodules. Since R is
strongly graded, by [15, Prop. I.3.6], C∗

σ
∼= Rσ is an invertible (Re, Re)-bimodule

for all σ ∈ G. By Lemma 4.3, Cσ is an ingenerator and thus Im(Π) ⊆ Pics(Ce).

Since C = ⊕σ∈GCσ is a strongly graded coalgebra, the group G is necessarily
finite (see [12, Cor. 6.4]). All Cσ are finitely cogenerated as right Ce-comodule
if and only if C is finitely cogenerated as right Ce-comodule via the projection
πe : C → Ce.

This result improves [12, Prop. 6.2] where Cσ were asked to be of finite
dimension for all σ ∈ G. If Ce is finite dimensional, from the foregoing theorem,
we deduce that C is finite dimensional (note thatG is finite). Thus we rediscover
[4, Cor. 2.4].

Corollary 4.7 Let C = ⊕σ∈GCσ be a strongly graded coalgebra. If Pics(Ce) =
Pic(Ce), then R = ⊕σ∈GRσ is a strongly graded ring.

In particular the graded dual ring of a strongly graded coalgebra having
degree e component with finite dimensional coradical is strongly graded. Also,
as Ce has the Aut-Pic property the dual graded ring is strongly graded since
Pic(C) = Pics(C) ∼= Out(C). In this case we may say more on these coalgebras.
These are precisely the graded crossed coproducts.
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Theorem 4.8 Let C = ⊕σ∈GCσ be a strongly graded coalgebra and suppose that
Im(Π) ⊆ Out(Ce). Then, C is a graded crossed coproduct.

Proof: By Proposition 4.5 i), the dual graded ring R = ⊕σ∈GRσ is strongly
graded. By hypothesis, for each σ ∈ G, we may find an automorphism fσ : Ce →
Ce such that Cσ

∼= fσCe1 as (Ce, Ce)-bicomodules. Denote this isomorphism by
θσ : Cσ → fσCe1. The dual map θ∗σ : f∗σRe1 → Rσ is an isomorphism of (Re, Re)-
bimodules (f ∗σ : Re → Re is the dual of fσ). We set uσ = θ∗σ(ε). Since θ∗σ is a
Re-bimodule map, Rσ = Re ·uσ = uσ ·Re. By hypothesis, R is a strongly graded
ring, so that Rσ ·Rσ−1 = Re. Hence uσ ·Re · uσ−1 = Re and uσ−1 ·Re · uσ = Re

for all σ ∈ G. Let φ, ψ ∈ Re such that uσ ·φ ·uσ−1 = ε and uσ−1 ·ψ ·uσ = ε. We
write vσ = φ · uσ−1 = uσ−1 · ψ, then for c ∈ Ce we have that:∑

(c)

uσ(πσ(c1))vσ(πσ−1(c2)) =
∑
(c)

vσ(πσ−1(c1))uσ(πσ(c2)) = ε(c),

which just means that C is a graded crossed coproduct.

Corollary 4.9 Let C = ⊕σ∈GCσ be a graded coalgebra such that Ce has the
Aut-Pic property. Then C is a graded crossed coproduct.

From [3, Th. 2.6], basic coalgebras have the Aut-Pic property. As a conse-
quence of the foregoing theorem we get:

Corollary 4.10 Let C = ⊕σ∈GCσ be a graded coalgebra and suppose that Ce is
either basic, pointed, or cocommutative. Then C is a graded crossed coproduct.

Theorem 4.6 also solves the question proposed in [7, p. 408] in the case
where the Hopf algebra is kG. The question pointed out there is the following:
let H be a finite dimensional Hopf algebra and C/D an H∗-Galois coextension
(see [7] for its definition) . It was proved in [7, Prop. 1.5] that if C is finitely
cogenerated as (left or right) D-comodule, then the dual extension C∗/D∗ is
H-Galois. Is C∗/D∗ H-Galois if and only if C/D is H∗-Galois and C is finitely
cogenerated as D-comodule?

It is known that (kG)∗-Galois coextensions are precisely the strongly graded
coalgebras (see [4, Th. 2.1]), and kG-Galois extensions are the strongly graded
rings. Then, Theorem 4.6 gives an affirmative answer for the Hopf algebra kG.
Using Lemma 4.3 we can solve the above question for any finite dimensional
Hopf algebra.
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Theorem 4.11 Let H be a finite dimensional Hopf algebra, and C/D an H∗-
Galois coextension. Then, C∗/D∗ is H-Galois if and only if C/D is H∗-Galois
and C is finitely cogenerated as D-comodule.

Proof: Suppose that C∗/D∗ is a Galois extension then, from [2, Th. 1.2],
C∗ is finitely generated as D∗-module. By Lemma 4.3, C is finitely cogenerated
as D-comodule. Finally, [7, Prop. 1.4] yields that C/D is H∗-Galois. The
converse is just [7, Prop. 1.5].

We end this paper by giving an example of coalgebra such that its strong
Picard group is a proper subgroup of the Picard group.

Examples 4.12 [4, Ex. 2.3] LetX be an infinite set and C = kX be the group-
like coalgebra. Consider the family of simples comodules Sx = kx for x ∈ X,
and let P = ⊕x∈XS

(nx)
x where {nx}x∈X is a non-bounded set of natural numbers.

P is a quasi-finite injective cogenerator and it has associated a Morita-Takeuchi
context (C,D, P,Q, f, g) where D = e−C(P ) and Q = h−C(P,C). Associated
to this context there is a matrix coalgebra (see [5, Section 2])

E =

(
C P
Q D

)

which is a ZZ2-graded coalgebra by setting

E0 =

(
C 0
0 D

)
E1 =

(
0 P
Q 0

)

It was proved in [4, Ex. 2.3] that E = E0 ⊕ E1 is a strongly graded coal-
gebra with non strongly graded dual ring R = R0 ⊕ R1. By Corollary 4.7,
Pics(E0) 6= Pic(E0). From Theorem 4.6, E1 may not be finitely cogenerated as
E0-comodule.
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[13] C. Năstăsescu and B. Torrecillas, A Clifford Theory for Graded Coalgebras:
Applications. J. Algebra 174 (1995), 573-586.
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