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Abstract. Absolute continuity for functionals is studied in the context of proper and
abstract Riemann integration examining the relation to absolute continuity for finitely ad-
ditive measures and giving results in both directions: integrals coming from measures and
measures induced by integrals.

To this end, we look for relations between the corresponding integrable functions of abso-
lutely continuous integrals and we deal with the possibility of preserving absolute continuity
when extending the elemental integrals.
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1. INTRODUCTION

Tt is well known that there are two classical ways of developing an Integration
Theory:

On the one hand, there is the set theoretic starting point, which we will denote
as (1/Q): X is a non empty set, Q is a o-algebra of the power set of X and p is a
measure on ). In this context, standard and classical methods lead to the L1 (2, u)
class of the Lebesgue integrable functions (see [11]).

On the other hand, there exists a functional setting which we will denote as (I/B):
The starting point here is a Daniell Loomis system, that is a triple (X, B,I) where
B is a vector lattice of real functions defined on X and I is a Daniell integral on
B ({hs} C B, hn 180 =3l(ha)s 0). In this case we get the corresponding class
Ly(B,I) of Daniell integrable functions. For a recent account of the functional

extension procedures we refer the reader to [6].
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Given (X, u) with g a finite finitely additive measure and ) a ring, we call
X, Bq, I, the induced Loomis system, where Bq is the vector lattice of p-simple
u p

functions,

Bq = {h eERY: h= Za,;,mi, aic R, A e uh#0)< +oo},

i=1

and I, is its canonical elemental integral given by

Iu(h) == aip(A:), Vh € Ba.

i=1

3. PROPER AND ABSTRACT RIEMANN INTEGRATION

Let (X, B,I) be a Loomis system. For f € @X, following Loomis in [14] we define
by

I=(f) :==inf{I(h): h€ B,h > f},
IT(f) :=sup{I(h): h € B,h < f}

the corresponding upper and lower integrals of f, which verify —oo € I(f) <
T < oo Vifse RTA, I~ is subadditive, IT is superadditive, and both are
positively homogeneous.

The class of the properly Riemann integrable functions is defined by

Resop(Bil) = {f € R®: IT(F) =1 (f) € R
or, equivalently, by
Rprop(B, 1) = {f €RX: Ve >0, 3h,g€ B, h< f < gand I(g—h) <&}

and it is a vector lattice where the functional I := I = I~ is linear and increasing,
i.e., it is an integral which extends the original I.

For this class there are no satisfactory Lebesgue convergence type theorems to
make a consistent Integration Theory. Therefore, it is necessary to introduce a
“local convergence” to ensure this kind of results. :

The local I-convergence for sequences of functions {f,} in ﬁx to a function f in
ﬁ‘x, denoted by {fn}—f(I7), means that {I=(|fn — fIAR)} — 0, Vh € +B, and it
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Definition 3.1. A Loomis system (X, B, I) is called C or upper continuous
if
lim I*(f—fAr)=0, Vf € +B.

r—+00

Upper continuity on B is hereditary for the class R1(B,I); that is:

Lemma 3.2. If (X, B,I) is Ctoo, then so is Ry(B,I).

In general Ry (B, I) need not be closed under multiplication, but we will use the

following two facts which can be easily checked.

Lemma 3.3. If BB C B, f € Ri(B,I) and k € B is bounded, then fk €
Rl(Baj)

Lemma 3.4. If (X, B, ) is a Cyo Loomis system and h and x 4 are in Ry (B, I)
then so is hx 4.

There are three basic theorems to obtain a good Measure and Integration The-
ory: Lebesgue, Fubini and Radon-Nikodym type theorems. For the class Ry(B,I),
Lebesgue theorems were given by Diaz-Carrillo and Munioz-Rivas in [9] and Fubini
type theorems were found by de Amo and Diaz-Carrillo in [3]. Partial attempts in
order to obtain Radon-Nikodym type theorems were done by de Amo, Chitescu and
Diaz-Carrillo (see [1] and [2]). We will now study the notion of absolute continuity
in this functional setting of proper and abstract integration and its relations to the
notion of absolute continuity for finitely additive measures.

4. ABSOLUTE CONTINUITY

We recall that, given two finitely additive measures 1 and v on a ring Q, v is said
to be absolutely continuous with respect to s, and is denoted by v < u, if

Ve>0,36>0: Aef, pld)<d=v(4) <e

(see Bochner [5, p. 778], Fefferman [12, p. 35], Dunford-Schwartz [11, p. 131]).
This definition clearly implies the classical one,

wA)=0 = v(A) =0, VA€ Q,

and both are, in fact, equivalent when p and v are measures such that v(A) < +o0
for all A € Q with p(4) < +o0.
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Theorem 4.4. Let p and v be finitely additive measures such that v(A) < +o0
for all A € Q with pu(A) < +oo. If v < p then I, < I),.

