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LOCAL AND IMPROPER DANIELL-LOOMIS INTEGRALS

E. DE AMO - M. DIAZ CARRILLO

In this paper we start from previous results obtained in [7] on the abstract space of
Daniell-Loomis integrable functions L, which is constructed like to the Daniell extension
process, but without continuity assumptions on the elementary integral.

The localized integral is used to prove that L consists of those functions whose local
upper and lower integrals are equal and finite, or that L is closed with respect to improper
integration.

Our results are also holded in integration with respect to finitely additive measures.

1. Introduction.

The Daniell-Bourbaki integral extension has been generalized with the
integral 7: B — IR, introduced in [5], starting with any nonnegative linear
functional / on a vector lattice B of real-valued functions on X. In [6]
an abstract space of integrable functions L is constructed similar to the
Daniell L', using an appropriate local convergence in measure, which is very
useful to obtain convergence theorems in a form analogous to the classical
ones, but contrary to that L' case, no continuity conditions on the starting
elementary integral / | B, e.g. of Daniell type or “starke” integral norm of
[13], are needed. It allows to discuss an unified functional analytic approach
to integration, in an abstract Riemann spirit; which subsume previous results
obtained by Aumann [4], Loomis [10], Gould [8] and Schéfke [13].

On the other hand, this also leads to treat set-theoretical aspects of inte-
gration with respect to finitely additive measures © on semirings €2 of sets

AMS Subject Classification: 28C05, 26A42.



330 E. DE AMO — M. DIAZ CARRILLO

(abbreviated w | 2). Always, proper Riemann- [6], abstract Riemann- [9] and
Dunford-Schwartz [7] p¢-integration are subsumed by L. This abstract measure
theory is developed by proving Fubini theorems for finitely additive measures
[2] and an approximate functional Radon-Nikodym theorem [1].

An important source of information on finitely additive measures is the
paper by W.A. Luxemburg [11], which gives an extensive bibliography and
treatment of the subject that may be useful in applications.

Since the cornerstone of our approach to integration is the concept of a
localized integral, it seem interesting to discuss new characterizations of the
abstract space of integrable functions L given in [6].Thus, one obtains L via
one of the three classical methods: certain limits of elementary functions, the
closure of B with respect to an L-type seminorm; and, in this paper, via
equality and finiteness of the localized upper and lower integrals (Theorem
8) and improper integrable functions (Theorem 13).

We recall that the set of the integrable functions L coincides with L' in the
classical case. Always B (summable in [5]) and R, (B, I) (abstract-Riemann
integrable functions in [6]) are contained in L.

For an upper functional in the sense of Anger and Portenier [3], essential
integration gives new characterizations of abstract Riemann integration with
respect to I | B. Then, we have in mind future applications to Riesz repre-
sentation theorems (see [1] and [2]), regularity and Radon integrals. Such as
we mentioned before, we already have incorporated to this abstract integration
theory Fubini and Radon-Nikodym thorems, which are not treated in [6].

2. General framework. Preliminaires.

Notations and conventions used are similar to that of [5] and [6], and will
be explained it whenever be necessary in order to mke the paper self-contained.

We extend the usual + in R to R:i= R U {—00, o0} by a + b:= 0,

atb:= o0 ifa = —b € {—00,00}; a — b:= a + (=b), etc.. With
aV b:=max(a,b),a ANb:= min(a,b),anNb:= (a Ab)V (=b)if b > 0,
at:=av0,a :=(—a)t,onehasfora,b,c,d,e € R, s,t € R.:= [0, 00],

the inequalities
lant—bNt| <2(la—>b|At)
1 la+b)—(c+dl=la—cl+|b—d|
llal = 1bll < la = bl < |la —c| +|c —dI, a < b+(a—b)

(Aumann [4, *b), *o)]); +, +, + are conmutative, + distributive with
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0(z£00): = 0, but not asociative; -4 is associative and the above inequalities
hold for +.

On the set R* of functions f:X — R,wedefine=, +, +, A, V, U, -a,
le|, <, pointwise on X. Given M C R, +M:= {f € M; f > 0} and
for an arbitrary functional ¢ on @X, g+« denotes the functional defined on R”
by ¢.(f):= —q(=f).

