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Abstract

We introduce a constructive method, by means of a doubly stochastic measure, to describe all the copulas that, in view of Sklar’s
Theorem, are able to connect a bivariate distribution to its marginals. We use this to give the lower and upper optimal bounds for all
the copulas that extend a given subcopula.
© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

For any integer n � 2, a multivariate (or n-dimensional) copula is the restriction to the unit n-cube [0, 1]n of a
multivariate cumulative distribution function whose marginals are uniform on [0, 1]. Copulas were introduced by Sklar
in 1959 (see [1]), as the answer to a question posed by Fréchet, and they allow us to represent a joint distribution of
random variables as a function of its marginal distributions. In fact, Sklar enunciated that if H is the joint distribution
function of n random variables X1, . . . , Xn, and F1, . . . , Fn are the distribution functions of X1, . . . , Xn, respectively,
then there exists a multivariate copula C such that

H (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn))

for all x1, . . . , xn ∈ Rn . This C is uniquely determined on Ran(F1) × · · · × Ran(Fn).
Nowadays, this result is known as Sklar’s Theorem, and it has been one of the main tools in promoting the Theory

of Copulas as one of the most up-to-date areas in Mathematics. The first proof of this theorem (in the bivariate case)
was published in 1974 by Schweizer and Sklar [2]. (See [3], as well.) New proofs have been given since: [4–8], among
others.
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The wide variety of different proofs of Sklar’s Theorem are based on techniques that range from those which are
purely probabilistic to others which are more analytic. In [2] the proof consists of a construction of the copula with
the desired properties, and the method used is the extension from a subcopula. However, in the other cited papers, the
authors only show the existence of, at least, one copula satisfying Sklar’s Theorem.

In this paper we consider the bivariate case and, following the way of [2], we describe a method for finding all the
copulas C that can be associated with a pair of random variables (Theorems 4 and 8).

The method we use, which we name the E-process, consists of finding suitable doubly stochastic measures in order
to obtain these copulas C (Proposition 5). The procedure to obtain C is constructive and it is based on patchwork
techniques. Several examples illustrate how our results can be applied to building copulas. To be specific, we obtain,
as an application, the lower and upper bounds of copulas that extend a given subcopula, and that are copulas, as well
(Theorems 11 and 12).

2. Preliminaries

Let I := [0, 1] be the closed unit interval and let I2 := [0, 1]2 be the unit square. We use A to denote the closure of
A ⊂ I. For given sets A and B, we denote by AB the Cartesian product of elements of A indexed in B, that is, the set of
maps from B to A.

First, we give the definitions of subcopula and copula, and some of their elementary properties. For an overview, see
for instance [3] or [9].

Definition 1. A bivariate subcopula (or a subcopula, for brevity) is a function C∗ : S1 × S2 −→ I, where S1 and S2
are subsets of I containing 0 and 1, which satisfies the following:

1. C∗(u, 0) = 0 = C∗(0, v), for all u ∈ S1, v ∈ S2;
2. C∗ has uniform marginals, i.e. C∗(u, 1) = u, C∗(1, v) = v, for all u ∈ S1, v ∈ S2;
3. C∗ is 2-increasing, i.e. C∗-volume VC∗ satisfies VC∗ ([u1, u2] × [v1, v2]) = C∗(u2, v2) − C∗(u2, v1) − C∗(u1, v2) +

C∗(u1, v1) � 0, for all u1, u2 ∈ S1, v1, v2 ∈ S2.

A bivariate copula (or a copula, for brevity) is a subcopula C whose domain is I2. We denote by C the class of all
copulas.

Well-known examples of copulas are the Fréchet–Hoeffding bounds M(x, y) = min{x, y}, W (x, y) = max{0, x +
y − 1}, and the independence copula �(x, y) = xy.

