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Abstract

Recently, Durante and Jaworski (2008) [6] have proved that the class of absolutely continuous copulas with a given diagonal section
is non-empty in case that the diagonal function is such that the set of points where this coincides with the identity function has
null-measure. In this paper, we show that if we consider sub-diagonals (or super-diagonals), then the framework changes. Concretely,
for each sub-diagonal function there exists an absolutely continuous copula having this function as sub-diagonal section.
© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

The importance of copulas in statistical analysis and modelling is described by Sklar’s Theorem, which states
that the joint distribution function H of the random pair (X, Y ) with respective marginals F and G can be expressed
by H (x, y) = C(F(x), G(y)) for all (x, y) in the unit square, where C is a copula that is uniquely determined on
Ran(F) × Ran(G).

By applying this result, to determine function H we can proceed in two steps: first, the marginals are chosen; then
the dependence is modelled by means of a suitable copula C.

As B. Schweizer says, “since 1958 to 1976, virtually all the results concerning copulas were obtained in connection
with the study and development of the theory of probabilistic metric spaces”. But the ability to find those properties
that are invariant under monotone transformations, joined to other properties either as the capability to express tail
dependence or association measures as functions of itself, and to be stable by small input errors, have made that copulas
be a tool of wide applications in many other fields. See for instance [3,17,26], and the references therein.

Nowadays there is great interest in the study and construction of copulas with given values in certain sections
(see [6–9,13,16,20,24]). On the other hand, it is well known that under the assumption of the absolute continuity of the
copula some estimation procedures and goodness-of-fit tests (see [18]) take place; therefore, it is important to know
under what conditions we can find an absolute continuous copula for given values on a section. This problem has been
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considered in [6]. In this spirit, following the work by [25], we are concerned with the study of copulas with a given
sub-diagonal. Before discussing our results we summarize a few basic notions and properties that will be useful later
on (Section 2). In Section 3, by the combination of ordinal sums and rectangular patchwork techniques, we present an
alternative approach to determine under which conditions absolutely continuous copulas exist with a described diagonal
section [6, Theorem 3.1].

In Section 4, by exploiting the above cited techniques and the generalized shuffles, we present the main result of the
paper, namely, for a given sub-diagonal, it is possible to find an absolutely continuous copula having it as sub-diagonal
section. Finally, we conclude with Section 5 where several related open problems are proposed.

2. Preliminaries

A bivariate copula (briefly, a copula) is a function C : I2 → I (with I = [0, 1]) satisfying the following conditions:

(C1) C(x, 0) = C(0, x) = 0 for all x ∈ I,
(C2) C(x, 1) = C(1, x) = x for all x ∈ I,
(C3) for all x1, x2, y1, y2 in I with x1 � x2 and y1 � y2,

VC ([x1, x2] × [y1, y2]) = C(x2, y2) − C(x1, y2) − C(x2, y1) + C(x1, y1) � 0.

Conditions (C1) and (C2) express the boundary properties of C, (C3) is the 2-increasing property of C, and
VC ([x1, x2] × [y1, y2]) is called the C-volume of the rectangle [x1, x2] × [y1, y2]. For details on copulas and their
applications we refer to [12,22,27].

A copula C induces a probability measure �C on I2 defined for each rectangle R ⊆ I2 by �C (R) = VC (R), and is
extendible in a standard way to the �-algebra of all Borel sets in I2. As usual, � denotes the Lebesgue measure on the
�-algebra of Borel sets, without confusion both in 1 or 2 dimensions.

A copula C is said to be singular (resp. absolutely continuous), if the associated measure �C is singular (resp.
absolutely continuous) with respect to the Lebesgue measure �. The associated measure �C has no atoms because the
marginals are uniformly distributed, and the Lebesgue decomposition is �C = �a

C + �s
C , where �a

C is its absolutely
continuous component and �s

C its singular component.
A measure � is said to be concentrated in A, if the complement of A is a set of �-measure zero. The copula C

concentrates its mass in A if �C (A) = 1.
Classical examples of copulas are M(x, y) = min{x, y}, �(x, y) = xy, and W (x, y) = max{x+y−1, 0} expressing,

respectively, comonotonicity, independence and counter-monotonicity between two random variables. Both M and W
are singular, and � is absolutely continuous.