In all that follows, B will be a function vector lattice (or Riesz space)
C RX and I: B — R, a linear functional with 7 (h) > 0 for h € +B.

For such I | B context, we need the following results of [5] and [6], in
somewhat modified notation:

B*:=sup{M; ¥ # M C B}

IT(f):= sup{l/(h); h € B,h < f}, for f € Kx,with sup: = —oo
Bii={ge B I (f+8) =I"(f)+1"(g), forall f € B}
I(f):=inf{I*(g); f < g € B:}, 1(f):= (D.(f), for f € R

The elements of

(2)

J— —X —=
B:={f eR":I(f) = L(f) € R}
are called I-summable functions.
B™ and B; are + and V-closed, B; is also A-closed. 1 is -subadditive on
RY, T and It are +R o-homogeneous and monotone on RY.
B(;) denotes {f € By I7(f) < +00}. B is A-closed and B C
B)U (=B()) C B.If f € B, then IT(f) = I(f) = I(f).

(3) B is closed under +, +, A, V, -a,|_o|;_§ is the closure of B in R* with
respect to the integral seminorm 7, / | B is the unique /-continuous
extension of / | B to B and is “linear” on B ([5], [6]).

(4) Using the corresponding definitions, the following result holds: f € B
iff for any ¢ > O there exist h, g € B; such that —h < f < g and
IT(g)+17(h) <e.

3. Local integrals.

In [7] an abstract integration theory is developed for general integral
metrics.

A functional g: +R* — R is called an integral metric if g(0) = 0 and
. —X
q(f) =q@) +qh)if f<g+h, f,.g.he+R".
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(5) Forany T: R — R we define the localization
Tp(f):=sup{T(f ANh); h € +B}
forall f e R".

This is a simplified version of Schifke’s definition [13, p.120]. If T = g =
integral metric, gp is also an integral metric. In al the following, we assume
g = I integral metric on +R*. From above definitions, one gets

(I)«(f):=—Tp)(—f) = inf{L(f Vv (=h)); h € +B}.

We have (Ig), < Ip < T onR" and I5(f) < +00. Moreover, if 1(f) <
400, then I 5(f) = I(f). Simple consequences of the definitions are

DEFINITION 1. The set L:= L(B, I) of I-integrable functions is defined
as the clousure of B in RY with respect to the integralmetric I g(e|).

(6) As in the proof of Theorem 1.5 of Schiftke [13], one shows that L(B, I) =
set of all those f € R”* for which there exists an I-Cauchy sequence
(h;) C B such that h; — f(I),i.e., I(|f —hi| A h) — O for each fixed
h € +B. Then J(f):= lim I (h;), and (h;) is called a defining sequence
for f (see [6, Sec.2]).

One gets B C L(B,I) and I(f) = J(f) for any f € B. Also, L is
closed with respect to +, +, A, V, -a, |e| and J is linear and monotone on L.
In [6], covergence theorems for L(B, I) are given in an analogous form to
the classical ones, and various descriptions of the set L have been treated.
Additionaly, we can obtain the following:
LIffeLB,D,I(f) <L(f)=J(f)
2. L(B,I) = B} — B}, where

B*:={f € +R"; f Ah € B,Yh € B, I(f) < +00}.

(7) We summarize applications given in [6, Sec.5], in the situation p | Q: Q2
is a semiring of sets from X, and u: Q2 — [0, +oo[ is a finititely
additive measure on 2, B = Bg: = real valuedstep functions over 2 and
I =1,:= [ edu are admissible.

Then,

1 . . . .
Rpmp(u, R) (proper Riemann p-integrable functions in [6]) C
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L(X, 2, i, R) (Dunford-Schwartz integrable functions in [8]) C

R; (1, R) (abstract Riemann p-integrable functions in [9]) C L(Bg, 1,,),

with coinciding integrals; all inclusions are strict.
If Qis a §-ring and u is o -additive, then

Ri(u,R) = L'(n,R) (Lebesgue integrable functions modulo nullfunctions
in [7]) C L(Bgq, I,);

and f, — f p-almost everywhere implies f, — f (I,) for u-measurable

(fn) -

For X = open sets C R", 2 = intervals, 4 =Lebesgue measure on
X. B = Cyp(R", R) = continuous real valued functions on 2 with compact
support, and I: X — € =the classical Riemann integral on B, one has
B=L=L.