Each copula C induces a probability measure �C on I2 via the formula:

�C ([a, b] × [c, d]) = VC ([a, b] × [c, d]) = C(b, d) − C(b, c) − C(a, d) + C(a, c)

and, through standard measure-theoretic techniques, �C can be extended from the semi-ring of rectangles in I2 to the
�-algebra B(I2) of the Borel sets.

Therefore, we remark that there is a one-to-one correspondence between copulas and doubly stochastic measures
defined in I2, that is, probability measures �, such that for any measurable subset A of I:

�(A × I) = �(I × A) = �(A),

where � denotes the standard Lebesgue measure on B(I).
Note that any distribution function H has an associated probability that we will denote by �H .
Finally, if C is a copula and a ∈ I, then the functions t → C(t, a) (the horizontal section of C at a), and t → C(a, t)

(the vertical section of C at a) are nondecreasing and 1-Lipschitz on I, i.e. |C(t1, a) − C(t2, a)| � |t1 − t2|, for all
t1, t2 ∈ I.

Let us recall that Sklar’s Theorem represents a bivariate distribution function H by means of the marginal distribution
functions F and G, and the copula C. Both of them are connected by Eq. (1) below. Formally, we have the following:

If H is a joint distribution function in [−∞, +∞]2 with marginals F and G in [−∞, +∞], then there exists a copula
C such that the following equation holds:

H (x, y) = C(F(x), G(y)), for all x, y ∈ [−∞, +∞]. (1)



Author's personal copy

E. de Amo et al. / Fuzzy Sets and Systems 191 (2012) 103 –112 105

If F and G are continuous, then C is unique; otherwise, C is uniquely determined on Ran(F) × Ran(G).
As can be seen in [10], the existing relation between C and H can corresponds to a wide variety of cases depending

on the marginals F and G.
Besides, the reverse of (1) can be easily verified, that is:

Lemma 2. If C is a copula and F and G are distribution functions, then the function H defined by (1), is a joint
distribution function with marginals F and G.

To prove Sklar’s Theorem, one may define a subcopula in Ran(F) × Ran(G) by the equation given in (1) and,
afterwards, extend it to its closure. For further considerations, it is convenient to rewrite this in the following way (see
for example [3, Lemma 2.3.4]):

Lemma 3. Let H be a joint distribution function with marginals F and G. Then, there exists a unique function:

C∗ : Ran(F) × Ran(G) −→ I,

such that C∗(F(x), G(y)) = H (x, y), for all x, y.

It is easy to verify that, when the restriction of a copula C1 to Ran(F)×Ran(G) coincides with C∗, then C1(F(x), G(y))
= H (x, y), for all x, y.

3. The main result

The main result presented in this paper (Theorem 4) allows us to express all the copulas that extend a given subcopula.
Equivalently, if X1 and X2 are random variables (non-necessarily continuous), with a joint distribution function H and
marginals F and G, this result describes all the copulas that can represent H as a function of F and G. First, in order to
make this statement, we introduce some notation.

Here and in what follows, we consider a bivariate joint distribution function H : [−∞, +∞]2 −→ I, with univariate
marginals F and G.

For the distribution function F : [−∞, +∞] −→ I, there exists an associated family S1 of closed subintervals
in I, such that their pairwise intersections are empty. To check this, observe that the elements A of the projection of the
graph of F on I are either an interval or a singleton. Let S1 be the family constituted by the closures A.

Now, we consider the class P1 of elements in S1 which are singletons, and set D1 := S1\P1.
The complement in I of the union of elements of S1 is a family of open intervals. We will denote by O1 the class of

all the closures of these (open) intervals. Finally, with T a index set, write T := {Tt = [at , bt ]; Tt ∈ D1 ∪ O1}t∈T .
Similarly, for the distribution function G, there exist the corresponding sets S2, P2, D2, O2, and J := {J j =

[c j , d j ]; J j ∈ D2 ∪ O2} j∈J , with J an index set.
Next, let us define auxiliary functions associated to the elements in the class O1. In fact, for any Tt ∈ O1 we select

a family of distribution functions whose restriction to I, Ft j : I → I, satisfies

x = 1

bt − at

∑
j

�t j Ft j (x), ∀x ∈ I, (2)

where

�t j = C∗(bt , d j ) + C∗(at , c j ) − C∗(bt , c j ) − C∗(at , d j ).