The diagonal section of a copula C is the function �C : I → I defined by �C (t) = C(t, t). On the other hand, a
diagonal is a function �: I → I which satisfies the following conditions:

(D1) �(1) = 1,
(D2) �(t) � t for all t ∈ I,
(D3) � is increasing,
(D4) |�(v) − �(u)| � 2|v − u| for all u, v ∈ I.

Note that the diagonal section �C of any copula C is a diagonal function. We say that a diagonal � satisfies the
(s)-property if �(t) < t in ]0, 1[.

We denote by C (resp., Cac) the class of all copulas (resp., absolutely continuous copulas), and for a fixed diag-
onal �, we denote by C� (resp., Cac

� ) the class of all copulas (resp., absolutely continuous copulas) whose diagonal
section is �.

The diagonal section of a copula C has probabilistic interpretations: �C is the restriction to I of the distribution
function of max(X, Y ) whenever (X, Y ) is a random pair distributed as C . Furthermore, �C provides some information
about the tail dependence of the random pair (X, Y ) whose associated copula is C (see [18,22]).

As we mentioned above, special attention has been devoted to the construction of copulas with a given diagonal
section. Specifically, given a suitable �: I → I, the class C� of copulas having diagonal section equal to � has been the
object of several investigations (see [6–9,13,16,20,24]).
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As it is known, for any diagonal function �, there exists at least one copula C with diagonal section �C = �; for
example (see [22,14,23]), the diagonal copula K� defined by

K�(x, y) = min

{
x, y,

�(x) + �(y)

2

}
.

Another example is the Bertino copula, that is, B�(x, y) = min{x, y} − mint∈[u∧v,u∨v]̂�(t), where �̂(t) = t − �(t) for
all t ∈ I, where u ∧ v = min{u, v} and u ∨ v = max{u, v} (see [2,15]).

Therefore, C� is non-empty for any diagonal section �. In particular, if � = �M , then C�M = {M}.
Because the copulas K� and B� are singular, and therefore, they cannot be absolutely continuous, one is interested

in determining under which conditions on a diagonal function �, the set Cac
� is non-empty. Durante and Jaworski [6,

Theorem 3.1] provide an answer to this question with the following result.

Theorem 2.1. Given any diagonal function �, the set Cac
� is non-empty if and only if �({t ∈ I : �(t) = t}) = 0.

The study of diagonal sections has been recently generalized to sub-diagonal sections by Quesada-Molina et al. in
[25]. We recall basic notions and properties:

(a) Given a copula C and x0 ∈]0, 1[, the sub-diagonal section �x0,C of C at x0 is the function �x0,C : [0, 1 − x0] →
[0, 1 − x0] defined by �x0,C (t) = C(x0 + t, t).

(b) Given x0 ∈]0, 1[, a sub-diagonal function �x0 is a function [0, 1− x0] → [0, 1− x0] with the following properties:

(i) �x0 (1 − x0) = 1 − x0,
(ii) 0 � �x0 (t) � t for every t ∈ [0, 1 − x0],

(iii) 0 � �x0 (t) − �x0 (t ′) � t − t ′ for every t, t ′ ∈ [0, 1 − x0] with t ′ � t .

If (X, Y ) is a random pair distributed according to the copula C, the function �x0/(1 − x0) is the restriction to
[0, 1 − x0] of the conditional distribution function of max(X − x0, Y ) given Y � 1 − x0.

From Corollary 3 in [25], it is known that given a sub-diagonal function �x0 there exists an infinity of copulas C
whose sub-diagonal section �x0,C coincides with �x0 .

For a fixed sub-diagonal function �x0 , we denote by Cac
�x0

the class of all absolutely continuous copulas whose

sub-diagonal section is �x0 .
A new problem is still open in this context: Given a sub-diagonal function �x0 , does an absolutely continuous copula

C exist whose sub-diagonal section �x0,C coincides with �x0 ? As we pointed at Introduction, the answer to this question
is in the affirmative. We now state it as the main theorem of this paper.

Theorem 2.2. Let x0 ∈]0, 1[ and �x0 be a sub-diagonal function. Then the set Cac
�x0

is non-empty.