Proof. Assume that v < pu, let € > 0 and f € +Bq. Thele are a; > 0
and pairwise disjoint 4; € Q such that f = Z aixa,. Set A : U A; € Q and
B :=sup{a;: i=1,...,n} > 0. Note that /_L(A) < +00, since u({f 79 0]) < +0c0.

If v(A) = 0, then L,(f) < Av(A) = 0 and therefore I, (k) < I,(f) =0 <e, Vh €

+Bq with h < f.
Assume that v(A) > 0 and let o := 32/v(A) > 0. Since v < p, there exists ¢ > 0

such that
VECQ, u(E)<o=v(E)< ;—ﬁ

Let § := cp > 0 and h € +Bq with h < f and I,(h) < d. There are ¢; > 0 and

m
pairwise disjoint E; € Q such that h = Y e;jxg,. Moreover, since h < f we have

j=1
m
Br=il)iBe U Ai=Aande; <G, Vi=1,...,m.
j=1 i=1
Let us now consider sets
Bt eNul<i<m e < al,
S:i={teN: 1<t<m, e 2 a}
which are disjoint with SUT = {1,...,m}, and define functions
hy = Z etxg, and hy:= Zests.
teT ses

Evidently hi, hs € +Bgq and h = h; + ho. Furthermore,

v(h1) <aZ (E:) € av(A) =
teT

(B} | )

0. Hence, 1/( U Es> <

and an easy computation shows that /.L( U Es) <d/a
seS

sES
1e/8 and, consequently,

I,(hs) = Zesu /31/( U E, ) %
ses s€S
Therefore I, (k) = I,(h1) + I, (h2) < &, which completes the proof. d
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(i) Assume that J < I and let ¢ > 0. Given f € +Rprop(B, ) we can take
k. = k:(f) € +B such that f < k.. I-continuity of J gives d = d(e, f ) > 0 such that

Vhe+B, h<ke, I(h) <d= J(h) <e.

Let o := %5. Given g € +Rprop(B, I), g < f with I(g) < o there are hs, ks € +B
with hs < g < ks and I(ks — hs) < 0.
Taking he := k= A ks € +B, we have g < ke A ks = he and
I(he) < I(ks) < I(ks — hs) + I(hs) <o+ 1I(g) <e+e=20.
Therefore, we deduce that J(h.) < ¢ and hence

J(g) = J-(g) = nf{J(h)3 h € +B, g < h} < J(he) <&,

that is, J < I on Rprop(B, I). d
We are able to give a first sufficient condition for finitely additive measures induced
by absolutely continuous integrals to be absolutely continuous.
Given two positive functionals I and J, let (X, (1), pr) and (X, Q(J), vy) be their
respective finitely additive measure induced spaces, that is,
Q) = {ACX: xa€Ri(B,D}, w(A)=I(xa), YAEQ,
Q(J) ={AC X: xa € Ri(B,J)}, vj(4)=J(xa), VA€ Q.

Proposition 5.5. If1 € Rywop(B, ) and J < I, then vy < jur (on QI)NQT)).

Proof. Since J < I, Theorem 5.4 says that J < I on Rores (B L&
Rprop(B, J). Thus, for & > 0 and 1 € Rpop(B, I) there exists § > 0 such that

Vh € Rprop(B, I) with k. < 1 and I(h) <4 = Jh) < e

Given A € Q(I) N Q(J) with p7(A) < & we have xa A h € Rprop(B,1),Vh € +B,
xaAh<1and I(xaAh)<I(xa)=pr(A)<d.
Therefore, it follows that J(xa A h) < &, Yh € +B and, keeping in mind that
x4 € +R1(B,.J), we conclude that
vi(A) = J(xa) = J (xa) =sup{J (xaAh): hE€ +B} <e.
O

In the following section, the condition 1 € Rpwp(B,I) will be relaxed to 1 €
R1(B,I) and Q(I) N Q(J) will be, in fact, Q(I) (see Corollary 6.9).



At this point, since absolute continuity has a good behaviour with respect to local
convergence, one can expect that if J is absolutely /-continuous then Ry(B,I) C
R1(B,J), but this is not, in general, true.