Because
∑

j �t j = bt −at , let us note that it is possible to find functions Ft j satisfying (2). The easiest way to obtain
this is setting Ft j (x) = x .

We proceed in a similar way to obtain functions Gt j : I → I that are associated to sets J j ∈ O2; here

x = 1

d j − c j

∑
t

�t j Gt j (x). (3)
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There exist other auxiliary functions that are associated to rectangles in the form Tt × J j ∈ D1 × O2 or Tt × J j ∈
O1 × D2 if �t j � 0.

In the case of Tt × J j ∈ D1 × O2, we consider the distribution functions in the following way:

Ft j (x) = 1

�t j
(C∗((bt − at )x + at , d j ) + C∗(at , c j ) − (C∗(at , d j ) + C∗((bt − at )x + at , c j ))). (4)

If Tt × J j ∈ O1 × D2, then we consider:

Gt j (x) = 1

�t j
(C∗(bt , (d j − c j )y + c j ) + C∗(at , c j ) − (C∗(at , (d j − c j )y + c j ) + C∗(bt , c j ))). (5)

With the above notations the main result of this paper can be presented as follows.

Theorem 4. Let H be a bivariate distribution function in [−∞, +∞]2, with given marginals F and G. Then, C is a
copula satisfying the equation:

C(F(x), G(y)) = H (x, y),

if and only if C can be expressed in the form:

C(x, y) = C∗(x, y), i f (x, y) ∈ Ran(F) × Ran(G)

and

C(x, y) = C∗(at , c j ) + �t j Ct j

(
Ft j

(
x − at

bt − at

)
, Gt j

(
y − c j

d j − c j

))

+
∑
t ′∈St

�t ′ j Gt ′ j

(
y − c j

d j − c j

)
+

∑
j ′∈Z j

�t j ′ Ft j ′

(
x − at

bt − at

)
, (6)

if (x, y) /∈ Ran(F) × Ran(G) and (x, y) ∈ Tt × J j , where Ct j ∈ C, Ft j and Gt j are distribution functions satisfying
(2)–(5), with St = {t ′ : at ′ < at } and Z j = { j ′ : c j ′ < c j }.

3.1. The E-process

To show Theorem 4 we construct a measure � on rectangles Tt × J j , (t, j) ∈ T ×J , and we prove that it is a doubly
stochastic measure. This extension method will be called extension process (for short E-process).

We remark that, by Lemma 3, if H is a joint distribution function with marginals F and G, then there exists a unique
function C∗ : Ran(F) × Ran(G) −→ I, such that C∗(F(x), G(y)) = H (x, y), for all x, y ∈ [−∞, +∞].

Proposition 5. Let H be a joint distribution function with marginals F and G. Then, there exists a doubly stochastic
measure � such that the restriction of its associated copula C1 to Ran(F) × Ran(G) coincides with C∗.

Proof. The method to produce the measure � will be developed in three steps:

1. The construction of the continuous functions Ft j (resp. Gt j ) associated to sets Tt ∈ O1 (resp. O2): If Tt ∈ O1, then
it is possible to choose a family of functions Ft j that satisfies (2), and functions Gt j associated to sets J j ∈ O2
satisfying (3).

2. Measure allocation using the joint distribution function with marginals Ft j and Gt j .
There are four cases to consider:

(a) Tt × J j ∈ D1 × D2. If [a, b] × [c, d] ⊆ Tt × J j , then

�([a, b] × [c, d]) = C∗(b, d) + C∗(a, c) − C∗(b, c) − C∗(a, d).

