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1. Introduction

The notion of copula was introduced by Sklar [26] when he proved his cel-
ebrated theorem in 1959. His aim was to express the relationship between
multivariate distribution functions and their univariate margins. Therefore,
the primary importance of this notion lies in Probability Theory and Sta-
tistics. From that moment, the study of copulas and their applications have
shown themselves to be tools of great interest in several fields, such as Markov
operators, multivariate distributions, statistical models, doubly stochastic
processes, dependence, and mass transportation theory. (For an introduction
to copulas, see [8,17,25].)

Many authors in various fields have drawn attention to methods to gen-
erate fractal sets and to describe the concept of “size” for sets in the plane,
computing different types of fractal dimensions (in particular, Hausdorff,
packing, and box-counting dimensions). Fractal features are often exhibited
by measures. This allows the investigation of the connection between frac-
tals and measure-preserving transformations, and the use of methods from
Probability Theory and Ergodic Theory.

In addition, some authors describe several ways in which fractal geome-
try interacts with the notion of copula. Specifically, recent studies have been
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carried out on examples where the copula has a fractal support, and on the
relationship between copulas and measure-preserving transformations on the
Borel sets of the unit interval in [3,6,7,14]. Moreover, sufficient conditions
for the graph of a function to be the support of a copula are given in [14],
and a necessary and sufficient condition is given in [3].

Finally, fractals that are invariant under simple families of transforma-
tions include self-similar and self-affine sets. In particular, Kamae [13], using
a definition of self-affine function that generalizes that given by Kôno in [15],
gives a characterization of them as functions generated by finite automata.
Urbański [30] has given conditions to determine dimensions of the graphs of
continuous self-affine functions.

In this paper, we establish closer relations between the notions of copulas
and measure-preserving transformations, self-affine functions whose graphs
are the support of a copula, and their applications to computing several
fractal dimensions.

In Sect. 3, Theorem 5 gives necessary and sufficient conditions for the
graphs of a family of self-affine functions to support a copula. To prove this
result, we use the fact that a continuous function on the unit interval pre-
serves the measure of Lebesgue if and only if its graph supports a copula
(Proposition 1).

In Sect. 4, we use these results to compute Hausdorff, packing, and
box-counting dimensions (Theorem 9). In particular, our methods can be
performed on classic examples such as the coordinate functions of Peano and
Hilbert curves.

Finally, in Sect. 5, we extend these results to the discontinuous case
(Theorem 16).

2. Preliminaries

In this section, we recall some notions and definitions used below. First, we
provide a definition of copula and some of its elementary properties (see [17]).

(1.1) Let I := [0, 1] be the closed unit interval and let I
2 be the unit

square. A two-dimensional copula (or a copula, for brevity) is a function
C : I

2 −→ I with the following properties: (i) For every u, v in I, C (u, 0) =
0 = C (0, v) and C (u, 1) = u, C (1, v) = v , and ii) For every u1, u2, v1, v2 in
I
2 such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0.

Alternatively, we can say that a copula is a bidimensional distribution
whose restriction to I

2 has its marginal distribution functions uniformly dis-
tributed. Therefore, each copula C induces a probability measure μC on I

2

via the formula

μC ([a, b] × [c, d]) = C (b, d) − C (b, c) − C (a, d) + C (a, c)

in a similar fashion to joint distribution functions. Through standard
measure-theoretical techniques, μC can be extended from the semi-ring of
rectangles in I

2 to the σ-algebra B(I2) of Borel sets in the unit square. We
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denote by λ the standard Lebesgue measure on the σ-algebra B(I) of Borel
sets in the unit interval. The support of a copula C is the complement of the
union of all open subsets of I

2 with μC-measure equal to zero.
We use Mandelbrot’s original definition of fractal set (i.e., a set whose

topologial dimension is less than its Hausdorff dimension dimH). Dimensions
of different types are particularly useful in describing the concept of “size”
of sets in the plane, in particular, sets of zero Lebesgue measure. Several
definitions are of widespread use, so we summarize the basic concepts used
in this paper. For basic properties concerning dimensions (Hausdorff, box-
counting, and packing), and other useful notions for expressing the fractal
properties of sets, the reader is referred to [9,11].