The case corresponding to super-diagonal functions is analogous to this. Note that if C and C ′ are copulas with
C ′(x, y) = C(y, x), then the sub-diagonal sections of C are the super-diagonal sections of C ′, and vice versa. Following
the ideas used in [5,25, Subsection 2.3], we can obtain results for functions that we can call opposite sub-diagonals
(super-diagonals).

Moreover, the techniques we use to prove Theorem 2.2 allow us to give a new proof of Theorem 2.1 in the third
section.

We give a proof of Theorem 2.1 based on two central tools; specifically: ordinal sums and rectangular patchworks.
The definition and properties of rectangular patchwork can be found in [10] (see also [4]). Let us recall that notation

C̃ = (〈Ri , Ci 〉)C
i∈J is used for the rectangular patchwork of the copula C on rectangles Ri and copulas Ci , and that C̃

is absolutely continuous when C and every Ci are absolutely continuous for all i ∈ J.
One of the oldest patchwork construction for copulas is the ordinal sum (see [22, p. 63]). This method is

essentially based on a kind of “patchwork procedure”, consisting of redefining the value that a copula assumes on
a square in the form [a, b]2, by plugging a suitable rescaling of another copula. It is obtained by considering C as
the copula M and suitable squares Ri = [ai , bi ]2, with 0 � ai < bi � 1. We recall the definition of an ordinal sum of
copulas.



108 E. de Amo et al. / Fuzzy Sets and Systems 228 (2013) 105 –113

Definition 2.3. Let {[ai , bi ]}i∈J be a countable family of intervals with pairwise intersections containing, at most, a
common endpoint. Let {Ci }i∈J be a collection of copulas. Then, the ordinal sum C of {Ci }i∈J with respect to the family
{[ai , bi ]}i∈J is the copula defined for all (x, y) ∈ I2, by

C(x, y) =

⎧⎪⎨⎪⎩ ai + (bi − ai )Ci

(
x − ai

bi − ai
,

y − ai

bi − ai

)
(x, y) ∈ [ai , bi ]2,

M(x, y) otherwise.
(1)

The W-ordinal sums are defined in a similar way (see [25,4,21]).

Theorem 3.2.1. in [22, p. 63] ensures that a copula C is an ordinal sum if and only if there exists t ∈]0, 1[ such that
C(t, t) = t .

We need the generalized shuffles of a copula (introduced in [11]) to prove Theorem 2.2. Durante et al. [11, Section 4]
generalize the notion of shuffles of Min in order to allow the use of the probability mass of any copula, not only of M,
as the starting point for further rearrangements. Such a generalization is based on the use of special measure-preserving
transformations. Let us recall that for a given measure space (�, F, �), a measurable space (�1, F1), and a measurable
function f : � → �1, the push-forward of � under f is the set function f ∗ � defined by ( f ∗ �)(A) = �( f −1(A)), for
every A ∈ F1.

Given any copula C, a copula D is a shuffle of C if there exists a measure-preserving transformation h such that
�D = Sh ∗ �C , where Sh(x, y) := (h(x), y) for every (x, y) ∈ I2. We also denote the copula by Sh,C .

The next result, whose proof can be found in [1, Theorem 5.3.1], is an essential tool for the building of the copulas
in Theorem 2.2.

Lemma 2.4 (Disintegration theorem). Let � be a probability measure on Id . Let �: Id → I be a Borel function and let
	 be the push-forward of � under �. Then there exists a 	-a.e. uniquely determined Borel family of probability measures
{�x }x∈I on Id such that

�x (Id \ �−1(x)) = 0 f or 	-a.e. x ∈ I

and ∫
Id

f (x) d�(x) =
∫

I

(∫
�−1(x)

f (x) d�x (x)

)
d	(x),

for every Borel map f : Id → [0, +∞].

To make ends meet, let us set d = 2 and �(x, y) = x . Now, if we apply the above lemma to the shuffle D of the
copula C , obtained by means of the function h, then we have �C,x = �D,h(x).

Finally, we state a result that will be helpful for proving Theorem 2.2.

Lemma 2.5. Let A and B be subsets of the unit interval I with the same Lebesgue measure 
 > 0. Then, there exist
subsets A+ ⊂ A and B+ ⊂ B of measure 
, and a strictly increasing bijection f : A+ −→ B+ that is measure-
preserving.