And, the extension theorem allows us to extend the measure � to every Borel set in the rectangle D1 × D2.
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(b) Tt × J j ∈ D1 × O2. If �t j = 0, then the measure of every Borel set in the rectangle is zero. On the other hand, if
�t j � 0, we consider the distribution function Fi j given by (4) and Gt j satisfying (3). It follows (from Lemma 2)
that for Ft j and Gt j , and for any copula (which we denote by Ct j ), a distribution function

Ht j (x, y) = Ct j (Ft j (x), Gt j (x))

exists. Now, the map Qt j : I2 −→ Tt × J j given by

Qt j ((x, y)) = ((bt − at )x + at , (d j − c j )y + c j ),

allows us to move the mass distribution determined by Ht j , from I2 to Tt × J j . Hence, for each Borel set
A ⊂ Tt × J j , the value of �(A) is �i j�Ht j

(Q−1
t j (A)).

(c) Tt × J j ∈ O1 × D2. It is analogous to (b).
(d) Tt × J j ∈ O1 × O2. We proceed in a similar way as we did in (b).

Here, the functions Ft j and Gt j were previously fixed (see (2) and (3)).

3. The probability measure � is doubly stochastic:
We will restrict our attention to checking that �([a, b] × I) = b − a in the case when [a, b] ⊂ Tt , for some t ∈ T .
We need to consider two subcases here.
If Tt ∈ D1, then

�([a, b] × I) =
∑

j

C∗(b, d j ) − C∗(a, d j ) − C∗(b, c j ) + C∗(a, c j )

= C∗(b, 1) − C∗(a, 1) = b − a.

If Tt ∈ O1, then

�([a, b] × I) = 1

bt − at

∑
j

�t j (Ft j (b) − Ft j (a)) = b − a.

Similar arguments apply to the case I × [a, b].
Finally, this measure � has an associated copula C1. Let us note that, by construction, the restriction of C1 to
Ran(F) × Ran(G) coincides with C∗. Moreover, by Lemma 3, it follows that C1(F(x), G(y)) = H (x, y), which
fulfils the statement. �

Note that, for a given distribution function H, the method in the Proposition 6 is associated with the copulas Ct j and
the distribution functions Ft j and Gt j .

We conclude this subsection with three remarks.

1. If we set Ct j = � (that is, the independence or product copula), and Ft j (x) = Gt j (x) = x in (2) and (3), then this
is precisely the particular case given by Sklar and Schweizer in [2] for the proof of Sklar’s Theorem.

2. Let us consider a copula C and a family {Si }i∈� of closed and connected subsets of I2, with boundaries �Si such
that Si ∩ S j ⊆ �Si ∩ �S j whenever i � j . Moreover, for every i ∈ �, let us consider an increasing continuous
mapping Li : Si −→ I, such that C = Li on �Si . Then, the function L : I2 −→ I defined by

L(x, y) =
{

Li (x, y), (x, y) ∈ Si ,

C(x, y) otherwise,

it said to be the patchwork (of {Si }i∈�) into the copula C. When sets Si are rectangles, it is called a rectangular
patchwork (see [11]).

According to the above definition, we can check the following result:

Proposition 6. Let us denote by C1 and C2 two copulas obtained by two respective E-processes where the same
distribution functions Ft j and Gt j have been considered. Then C1 is a rectangular patchwork into C2 (and vice versa).

3. Following [12, Theorem 2], let (]uz, u′
z[)z∈Z and (]vk, v

′
k[)k∈K be two families of nonempty, pairwise disjoint open

subintervals of ]0, 1[. Consider a copula Cb, called the background copula, a family (C f
z,k)z∈Z ,k∈K of copulas,
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called foreground copulas, and a family (�(uz, u′
z, vk, v

′
k))z∈Z ,k∈K of positive multipliers. For any z ∈ Z and

k ∈ K , define the mapping Pb
z,k : [uz, u′

z] × [vk, v
′
k] → R by

Pb
z,k(x, y) = Cb(x, y) − �(uz, u′

z, vk, v
′
k)Cb

(
x − uz

u′
z − uz

,
y − vk

v′
k − vk

)

and the binary operation Q by

Q(x, y) =

⎧⎪⎨
⎪⎩

Pb
z,k(x, y) + �(uz, u′

z, vk, v
′
k)C f

z,k

(
x − uz

u′
z − uz

,
y − vk

v′
k − vk

)
if (x, y) ∈ [uz, u′

z] × [vk, v
′
k],

Cb(x, y) otherwise.