(1.2) Let A be a subset of R
n, and 0 ≤ s ≤ n, δ > 0. For every s, the

(outer) s-dimensional Hausdorff measure of A is defined as

Hs (A) = lim
δ→0

{

inf
∑

i

d (Ui)
s

}

,

the infimum being taken over all countable covers {Ui} of A by sets in X with
0 < d (Ui) ≤ δ. The Hausdorff dimension of A, dimH (A) , is the parameter
s0 such that Hs (A) = ∞ for s < s0 and Hs (A) = 0 for s > s0. We write
d (U) = sup {‖x − y‖ : x, y ∈ U} for the diameter of the set U .

Let A be a bounded subset of R
n. For δ > 0 we denote by Nδ (A) the

minimum number of sets of diameter less than δ needed to cover A. The lower
and upper box-counting dimensions are defined, respectively, as

dimB (A) = lim
δ→0

log Nδ (A)
− log δ

and dimB (A) = lim
δ→0

log Nδ (A)
− log δ

.

If these numbers are equal, we call the common value the box-counting dimen-
sion, abbreviated to box dimension (or capacity). We recall that the Haus-
dorff and box-counting dimensions may be defined using economical cover-
ings by small balls. This provides another definition for dimension in terms of
dense packings by disjoint balls of different small radius. More precisely, the
s-dimensional packing measure is defined by

P s(A) = inf

{
∑

i

P s
0 (Fi) : A ⊂

∞⋃

i=1

Fi

}

,

where

P s
0 (A) = lim

δ→0

(

sup

{
s∑

i

d (Bi)
s

})

,

and the supremum is taken on collections {Bi} of disjoint balls of radii at
most δ with centre in A. The packing dimension is defined in the usual way

dimP (A) = sup {s : P s (A) = ∞} = inf {s : P s (A) = 0} .

The following relations are established: if A ⊂ R
n, then

dimH(A) ≤ dimP (A) ≤ dimB(A).
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Fredricks et al. [12], using an iterated function system, construct the
first example of a family of copulas whose supports are fractals. In particular,
they give sufficient conditions for the support of a self-similar copula to be
a fractal whose Hausdorff dimension is between 1 and 2. The main result
of these authors states that for every s ∈ [1, 2] there exists a copula whose
support has dimension equals to s. New results concerning 2-copulas of fractal
support can be found in [3–5,27], and the generalization to dimension greater
than 2 in [28].

(1.3) Given a measurable space (X,Ω, μ), a measurable function F :
X → X is said to be measure-preserving ( or F preserves μ) iff μ

(
F−1 (A)

)
=

μ (A), for all A ∈ Ω.
If the σ-algebra Ω is generated by a family Ω0 that is closed for finite

intersections (i.e., a π-system), a sufficient condition for F to be measur-
able and measure-preserving (see [2, Sect. 24]) is that F−1 (A) ∈ Ω and
μ
(
F−1 (A)

)
= μ (A), for all A ∈ Ω0.

We are interested in the case (X,Ω, μ) = (I,B(I), λ).
Many authors have established a correspondence between copulas and

measure-preserving transformations f, g on the unit interval via the formula

Cf,g (u, v) = λ
(
f−1 [0, u] ∩ g−1 [0, v]

)

(as we can see in [6,7,14,18,29]). In [3], the authors investigate the hardest
implication in this correspondence; that is, for a given copula C, the goal is to
find a pair of measure-preserving transformations (f, g) such that C = Cf,g.
In particular, we study representation systems for a certain family of self-
similar copulas in terms of measure-preserving transformations.

On the other hand, for the general problem of determining just what
functions in I

2 satisfy the property their graphic can concentrates the mass
of a copula, in [7] it is proven that, for every copula obtained as a shuffle of
Min (see [17, p. 67]), there exists a piece-wise linear function whose graph
concentrates the probability mass.

In 1986 Kôno [15] introduced the notion of a self-affine function f of
order α > 0, whose paradigm is the component functions of the Peano curve.

“Self-affinity” properties have been studied by different authors, with
definitions that generalize the Kôno notion using different methods (e.g.,
Kamae [13] or Peitgen et al. [19]). The main fact is that the graphs of self-
affine functions are expected to show strong fractal features. In [16], the
author obtains Hausdorff, box, and packing dimensions for graphs of self-
affine functions under some conditions. We note that [1,20,23] have related
results. In particular, with [16,30], for a given continuous and self-affine func-
tion f : I → I, a necessary and sufficient condition for the probability distri-
bution λ◦f−1 to be absolutely continuous with respect to Lebesgue measure
is that the Hausdorff and box dimensions of the graph of f be equal to 2−α.