The following basic properties, which will be useful in our subsequent
studies, are new here. The inequality needed here reads: if a,b € R, ¢ € R,
a>b,a>0,then(b+c)Aa=cA(a—>b)+b.

LEMMA 2. If f.k € ", h € B such that T5(k) < +o00 and k < f + h,
then I g(k) < Ig(f)+ I(h).

_ Proof. For every ¢ > 0 there exists z, € +B such that Ig(k) — e <
I(k Nt;).Sett, > h,now witht, —h € +B and k < f + h, we have

knt, <(f+h)ANte=f A —h)+h.

Therefore, Ig(k) —e < I(k At,) < I(f A(t: —h))+ I(h) <I(f)+ I(h)
for all ¢ > 0, and the result follows. O

(8) Note that if f € L(B, I), then I 5(f) < +o00.

In fact, one has f < |h,|+|f — h,| where (h,) is a defining sequence for
f; by (3) and since 1 5 is +-subadditive on +KX, the result follows.
The above lemma will be generalized in Proposition 4.

LEMMA 3. If f € L(B, I), then J(f) = I(f) = (1)«(f) € R.

Proof. By definition 1, given ¢ > 0, there exist ng € N and h, € B such
that Iz (| f — ful) < e, if n > ny.
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We have f < h, + |f — h,| =:g, with g € L(B, I) and I 3(f) < +o00.
Now, with lemma 2, one gets

I5(f) < I(ha) + Tp(1f = hal) < I(hy) + .
Furthermore, since f — h,, > — | f — h,|, lemma 2 yields
Ig(=1f = hal) < Ip(f = hy) < Tp(f) — 1 (hy).
Besides,

I)u(lf = hal)i= =Tp(=|f = hal) < Tp(If = hal) <,

so that
—& < Tp(—|f —hal) < T5(f) = I(hy), ifn > n.
Thus,
J(f):=1limI(h,) = I5(f) € R.
Finally,

(I)(f):=—Up)(~=f) = =J (=) = J(f). O

Note that the inequality (f + g) Ah < f Ah + g A h is always valid for
f.g € +R¥; so, Tp is subadditive on +R, i.e., an integral metric.

For arbitrary functions f € I@X, the following additional properties of I g,
extending those in Lemma 2, can be given.
PROPOSITION 4. For a given function f € R,
1. Ifh € B, we have I13(f +h) < I3(f) + I(h).
2. If1(f) < +oc and g € L(B, I), we have Ip(f+g) < Ip(f)+15(g).
Proof: 1. It is clear that if T5(f + h) = 400 (so, I5(f) = 400) or
= —oo, then I3(f +h) < Is(f) + I(h).

Now, suppose that I z(f +h) < +o0c. For an arbitrary ¢ > 0, there exists
k € +B, k > h, such that

Ip(f+h) —e<T((f+DAD=T(fAk—=h)+h)<
T(f A k=h)+ 1) <Tp(f)+1(h),

so that
Ip(f+h) <Ig(f)+1(h).
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2. For g € L(B, ), there exists h, € B such that I3 (|g — h,|) — O.
Now, Ig (g — h,) < +o00, I5(g,) < 400, by 1. and remark below,

[7(g) — 1(h,)| <T (g — hal) — O,

so I(h,) — 1(g).

Since | f + Al < |f + gl + |lg — hy| and Tp is subadditive on R, we
have

Ig(f+hy) <Ip(f+g +e,
and with | f + g| < |f + h,| + |h, — gl
Ig(f+8) <Ip(f+hy +e,

the result follows. O

_ Observe that, with I3(f) < +oo and the above reasoning in 1., one gets
Ig(f) < Ig(f + h)— I(h), so that,

Tp(f +h) =1Tp(f)+1(h).

The proof follows the same arguments of lemma 2 and those of remark (8).