If for all z ∈ Z and k ∈ K it holds that Pb
z,k is 2-increasing on [uz, u′

z] × [vk, v
′
k], then Q is a copula.

Now, according to the above result, we can check the following result:

Proposition 7. Let C = Cb be a copula extending a subcopula C∗. If we choose the intervals [uz, u′
z] as elements in

O1 ∪ D1, intervals [vk, v
′
k] as elements in O2 ∪ D2, and multipliers �(uz, u′

z, vk, v
′
k) such that �(uz, u′

z, vk, v
′
k) = 0

when [uz, u′
z] ∈ D1 and [vk, v

′
k] ∈ D2, and such that Pb

z,k is 2-increasing on [uz, u′
z] × [vk, v

′
k], then Q is another

copula that extends C∗.

3.2. Description of all copulas associated with a pair of random variables

As we already mentioned in Introduction, the E-process given in this paper allows us to describe all the copulas
that can be associated with a given distribution function H. In order to attain this goal, it is appropriate to introduce
additional notation.

Let D′
1 denote the set of indices t ∈ T such that Tt ∈ D1, and, in a similar way, we introduce the sets D′

2, O ′
1

and O ′
2. Let us denote by K the subset in D′

1 × O ′
2 ∪ O ′

1 × D′
2 ∪ O ′

1 × O ′
2 of all indices such that �t j � 0. We

shall denote by � the class of all distribution functions, and let �1 denote the subclass in �O ′
1×J∩K such that x =

(1/(bt − at ))
∑

j,(t, j)∈O ′
1×J �t j Ft j (x). The subclass �2 is defined analogously.

If we analyze the proof of Proposition 5, then we observe that, in fact, we have proved more than it is said in
the statement. Precisely, for each element in CK × �1 × �2, its associated E-process gives rise a copula C such that
C(F(x), G(y)) = H (x, y).

On the other hand, for any copula C that extends a subcopula C∗, we can check that, if �t j � 0 and we set

Ft j (x) = 1

�t j
(C((bt − at )x + at , d j ) + C(at , c j ) − (C(at , d j ) + C((bt − at )x + at , c j )))

and

Gt j (y) = 1

�t j
(C((d j − c j )y + c j , bt ) + C(at , c j ) − (C((d j − c j )y + c j , at ) + C(bt , c j ))),

then the copula C is obtained as an E-process.
We are now in a position to prove our main result concerning the representation of copulas.

Theorem 8. Let H be a bivariate distribution function with marginals F and G, and a subcopula C∗ defined in
Ran(F) × Ran(G) satisfying that C∗(F(x), G(y)) = H (x, y). Then, the following statements hold:

(a) For each element in class CK × �1 × �2, the associated E-process gives rise to a copula C satisfying that
C(F(x), G(y)) = H (x, y). Moreover, the E-process is injective in the sense that for different elements in CK ×
�1 × �2, the corresponding copulas are different.

(b) Every copula C satisfying the equation C(F(x), G(y)) = H (x, y), is generated by an E-process.

We can now prove Theorem 4 as follows.
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Proof of Theorem 4. By Theorem 8, because the copulas satisfying C(F(x), G(y)) = H (x, y) = C∗(F(x), G(y)) can
be obtained by an E-process, if the copula Ct j , and the distribution functions Ft j and Gt j are those used in it, then C
is the copula given in (6).