3. Copulas and Self-Affine Functions

We start with the general problem of determining just what functions in I

have graphs that can serve as the support of a copula. We recall that [7] gives
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an answer to this problem using the notion of shuffle of an arbitrary copula.
In [3], we proved the following general result:

Proposition 1. Let f : I → I be a Borel measurable function. Then, there
exists a copula C whose associated measure μC has its mass concentrated
in the graph of f (denoted by Γ, μC (Γ) = 1) if and only if the function f
preserves the Lebesgue measure λ.

For the sake of brevity, we say that f supports C.
Now, we introduce a family of self-affine functions on I. It is adapted

from those of Kamae [13] that generalizes the previous concept given by Kôno
[15]. See also Peitgen et al. [19].

We use the following notations: for k ∈ Z
+, let us denote by [k] the set

{0, 1, 2, . . . , k − 1} , and by [k]∗ = {a1 · · · ak : aj ∈ [k] , 1 ≤ j ≤ k} .

Definition 2. A family of functions x0, x1, . . . , xN−1 : I −→ I is called self-
affine of order α ∈ ]0, 1[ and with base m ∈ Z

+\{1} (or simply, (m,α)-self-
affine) iff the following conditions are satisfied:
(a) xj(0), xj(1) ∈ {0, 1} for all j ∈ [N ] .
(b) There is an application θ : [N ] → [N ]∗ of constant length m (i.e., θ (j)

has the same number m of terms for all j ∈ [N ]) such that, for all
(j, h) ∈ [N ] × [m] and for t ∈ I, we have

xj

(
h + t

m

)
− xj

(
h

m

)
=

xθh(j) (t) − xθh(j)(0)
mα

,

where θh(j) is the element in [N ] in the hth position in θ(j).
We say that each one of the functions xj is self-affine.

Observe that any self-affine function is continuous, because for all z, ź ∈
I, |z − z′| < 2m−n implies that |xj (z) − xj (z′)| < m−nα.

A typical example of a self-affine function is each coordinate function
in the Peano curve (see for instance [15,19]). Let us see the details below.

Example 3. (Coordinate functions for the Peano curve). Let us define the
operator k(β) = 2 − β, with β ∈ {0, 1, 2} . If t =

∑∞
n=1

tn

3n , then
{

x(t) = t1
3 + kt2 (t1)

32 + kt2+t4 (t5)
33 + · · ·

y(t) = kt1 (t2)
3 + kt1+t3 (t4)

32 + kt1+t3+t5 (t6)
33 + · · ·

The x coordinate for the Peano curve is self-affine with values:
(a) N = 2; m = 9; α = 1/2
(b) x0(t) = x(t), x1(t) = 1 − x(t)
(c) θ(0) = 010010010; θ(1) = 101101101.

In order to characterize the self-affine functions whose graphs can sup-
port a copula, we use the set I

2 × [N ]. We can define the next metric on it:

d ((x, y, j) , (x′, y′, j′)) =

⎧
⎨

⎩

ρ, if j �= j′
√

(x − x′)2 + (y − y′)2, if j = j′
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with ρ >
√

2. Let κ(I2×[N ]) be the space of compact sets in I
2×[N ], endowed

with the Hausdorff metric given by d. Let us consider the attractor F given
by the Contraction Mapping Theorem (see for example [11, Chap. 9]) for the
contraction τ given in the following form. Let us introduce the functions:

τjh : I
2 × {θh(j)} −→
[

h

m
,
h + 1

m

]
×
[
xj

(
h

m

)
− xθh(j)(0)

mα
, xj

(
h

m

)
+

−xθh(j)(0) + 1
mα

]
× {j}

given by

(x, y) × {θh(j)} →
(

h + x

m
, xj

(
h

m

)
+

y − xθh(j)(0)
mα

)
× {j} ;

and let us define:

τ : κ(I2 × [N ]) −→ κ(I2 × [N ])
D → ∪

jh
τjh

(
D ∩ (I2 × {θh(j)})) (1.4)

Now, we can characterize the self-affine functions in Definition 2:

Proposition 4. The function xj is self-affine if and only if its graph is the
intersection of the square I

2×{j} and the attractor F , in the space κ(I2×[N ]),
given by (1.4).

Proof. Since τjh is a contraction, it follows easily that τ is a contraction as
well.