DEFINITION 5. (Stone) A function f € R is called I-measurable if
fNheL(B,I) forallh € +B. Obviously, B C L C Mn:={f € RY; f
I-measurable}.

In [7], the following results are given:

1. f is I-measurable and |f| < some I-integrable g, implies f is I-
integrable.

2. feMqyiff ff e M.

The concept of -measurability enable to give, with [6, th.3], the following
Integrability Criterion:

(9) f € L(B, ) iff f is I-measurable and I 3(| f|) < +o0.
(Note that 7 is aditive on B, so B-semiadditive.)

PROPOSITION 6. If f € +R" is I-measurable with I(f) € R, then there
exist (g,) C +B, gn < gn1 < f, I-Cauchy and g, — f(I).

_ Proof. By (2), there exist g and (g,) in —B(;) C B,g,<gnm1<g<TF,
1(gn) = supl(g) =I(f) e R.
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Then, 7(lgn - gml) = 7(gn) - 7(gm) <eg ifn>m> }'10(8), SO (gn) is
I-Cauchy.

Now, if not g, — f(T), by (6), there exist hyg € +B, 8y > 0, ny /* 400,
such that I((f — gn,) A ho) > 80, k € N.

We have (f — g,,) A ho € B, so there exists [; € B such that (f — g,,) A

_ 5
ho > 1, > 0and T(I;) > 70

Then, 1(g,,) + I(lk) < I(f), but I(g,) — I(f), which implies

- )
contradiction with 7(l;) > 70 >0,k e a

LEMMA 7. If f € R™ is such that (Ip)«(f) = I5(f) € R, then f* and
f are I-measurable.

Proof. Let hy € +B. For a given ¢ > 0, there exists h; € +B such that,
with iy > ho, Tp(f) —& < I(f Ahy) < T5(f).

Now, for h; € +B, there exists h, € B(4) such that f A h; < h, and
I(hy) < I(f Ahy) +¢& < Ig(f) + &; one can assume h, < h since

B C By C B and B4 is A-closed. Then
[1(h) = Tp(f)| <& (D)
For hg, hy, there exists —ky € +B, k; < — (hg V hy V |h3]), such that
(Is), (/) <I(fVk)<Tp(f)+e.

Now, for ki, there exists k, € —B(4) C B,ky < f Vv ky, with ky < h;, such
that I(ky) > I(f Vv k1) — ¢. Then

1) = (T8), (] <e  (2)
Finally, for &1, ki, k, € B, there exists i3 € B, hs > h; \V k; V ky, such that
I(f) —e& < I(f Ah3) < T(f),
and for h3, there exists 4 € By such that f A h3 < hy < h3 and
Ig(f) —& < I(f Ah3) < I(ha) < I(f Ah3) +& < Tp(f) +e,
so that

Th) ~Ts(H)| < @
One gets

lha —ka| < h4 —ka+2p, withp:=hsVky —hs  (4)

and
fHep=fVvk &)
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By lemma 2, I applied to (5), with (2), yields to
(Ts). () +T(p) < (T5), (f +p)
<(Ip), (fVk)=I(fVk)=(Ip),(f)+e;
hence,
0<I(p)<e. (0
Moreover, one verifies by checking cases,
b Oho— f+ kol <lhs—hal. (D)

Next, let [:= h} Nhg € By, C B;and with (4), (7), (6), (2) and (3), one

gets Therefore, since B is I-dense in B, we conclude that fT Nhy € B, for
all iy € +B, hence f* is I-measurable.

For f~ it is enough to consider that f~:= (—f)™, and the previous
facts for positive functions. Since, for an arbitrary function f we have
fNhy= ftTAhyg— f~ ANhy € B, for all hy € +B, the I-measurability
of f follows. O

The integrability criterion (6), together Lemma 7, allows to us to show
the following characterization of I-integrable functions (the upper and lower
localized integrals are equal and finite).

THEOREM 8. A function f € R is I-integrable iff (I 5)«(f) =T5(f) €R.

Proof. Lemma 3 gives the sufficiency. To prove the necessity, with (6) and
Lemma 7, we only have to prove that I 53(| f|) < +o0.