Proof. Let us set 
 = �(A), and define an absolutely continuous function f : I → [0, 
] given by f (x) = ∫ x
0 �A(t) dt .

Therefore, the subset Az ⊂ A of points x satisfying that f ′(x) = 1 has a measure 
.
If x, y ∈ Az , then x < y implies f (x) < f (y). Clearly, f (x) � f (y). In the case where f (x) = f (y), then f would

be constant in [x, y], and as a consequence f ′(x+) = f ′(y−) = 0, which contradicts that x, y ∈ Az . Therefore,
f is a measure-preserving increasing bijection from Az on f (Az). (Lemmas 1.2.4 and 1.2.5 in [19] ensure that f is
measure-preserving.)

We can realize the same arguments with B obtaining another measure-preserving increasing bijection g between
subsets Bz and g(Bz) of measure 
.
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The set H = f (Az) ∩ g(Bz) has measure 
. Let us define sets A+ = f −1(H ) and B+ = g−1(H ). The desired
strictly increasing bijection from A+ on B+ which is measure-preserving is given by g−1 ◦ f . (Here, f −1 and g−1

denote the respective inverses of the bijections between Az and f (Az), and Bz and g(Bz).) �

3. The proof of the Durante–Jaworski theorem

We hereby prove Theorem 2.1 by a combination of the above techniques. Let us denote Sx0 = {(x0 + t, t) : t ∈
[0, 1 − x0]}. In particular, S0 is the diagonal joining (0, 0) with (1, 1).

Lemma 3.1. If a diagonal section � satisfies the (s)-property, then there exists an absolutely continuous copula in Cac
� .

Proof. Given the diagonal �, let us consider the diagonal copula K�. As it is known, K� is singular and �C (S0) = 0
(see [14]).

We shall now consider a suitable covering of I2\S0. Let {R j } j∈J be a family of rectangles satisfying
⋃

j∈J R j ⊇
I2\S0, �(R j ∩ Rs) = 0, whenever j � s, and R j ∩ S0 is, at most, a singleton. This family is denumerable, because
we can find a rational number in the interior of each rectangle. Then, the copula (〈R j , �〉)C

j∈J is an element of the
family Cac

� . �

Lemma 3.2. If the copula C is an ordinal sum of absolutely continuous copulas Ci with respect to the family of intervals
{[ai , bi ]}i∈J, and

∑
i∈J(bi − ai ) = 1 − �, then its singular component is concentrated on the diagonal with a mass

equal to �.

Proof. Because C is an ordinal sum for the intervals {[ai , bi ]}i∈J, each rectangle contained in the complement of the
set
⋃

i [ai , bi ]2 ∪ S0 has a null C-volume.
Moreover, the copulas Ci are absolutely continuous, which implies that �s

C is concentrated on the diagonal of I2.
The absolutely continuous component �a

C is concentrated on
⋃

i [ai , bi ]2. Therefore,

�a
C (I2) = �a

C

(⋃
i

[ai , bi ]
2

)
=
∑
i∈J

(bi − ai ) = 1 − �

and, as a consequence, �s
C (I2) = �.

Proof of Theorem 2.1. Given any diagonal �, since � is a continuous function, we can find intervals Ji = [ai , bi ],
with i ∈ J (where J is a finite or countable index set), such that �(ai ) = ai , �(bi ) = bi and �(t) < t on ]ai , bi [, and
�(t) = t otherwise. Let us observe that a copula C with a diagonal � can be expressed in a unique way as a ordinal sum
of copulas Ci with intervals Ji .

To prove the sufficient condition, let us consider the above family {Ji }i∈J of non-empty intervals on I. Then, for any
i ∈ J, let us define the function �i : I → I, by

�i (x) =
�

(
x − ai

bi − ai

)
− ai

bi − ai
.

Note that �i is a diagonal function. But, by applying Lemma 3.1, �i is the diagonal of an absolutely continuous copula
Ci , and the ordinal sum of the copulas Ci in the intervals [ai , bi ] is a copula whose absolutely continuous component
has a mass equal to

∑
i∈J(bi −ai ). But the set of points t with �(t) = t is a null-set and, therefore,

∑
i∈J(bi −ai ) = 1.