In general, we have equalities

τ (F ) ∩ (I2 × {j}) = ∪
h
τjh

(
F ∩ (I2 × {θh(j)})) ,

and

τ (F ) ∩
[

h

m
,
h + 1

m

]
× I × {j} = τjh

(
F ∩ (I2 × {θh(j)})) .

However, the last equality is equivalent to

xj

(
h + t

m

)
− xj

(
h

m

)
=

xθh(j) (t) − xθh(j)(0)
mα

.

�
Now, we establish the main result in this section.

Theorem 5. An element of the family of (m,α)-self-affine functions {xj}j∈[N ]

can support a copula if and only if m1−α ∈ Z
+ and, for each j ∈ [N ] and

r ∈ [mα]:

Card
{

h : 0 ≤ h ≤ m − 1, xj

(
h

m

)
− xj(0)

mα
=

r

mα

}
= m1−α.

Proof. If the functions are self-affine and can support the copula, then their
range is the unit interval I. Now, xj(0), xj(1) ∈ {0, 1} for all j, implies that
the images of the intervals

[
h
m , h+1

m

]
are, once again, intervals in the form[

r
mα , r+1

mα

]
with r ∈ [mα] . Moreover, such intervals are either coincident, dis-

joint, or have only one point in common. These facts imply that mα ∈ Z
+.
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If xj supports a copula, then it is Lebesgue-measure-preserving (by Proposi-
tion 1). Therefore:

1
mα

= λ

([
r

mα
,
r + 1
mα

])
= λ

(
x−1

j

([
r

mα
,
r + 1
mα

]))
,

is the union of intervals of length 1/m, and as a consequence, we have
m1−α ∈ Z

+.
The above reasoning provides a bonus result:

Card
{

h : 0 ≤ h ≤ m − 1, xj

(
h

m

)
− xθh(j)(0)

mα
=

r

mα

}
= m1−α.

For the reverse implication, we use the consequences of the extension
theorem. It gives a sufficient condition for a function to be Lebesgue-measure-
preserving (see (1.3) above). In fact, since the intervals in ]0, 1] form a π-
system that generates the σ-algebra B of Borel sets, if we show that 1

mnα =
λ
(
x−1

j

([
r

mαn , r+1
mαn

]))
, then the assertion follows.

Therefore, we have seen that the result is true in the case n = 1.
The rest can be done by induction on n. �

4. Application to Computing Fractal Dimensions

For a family of self-affine functions whose graphs support a copula, this is
the property we use to computing fractal dimensions (see (1.2) above for
definitions we use here):

Lemma 6. Let us consider a self-affine function f of order α ∈ ]0, 1[, then
the upper box-counting dimension of Γ is not greater than 2 − α.

Proof. Let us consider a cover for the graphs with squares of the mesh of side
1/mn. Using τ in (1.4), then τm(I2 × [N ]) is a cover for the graphs. On each
set I

2 × {j} , the graph of xj , namely Γ (xj), is covered by mn rectangles of
mesh 1

mn × 1
mαn . Therefore, we can divide them for obtaining a recover with

mnm(1−α)n squares of sides of length 1/mn.
With this covering, we can deduce that:

dimBΓ (xj) ≤ lim
n→∞ − ln mnm(1−α)n

ln 1/mn
= 2 − α.

�

As usual, to find lower bounds for dimensions, we use the mass distribu-
tion principle (see [10]). We recall that a mass distribution μ on a set A ⊂ R

2

is a measure such that μ
(
R

2\A
)

= 0. Precisely, we use it in the following
form.

Lemma 7. Let μ be a mass distribution on A ⊂ R
2. If there exist constants

c > 0 and δ > 0 such that, for all m-adic square Q ⊂ R
2 with l (Q) ≤ δ

(where l (Q) denotes the length of a side of Q),

μ (Q) ≤ c (l (Q))s
,
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then

s ≤ dimH (A).

Proposition 8. Let us consider a family of self-affine functions with order
of self-affinity α. If their graphs can support a copula, then their Hausdorff
dimension is not less than 2 − α.

Proof. We apply Lemma 7 to the m-adic squares. Because the graphs support
the copula C, the squares that remain outside of the rectangles used in Lemma
6 have null mass.