For0 < h <1 € B,onehas, with f* Al, ffAheBCL,
fAl=fAR+(fTAL= T Al (D

First, we claim that TB(fi)_< +o0. If I13(f) < +o0, for a given & > 0,
there exists h, € +B such that Ig(f) — I(f Ah,) < €.

Leth:=h,,0<h, <, then

I(f Ahe) < T(f AL < Ta(f).
Next, I applied to (1) gives
I(fAD=T(f Nhe) +T(fFAD =TT Ahe) < Tp(f),
so that,
I(fTAD <I(fTAhy)+e <400
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forall > h,,hence Iz(f) < 400, so f* e L(B, I).
Because analogously f~ € L(B, I), we have
Ip(If) <Ip(fH+1p(f7) < +o0,
and therefore f € L(B, I). O

Forany f € KX, the lower and upper Darboux integrals are defined as in
[6, Def.4]:

Jo(f):=sup{J(g); g < f, g € L(B, )}
and J*(f): = —J.(—f). One check easily that J* is an integral metric on RX.
With Theorem 8 and [6, Th.4], [-integrability can be characterized in

its more general form (as in the classical cases), without any measurability
assumptions:
COROLLARY 9. Forany f € @X, the followig conditions are equivalent:
1. feL(B,I)
2. Up)(f)=1p(f) R
3TN = J(f) R

In this case, J(f) coincides with all the above integrals.

We conclude this section with a more general sufficient condition for /-
integrability, which is directly proved using (4).

PROPOSITION 10. For f € R, if I1,(f) = T5(f) € R, then f € L(B, I)
and, in this case, J(f) = I(f).

Proof. Let hy € +B and ¢ > 0. By (5),there are (g,), (h,) C +B such
that

Ip(f)—e<I(fAgy) <Ip(f)+e
and
Ig(f) —e <I(f ANhy) < Ig(f)+e.
One can assume h, = g, and h,, > hy (take h, V g,, h, A hg). By (2),
there are /,,, k, € B, suchthat —k, < f Ah, <[, and
I <TG AR+ 50 L Ah) =5 < =T (k).

Then, IT(,) + I (k,) — 0, if n - +o00.
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Furthermore, —k, A hg < f A hy < I, A hg, if n > np(e), with
—(—k, ANhy) =k, v (—hy) € B;.

This gives, with (4), f Nho = (f A ho) V (—hgy) € B for all hy € +B,
so f is I-measurable. By 2. in definition 5, f* are I-measurable, with
f~:= —(f A0) € B. Now, by the proof of the finiteness of  z(| f|) in theorem
8, one gets f € L(B, I); and, by lemma 3 and (5), J(f) = I(f). O

Example 13 shows that I, = J on L(B,I) is false in general. If
additionaly, for f € L(B, I), there exists h € B with f > h (or equivalently,
I (f) > —00), the converse of Proposition 6 holds; the proof is mostly similar
to those above using our earlier results.

4. Improper integrals.

In the present Section, we discuss improper [ -integrability with respect to
I-summable functions and give an [-integrability criterion.

When an integral 7 on a set M C K" of integrable functions is given, a
function f € R™ is called improper T -integrable (wrt. M) if fNh e M
for all h € +B = nonnegative elementary functions (e.g., step functions) and
exists limyp T(f Nh) € R, with + B a set directed by < .

So, for I | B as in Section 1, and with T = T,theclass Br:={f e R f
improper integrable} and I ~: = this limit on B, are well defined.

LEMMA 11. We have L(B,I) C Bnand J = 1~ on L(B, I).

Proof. With f € L(B, I)_, because | f| € L(B,I), for a given ¢ > 0,
there exists h € +B such that I3(|f| — h) < .