Example 6.4. Let X := ]0,1], let Q be the ring generated by the semi-ring
{la,b]: 0 < a < b < 1}, let B := Bq be the vector lattice of all Q-simple functions
and I its canonical elemental integral.

Consider the function f defined by

400
Flo)E= Z 77’X]l/(n+1)2,1/n2]7vw €10,1],
n=1
and the linear functional J: B — R given by J(h) := I(fh), Vh € B.
Let us see that f € Ry(B,I). Since fAh € B C Rprop(B, I) for all h € B, we
only have to check that I'T(f) < 4+o0. To see thm let Iy = ]1/(k+1)2,1/k? for
each k& € N and consider the functions h, := Z kxr,. It is easy to check that for

each h € +B with h < f, there exists m € N such that h < ham +™mX)0,1/(m+1)2]-
Therefore, It (f) = sup{I(h): h < f,h € +B} can be bounded in the following

way':

BE ml_ixgoq I(hm) + mlﬁ'ng m I(Xj0,1/(m+1)?] Z = ]\ T 1)_ < 400.

Since f € Ri(B,I), the functions in B are bounded and BB < B, Lemma 33
guaranties that J is well-defined.

Moreover, if A is the Lebesgue measure on X and v is the measure given by
v(A) := [, fd\, both defined on the o-algebra o(Q) generated by ©, then it is clear
that v < \ on o(Q) and so, in particular, on . Thus, Theorem 4.4 says that J < I
on B (since I and J on B are induced by A and v on €, respectively).

However, f € Ri(B, J), since J*(f) = I'*(f?) = +oo0.

To find the condition under which R1(B,I) C R1(B, J) holds, we have to consider
the measurable functions. The characterization (1) of R1(B, I), given in [9], suggests
the following definition of measurability (in the sense of Stone, [16]).

Definition 6.5. The class of measurable functions with respect to a Loomis
system (X, B, I) (I-measurable functions) is defined by

My(B,I) = {f €R : f£ARE Bpop(B, 1), Vh € +B}.

Thus, we have that every integrable function is measurable and that every measur-
able function with I1(|f]) < +oc is, in fact, integrable. Moreover, note that we can
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Let g € +Ry(B,I) with g < f and I7(g) < 4, and let us prove that Ih(g)i<ie.
Given u € +B with u < g, it is clear that u Ah € +B, uAh < h and I(u A h) <
I(u) < I'*(g) < § and hence J(uAR) < 3e.

Thus, J(u)+J(h) = J(uAh)+J(uVh) < J(uAh)+J*(f) implies that J(u) < ie.

Therefore, J(u) < %5 for all u € +B, u < g; that is, JT(f) < 7__12-6 < &, which gives
J <« I on Ri(B,I). O

We are now in a position to give the announced sufficient conditions for finitely
additive measures induced by absolute continuous functionals to be absolutely con-
tinuous.

Consider the finitely additive measure space induced by I, that is, (X, Q, j¢r) with
Q={ACX: xa € Ri(B,I)} and pr(A) = I(xa) VA € Q. Under the assumptions
of Corollary 6.7, R1(B,I) C Ri(B,J) and, therefore, we can also define the finitely
additive measure 1y on Q as py(A) := J(xa), VA€ Q.

Corollary 6.9. If1 € Ri(B,I), J < I and J*(f) < +oo for all f € +R " with
IT(f) < 400, then vy < pr.

Proof. Theorem 6.8 and Corollary 6.7 say that J < I on R1(B,I) C Ri(B, J).
Thus, for ¢ > 0 and 1 € Ry(B, I) there exists 6 > 0 such that

Vg € Ry(B,I) with g< land I(g) < d= J(g) <e.

Given A € Q(I) N Q(J) with ur(A) < & we have xa A h € Rpwop(B,I),Vh € +B,
xaAh<1land I(xa Ah) < I(xa)=pr(d)<d.

Therefore, it follows that J(ya A R) < €, Yh € +B and, since x4 € B (Byl):E
R1(B,J), we conclude that

vy(A) = J(xa) = J; (xa) =sup{J (xaAh): he +B} < e.

O

Furthermore, assuming that the Loomis system (X, B,I) is Cyo, We are able to
obtain the absolute continuity of certain induced finitely additive measures py with
respect to the finitely additive measure p induced by I.

To be more specific, given f € +R1(B,I), Lemma 3.4 allows us to define the
finitely additive measure p7 by pp(A) :== I(fxa), VA € Q, where Q = {ACX: xa €
Ri1(B,I)}. Setting pu(A) := I(xa),VA € Q, we can prove that py < p.
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