Besides, we consider a m-adic square S with side of length 1/mn and
positive mass, which is included in a rectangle R (such as those used in
Lemma 6). But μC(R) = 1/mn, and R contains at least one (deformed) copy
of some graph Γ (xj) . Then, the vertical distribution for the mass is uniform;
and therefore, the μC-measure of the square is 1

mnm(1−α)n . As a consequence,
we can write μC (S) = [l (S)]2−α

, and we deduce the statement. �

Now, with (1.2), we summarize with this result:

Theorem 9. Let us consider a self-affine function with affinity order α. If
its graph Γ supports a copula, then the packing, Hausdorff, and box-counting
dimensions for Γ are exactly 2 − α.

In [24, 2.8], the author proposes a generalization of the Hilbert curve
to three dimensions; that is, a curve in the unit cube. The coordinates
x(t), y(t), z(t) are self-affine of order 1/3, and they follow this scheme:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x0(t) = x(t), x1(t) = y(t), x2(t) = z(t),
x3(t) = 1 − x(t), x4(t) = 1 − y(t), x5(t) = 1 − z(t).
θ(0) = 02025050, θ(1) = 21133115, θ(2) = 10241234,
θ(3) = 35352323, θ(4) = 54400442, θ(5) = 43514501.

Approximations to the graphs of x and y are given in Fig. 1 (right and
left, resp.), and the corresponding to the graph of z is given in Fig. 2.

They are functions supporting copulas, which is a consequence of Propo-
sition 5 when we observe the matrix

Figure 1. x and y coordinates
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Figure 2. z coordinate

(
xj

(
h

8

)
− xθh(j)(0)

2

)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1/2 1/2 1/2 1/2 0 0
0 1/2 1/2 0 0 1/2 1/2 0
0 0 0 0 1/2 1/2 1/2 1/2

1/2 1/2 0 0 0 0 1/2 1/2
1/2 0 0 1/2 1/2 0 0 1/2
1/2 1/2 1/2 1/2 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

because

Card
{

h : 0 ≤ h ≤ 7, xj

(
h

8

)
− xθh(j)(0)

2
= 0
}

= Card
{

h : 0 ≤ h ≤ 7, xj

(
h

8

)
− xθh(j)(0)

2
= 1/2

}
= 4 = 81−1/3,

independently of j. Therefore, we can deduce that the corresponding graphs
for these functions have fractal dimensions equal to 5/3.

Remark 10. This technique can be applied to functions studied in [15] and
[20]. For example, it is possible to obtain 3/2 as the dimension of the coordi-
nate functions in the curves of either Peano or Hilbert.

5. The Discontinuous Case

We recall that the conditions imposed in Definition 2 to the family of self-
affine functions imply continuity for the functions in the family. We can intro-
duce another definition that allows the study of those cases consisting of dis-
continuous functions. This target can be reached when we set the condition
(b′) instead of (b) in Definition 2:

(b′) There is an application θ : [N ] → [N ]∗ of constant length m (i.e.,
θ (j) has the same number m of elements for all j ∈ [N ]) such that, for all
(j, h) ∈ [N ] × [m] and for t ∈ [0, 1[, we have

xj

(
h + t

m

)
− xj

(
h

m

)
=

xθh(j) (t)
mα

,

where θh(j) is the element in [k] in the hth position in θ(j).
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These functions are called (m,α)-quasi-self-affine functions.
In this new context, we can obtain similar results to those we obtained

in the continuous case:

Proposition 11. The (m,α)-quasi-self-affine functions xj are continuous on
points with infinite m-adic representation; in particular, they are continuous
on the irrationals. Moreover, at those points with finite representation, the
coordinates have both one-side limits. Furthermore, one of them, at least,
coincides with the value of the function at that point.

Theorem 12. A family {xj}j∈[N ] of (m,α)-quasi-self-affine functions can sup-
port a copula if and only if m1−α ∈ Z

+, and for each j ∈ [N ] and r ∈ [mα] ,
it is satisfied that

Card
{

h : 0 ≤ h ≤ m − 1, xj

(
h

m

)
=

r

mα

}
= m1−α.

Theorem 13. The Hausdorff, packing, and box-counting dimensions of the
graphs of self-affine functions supporting copulas are 2 − α.

Example 14. (Coordinates for Cantor function). Let us consider the coordi-
nates of the map from I to I

2 given by this rule: If t =
∑ tn

2n , then:
{

x(t) =
∑ t2n−1

2n

y(t) =
∑ t2n

2n

For the rest of the points (a denumerable set), we can choose one expansion
or the other for t and define its values following these rules.