On the other hand, the constructing method and conditions (2)–(5) show that C is a copula. �

The two following examples illustrate Theorem 8.

Example 9. If Ran(F) = I and Ran(G) = {0, b, 1} (0 < b < 1), then the subcopula C∗ can be essentially identified
with the horizontal section C∗(x, b) = hb(x), where, the function hb : I −→ [0, b] is an increasing bijection satisfying
|hb(x) − hb(y) � |x − y| (that is, it is 1-Lipschitz).

Conversely, if hb : I −→ [0, b] is an increasing 1-Lipschitz bijection, then the map C∗ : I × {0, b, 1} −→ I given by

C∗(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

0 if y = 0,

hb(x) if y = b,

x if y = 1,

is a subcopula.
Here T = {T0 = I}, J = {J0 = [0, b], J1 = [b, 1]}, and F0,0 = hb(x)/b, F0,1 = (x − hb(x))/(1 − b), G0,0(x) =

G0,1(x) = x .
It is of interest to note that the above result shows a general expression for all the copulas with a horizontal section

hb. Precisely, it is given by

C(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

bC1

(
hb(x)

b
,

y

b

)
if x � b,

(1 − b)C2

(
x − hb(x)

1 − b
,

y − b

1 − b

)
+ hb(x) otherwise,

where C1 and C2 are copulas.
Note that we prove this fact by a different procedure from that in [11].
Finally, if we consider the Fréchet–Hoeffding boundary copulas in the following cases:

(a) C1(x, y) = C2(x, y) = M(x, y) = min{x, y}, or
(b) C1(x, y) = C2(x, y) = W (x, y) = max{0, x + y − 1},

then, we obtain the upper and lower copulas of this family, respectively. This result corresponds to Theorems 3.1
and 3.2 in [13].

Example 10. If Ran(F) = {0, a, 1} and Ran(G) = {0, b, 1}(0 < a, b < 1), then the subcopula C∗ only takes a
non-trivial value C∗(a, b) = �, with � such that max{0, x + y − 1} � � � min{x, y}.

A copula C extending C∗ has the form:

C(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�C00

(
F0

( x

a

)
, G0

( y

b

))
if (x, y) ∈ [0, a] × [0, b]

(b − �)C10

(
F1

(
x − a

1 − a

)
, G+

0

( y

b

))
+ �F0

( x

a

)
if (x, y) ∈ [a, 1] × [0, b]

(a − �)C01

(
F+

0

( x

a

)
, G1

(
y − b

1 − b

))
+ �G0

( x

a

)
if (x, y) ∈ [0, a] × [b, 1]

� + (1 + � − a − b)C11

(
F+

1

(
x − a

1 − a

)
, G+

1

(
y − b

1 − b

))

+(b − �)F1

(
x − a

1 − a

)
+ (a − �)G1

(
y − b

1 − b

)
if (x, y) ∈ [a, 1] × [b, 1]

,
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where F0 is an a/�-Lipschitz distribution function, and F1, G0, and G1 are, respectively, as well of parameters
(1 − a)/(b − �), a/�, and (1 − b)/(a − �). The function F+

0 is determined by F0 in the form F+
0 (x) = (ax − �F0(x))/

(a − �), and in a similar way F+
1 , G+

0 , and G+
1 .

This example corresponds to the case of two random variables that follow Bernoulli distributions. In the case of
independent variables, the expression becomes easier writing ab instead of �.

4. Upper and lower bounds

For a given subcopula C∗, it is interesting to know the functions:

UC∗(x, y) = sup{C(x, y) : C is a copula that extends to C∗}
and

LC∗(x, y) = inf{C(x, y) : C is a copula that extends to C∗}.
We shall see that they are copulas, and we provide a method to produce them.