The necessary condition follows from Lemma 3.2. �

4. Sub-diagonal sections

The goal of this section is to prove Theorem 2.2. Its proof is based upon results on copulas with a given sub-diagonal
(obtained by Quesada-Molina et al. in [25]), and in the use of rectangular patchworks and the generalized shuffles,
respectively introduced by Durante et al. in [10,11].
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Proof of Theorem 2.2. We divide the proof into several steps.
First step: Selecting a copula D with sub-diagonal section �x0 .
Set

D(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(x0 + v − 1)u

x0
(u, v) ∈ [0, x0] × [1 − x0, 1],

(1 − x0)K�x0

(
u − x0

1 − x0
,

v

1 − x0

)
(u, v) ∈ [x0, 1] × [0, 1 − x0],

W (u, v) otherwise,

where �x0 is the diagonal function given by �x0 (t) = �x0 ((1 − x0)t)/(1 − x0). Then, [25, Proposition 2] ensures that D
is a copula with sub-diagonal equal to �x0 , which is a W-ordinal sum copula. This copula has the following properties:

(a) Its absolutely continuous component has a density equal to 1/x0 in [0, x0]×[1−x0, 1], and equal to zero otherwise.
(b) Its singular component is concentrated in a subset A′ ⊂ [x0, 1] × [0, 1 − x0].

Second step: There exists a copula D1 with sub-diagonal section �x0 , such that its singular component is concentrated
on a set

G = {(a, x0 + a) : a ∈ A ⊂ [x0, 1]}.
The function D∗(x, y) = D(x0 + (1 − x0)x, (1 − x0)y)/(1 − x0) is a copula, because D is a W-ordinal sum of

copulas. If D∗ satisfies the (s)-property, then Lemma 3.1 ensures that there is an absolutely continuous copula with
the same diagonal that D∗. If D∗ does not satisfy the (s)-property, then it is an ordinal sum on the intervals [ai , bi ] of
copulas with the (s)-property. If we proceed on each square [ai , bi ]2 as in the proof of Lemma 3.1, we obtain that there
exists a copula D∗

1 which is absolutely continuous or its singular component is concentrated in {(t, t) : �D∗ (t) = t}
such that �D∗ = �D∗

1
. Now, the copula D1 is the W-ordinal sum given by

D1(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(x0 + v − 1)u

x0
(u, v) ∈ [0, x0] × [1 − x0, 1],

(1 − x0)D∗
1

(
u − x0

1 − x0
,

v

1 − x0

)
(u, v) ∈ [x0, 1] × [0, 1 − x0],

W (u, v) otherwise,

and A = {(1 − x0)t + x0 : �D∗
1
(t) = t}.

Third step: There exists an absolutely continuous copula D2 with sub-diagonal �x0 .
Let A be as above, and 
 = �(A). Then, we can consider two possibilities:
(a) �(A) � x0.
By Lemma 2.5, there exists a measure-preserving increasing bijection h1 from a subset A+ ⊂ A of measure 
 on a

subset of [0, 
]. Let us define h1 : I → I by

h1(x) =

⎧⎪⎨⎪⎩
h1(x) if x ∈ A+,

h−1
1 (x) if x ∈ h1(A+),

x otherwise.

Let us note that h1 ◦ h1(x) = x .
This function is also measure-preserving, and it provides the copula Sh1,D1

as a generalized shuffle. If we set
�(x, y) = x , because the Lebesgue measure � is the one-dimensional marginal of a copula, as a consequence of the
Disintegration Theorem, we have that

D1(t + x0, t) =
∫ 1

0
1[0,t+x0]

(∫ 1

0
1[0,t] d�D1,x (y)

)
dx =

∫
[0,t+x0]

�D1,x (t) dx

=
∫

[x0,t+x0]∩A+
�Sh1,D1

,h1(x)(t) dx +
∫

[x0,t+x0]∩A+
�Sh1,D1

,x (t) dx
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=
∫

h1([x0,t+x0]∩A+)
�Sh1,D1

,x (t) dx +
∫

[x0,t+x0]∩A+
�Sh1,D1

,x (t) dx

=
∫

[0,x0]
�Sh1,D1

,x (t) dx +
∫

[x0,t+x0]
�Sh1,D1

,x (t) dx = Sh1,D1
(t + x0, t),

where A+ = [0, 1]\A+. The last but two equality follows from the fact that h1 is a measure-preserving bijection, and
the last but one equality follows from the fact that the measures �Sh1,D1

,x (t) vanish out of h1([x0, t + x0] ∩ A+) and

[x0, t + x0] ∩ A+. Therefore, Sh1,D1
has a sub-diagonal equal to �x0 . Moreover, its singular component is concentrated

in the rectangle R1 = [0, x0] × [0, 1 − x0].