If h <k € +B, one gets
lfk—fl=If0h—fl=1f0h—=fOlfll<|h—IfIl,
where f Nk — f € L(B, I). Therefore,
[Ts(f Nk) = Tp(f)] < Tsh—|f]) <e&;
since I = I3 on B, we have f €eBnrand J =15 =1no0n L(B,I). O
LEMMA 12. For f € R, f € Bn ifand only iff* € B

Proof Let f € Bn.Forh € +B, f*Nh € B, since B is A-closed. Now,
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if there exists limy 3 I(f Nh) € R, chose hy € +B with
T(fNk) <T(f Nho) + 1
if hop <k € +B; since fNh < fN(h+ho) +1|f Nho| for h € +B, with
| f N hy| € B, one gets
I(fNh) < T(fN(h+ho)+T(1f Nhol) < T(fNho)+1+T(1f Nhol) =:c.
For the existence of lim, 3 I(fT N &), it is enough to show that
sup{Z(f* Nh);h € +B} < 4o0.
But, if the above sup is +00, there exists & € + B such that T(f+/\h) > a+2.
Wehave f Nk = f" Ak — f~ Akand f~ Ak <|(fT Ah) —k| since
ft=0where f~:= (—f)" > 0, so that
I(fP Al <T(FAK+|(fP AR —k) <T(fFN)+1<a+1
We conclude

a4+2<I(fPAR)<I(fTAh—fTAR+T(fT Ak <

T(fPA(fPAk)=(fTAk)+a+l <T(|(ff AR) —k|)+a+1 < a+2,
a contradiction.

Because 7 is linear on B, which is closed for addition, with fNh =
ffNnh— f~Nh, we have the “<=" implication, and this completes the
proof. O

We recall that [6, Th.1] gives a substitute for the general missing com-
pleteness of L(B, I):

(10) If (f,) C L(B, I) is a J-Cauchy sequence with f, — f(I), for f € EX,
then f € L(B,I) and J(f,) = J(f),if n — 4o0.

THEOREM 13. For f € @X, f € L(B,1) if and only if f is improper
I -integrable (w.r.t. B) and, in this case, J = I .

Proof. By lemma 11 it is necessary only to prove that Bn C L(B, I).

Now, by lemma 12, if f € Bn, then fjE € Bn. Because L(B, 1) is closed
for addition, we can assume f € +Bn. There exists h,, € +B with h,, < h,
and I(f Ah,) — In(f) =:«, where f A h, € B.

For any k € 4B, one gets

|f = F O hal Ak = (f = (f Nha) Ak = fAG+ (f Aha))—(f Ahy) € B.
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Ifo —e < I(f Ahy) forall n > n(e), we have
IAf = f Ol AR) ST(fAGR+(f AR =T(f Ahy) <a— (@ —e);
with g,:= [f — f O Ak € B, then 7 (g,) — Oand f Ah, € Bisan
I-Cauchy sequence, and by (7) we obtain that f € L(B, I). O

Specially, in the situation p | €2 one can also consider improper integration
with respect to €2-unbounded domains:

(Bo)ni=(f € R fxa € Baif A€ @, (L), (f):
= hglfu(fXA) exists € R},

where 2 is the ring generted by 2.

Example 15. Let X:= [0, 1], Q: = {[a, b[; a, b € R} and u: = Lebesgue
measure. If we consider
—L O0<x<l1
fx):= Jx -
0, x=0

we obtain that f € L(B, I), with J(f) = fol f=2and I"(f) = —o0.

Example 14. Let X:= [0,00[, Q:= {M C X; M or X — M is finite
and C [1, oo[}, and u: = 89 = Dirac measure on O (so, with E C [1, oo[ and
finite, we have w(E) = 0and u(X — E) = 1).

In this case:

Rprop (s DGR (0, OGL (0, R)GB = L™(B, 1) C L(B, 1)

with B = Bg, I = 1, and L" = Bourbaki extension.

Remarks.

1. If v:R* - Risan upper functional in the sense of Anger and Portenier

[3], with the notations and results in [5], the functional g: = VX 1S an

integral metric, B: = J(v) NR¥ is a function vector lattice and /: = Vg 18
linear and monotone, where

JO):={f e R v(f) = vi(f) €R}

and v = I is admissible, then J(v) = B.
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2. [3, Cor.3.7] and our Theorem 1 give tEat the class J(v*®) of the essential
v-integrable functions coincides with B, where

v (f):=inf ,e; sup v[(f A (=v)) Vu]

velJ_

and
J_:=J()N]—o00, +00]*
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