In fact, any interval Tt is divided into indexed subintervals (in J ) in such a way that the interval T j
t = [a j

t , b j
t ] ⊂ Tt

is an interval of length VC∗ (Tt × J j ), and its lower extreme is given by at +∑
c j ′<c j

VC∗ (Tt × J j ′). In the same manner,

we can divide J j into indexed subintervals J t
j .

Now, we can define the function Ft j , as:

Ft j (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 0 � x �
a j

t − at

bt − at
,

bt − at

b j
t − a j

t

x + at − a j
t

b j
t − a j

t

if
a j

t − at

bt − at
� x �

b j
t − at

bt − at
,

1 if
b j

t − at

bt − at
� x � 1

(7)

and, similarly, for functions Gt j .

Theorem 11. If we choose the functions Ft j and Gt j in the E-process as above (7), and the copula Ct j = M , then the
associated copula with respect to the doubly stochastic measure is the copula UC∗.

Proof. First, we can see that if Tt × J j ∈ O1 × O2, then the mass distribution is uniformly distributed on the diagonal

of the square T j
t × J t

j in this rectangle. If Tt × J j ∈ D1 × O2, then the mass is distributed in the graph of an increasing
bijection from Tt to J t

j . If Tt × J j ∈ O1 × D2, then the mass is also distributed in the graph of an increasing bijection

from T j
t to J j .

To show that the copula associated to this measure is UC∗, three cases have to be considered. Here, the associated
copula will be denoted by C ′:

1. If (x, y) ∈ Ran(F) × Ran(G), then it is obvious that C ′ is, in fact, UC∗(x, y).
2. If (x, y) ∈ Tt × J j ∈ O1 × O2, we distinguish some subcases:

(a) If x � a j
t , y � ct

j , then

C ′(x, y) = C∗(at , c j ) + (x − at ) + (y − c j ),

and it is the maximum value obtainable;
(b) If x � b j

t , y � dt
j , then C ′(x, y) = C∗(bt , d j ), and that it is the maximum value obtainable, as well;

(c) If a j
t � x � b j

t , y � ct
j , then C ′(x, y) = C∗(at , c j ) + ∑

j ′< j VC∗ (Tt × J j ′) + x − at , and that it is newly the
maximum value obtainable;

(d) The same conclusion can be drawn to the case x � b j
t , ct

j � y � dt
j .
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Similar arguments apply to the other cases:
(e) x � b j

t , y � ct
j ;

(f) x � a j
t , y � dt

j ;

(g) a j
t � x � b j

t , y � dt
j ;

(h) x � b j
t , ct

j � y � dt
j ; or

(i) a j
t � x � b j

t , ct
j � y � dt

j .
3. If (x, y) ∈ Tt × J j ∈ D1 × O2 or (x, y) ∈ Tt × J j ∈ O1 × D2, then the corresponding subcases can be treated as

in case 2.

Observe that we obtain the lower bound in a similar way. In fact, the interval T j
t ⊂ Tt has length VC∗ (Tt × J j ), and

its upper extreme is bt − ∑
j ′< j VC∗ (Tt × J j ′). The interval J j is divided into subintervals J t

j , and the functions Ft j

and Gt j are defined as above.

Theorem 12. If we choose the functions Ft j and Gt j in the E-process as above (7), and copula Ct j = W , then the
associated copula with respect to the doubly stochastic measure is the copula LC∗.

Example 13. The last two theorems include, as a particular case, the result due to Carley in [14] (see [15], as well),
when the sets Ran(F) and Ran(G) are finite.

5. Conclusions

We can describe all the elements of the set of copulas that extend a given subcopula (Theorem 4). We have called this
technique we have used E-process. Furthermore, we describe the upper and lower bounds of this set that are copulas,
as well.

If we transfer these ideas to the n-dimensional case, then we can obtain n-stochastic measures, but it does not seem
easy to give an analogous to Theorem 4. Moreover, if n � 3, the Fréchet–Hoeffding lower bound is not a copula, and
as a consequence it would be impossible to find a lower bound for the copulas that extend a given subcopula.
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