Finally, if we consider the rectangular patchwork (〈R1, �〉)Sh1,D1 , by using similar arguments to those in [11,
Proposition 12], we then obtain the desired absolutely continuous copula D2.

(b) �(A) � x0.
Let m ∈ N such that 
/m � x0. Now, we define m sets

Ai =
{

x ∈ a :
i − 1

m

 � �([1 − x0, x] ∩ A) <

i

m



}
,

with i ∈ {1, . . . , m}.
Therefore, �(A1) = 
/m � x0, and by repeating the procedure shown above in (a), we obtain a copula D1,1 with

singular components is concentrated in {(a, x0 + a) : a ∈ ⋃m
i=2 Ai }.

Next, by using Lemma 2.5, we can find a measure-preserving increasing bijection h12 from subsets A+
1 and A+

2 of
A1 and A2, respectively, with �(A+

1 ) = �(A+
2 ) = (1 − x0)/m. Now, we extend h12 to h12 : I → I by

h12(x) =

⎧⎪⎨⎪⎩
h12(x) if x ∈ A+

1 ,

h−1
12 (x) if x ∈ h12(A+

1 ),

x otherwise.

This h12 is a measure-preserving bijection in I. Therefore, we can define the generalized shuffle as D′
12 = Sh12,D11

.
The singular component of this copula D12 is concentrated in

G1 =
{

(a, a − x0) : a ∈
m⋃

i=3

Ai

}
∪ A1 × A′

2,

where A′
2 = {x : x + x0 ∈ A2}. Note that A1 × A′

2 is included in a rectangle R12 of the sides that are parallel to the
axes, whose interior has an empty intersection with Sx0 . Once again, because the Disintegration Theorem and h1 be a
measure-preserving bijection, we have that the rectangular patchwork (〈R12, �〉)D′

12 is a copula with sub-diagonal �x0

and with singular component concentrated in the adherence of the set

G1 =
{

(a, a − x0) : a ∈
m⋃

i=3

Ai

}
.

If we repeat this procedure with the sets A2 and A3, then we obtain a copula D22 with sub-diagonal �x0 , whose
singular component is concentrated in the adherence of the set G2 = {(a, a − x0) : a ∈ ⋃m

i=4 Ai }. By iteration, we
find the copula Dm−1,2. This is the desired copula D2. �

5. Conclusions

Several constructions of copulas with given section have been studied for the last few years. In this paper, the authors
continue the studies initiated by Quesada-Molina et al. in [25], showing that for every sub-diagonal function there exists
an absolutely continuous copula whose diagonal subsection is the given sub-diagonal. The situation differs from that
obtained by Durante and Jaworski in [6] for diagonal functions.
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For a given copula C and diagonal section �x0 , we can ask if C and the copula D2 obtained in the proof of Theorem 2.2
are close with respect to the distance d∞ (the supremum distance). Because D2 is based on the use of W-ordinal sums
and diagonal copulas, they will not be generally close, although in case C it is absolutely continuous. For instance, if
x0 = 1/2 and C is the ordinal sum of � in the intervals [0, 1/2] and [1/2, 1], following the proof of Theorem 2.2,
for the copula D2 we obtain d∞(�, D2) = 1/2, which is the maximum value that can be reached. One question to
be considered in future investigations is to determine if for a given singular copula, it is possible to find an absolutely
continuous copula with the same section �x0 , and close to C (w.r.t. d∞). If the answer is yes, then we will have to look
for an algorithm to find the new copula.

Another question is to study the existence of a symmetric copula satisfying that the sub-diagonal function �x0 is its
sub-diagonal section. Similar ideas to those used in the proof of Theorem 2.2 allow us to give an affirmative answer in
the case of x0 ∈]1/2, 1[. However, it is an open problem if x0 ∈]0, 1/2].
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