The above proposition can be used to obtain Hausdorff, packing, and
box-counting dimensions for the graphs of these functions. Therefore, they
are 3/2 (in any case). This example provides a particular case of one given
in [21] because the graph of x and the set

Rx =
{(∑ an

4n
,
∑ bn

4n

)
: (an, bn) ∈ {(0, 0) , (1, 0) , (2, 1) , (3, 1)}

}

differ on a denumerable set. The same is true for the graph of y and the set

Ry =
{(∑ an

4n
,
∑ bn

4n

)
: (an, bn) ∈ {(0, 0) , (1, 1) , (2, 0) , (3, 1)}

}
.

Let us note that the results of [21] cannot be achieved through the
methods we propose here. However, on the other hand, in the case N > 1,
we can obtain dimensions that are forbidden for those results in [21].

The hypothesis of self-affinity has been used throughout the paper. How-
ever, the main result remains true even if the functions are not necessarily
self-affine. We summarize this result in the theorem below. But we still need
a definition.

Definition 15. Given the squares R = [r, t] × [r′, t′] and

Rij =
[
t − r

a
i + r,

t − r

a
(i + 1) + r

]
×
[
t′ − r′

b
j + r′,

t′ − r′

b
(j + 1) + r′

]
,
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with a, b, a/b ∈ Z
+, we say that R′ is a Cab-subset of R if R′ = ∪(i,j)∈ARij ,

where A ⊂ [a] × [b], satisfying:

Card {h : 0 ≤ h ≤ a − 1, (h, j) ∈ A} =
a

b
,

independently of j.

Theorem 16. Let m and mα be integers greater than 1, such that the second
divides the first. Set R1 = I

2. Let R2 be a Cab-subset of R1, and R3 a subset in
(the rectangle) R2 satisfying that its intersection with one of the rectangles in
R2 is a Cab-subset of this rectangle. In general, the rectangle Rn+1 is obtained
from Rn in the same way as R3 was from R2. If S = ∩i∈Z+Ri, then:
i. The set S can be the support for some copula.
ii. The set S differs from the graph of a function on a denumerable set of

points.
iii. The function in ii. is continuous at points that do not admit finite m-adic

expansion (in particular, on the irrationals), and it has one-side limits at
points with finite representation; one of them, at least, coincides with the
value of the function at the point.

iv. The set S (and, therefore, the graph of the function in ii. and iii.) has a
dimension equal to 2 − α.

Remark 17. If we consider the case α = 1, then we can take the function in
statement ii. above as a bijection. The copulas associated to these functions
are generalized Shuffles of Min (see [22]) in the sense of Durante et al. in [7].
These functions are examples of functions they use in that paper to define
the Shuffle of an arbitrary copula.

Acknowledgments

This work was supported by the Ministerio de Ciencia e Innovación (Spain)
under Research Project No. MTM2011-22394.

References

[1] Bedford, T.: The box dimension of self-affine graphs and repellers. Nonlinear-
ity 2, 53–71 (1989)

[2] Billingsley, P.: Probability and measure (3rd edn.), Wiley Series in Probability
and Mathematical Statistics. A Wiley-Interscience Publication. Wiley, New
York (1995)

[3] de Amo, E., Dı́az Carrillo, M., Fernández-Sánchez, J.: Measure-preserving func-
tions and the independence copula. Mediterr. J. Math. 8(4), 431–450 (2011)

[4] de Amo, E., Dı́az Carrillo, M., Fernández-Sánchez, J.: Copulas and associated
fractal sets. J. Math. Anal. Appl. 386, 528–541 (2012)

[5] de Amo, E., Dı́az Carrillo, M., Fernández Sánchez, J., Trutschnig, W.: Some
results on homeomorphisms between fractal supports of copulas. Nonlinear
Anal. Theor. 85, 132–144 (2013)

[6] Durante, F., Klement, E.P., Quesada-Molina, J.J., Sarkoci, P.: Remarks on two
product-like constructions for copulas. Kybernetika 43, 235–244 (2007)



Enrique de Amo et al. MJOM

[7] Durante, F., Sarkoci, P., Sempi, C.: Shuffles of copulas. J. Math. Anal.
Appl. 352, 914–921 (2009)

[8] Durante, F.; Sempi, C.: Copula theory: An introduction. In: Jaworski, P.,
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