PRÁCTICA DE POLINOMIOS

- 1. Calcular en $\mathbf{Z}_2[x]$
- a) $(x^2 + x + 1)^2$;
- b) $(x^3 + x + 1)(x^4 + x^3 + x + 1)$;
- c) $x(x+1)(x^2+x+1)$;
- d) $(x(x+1)(x^3+x^2+1)(x^3+x+1)$.
- 2. Calcular en $\mathbf{Z}_3[x]$
- a) $(x^2 + 2x + 2)(x^3 + x^2 + x + 2)$
- b) $(x^5 + x^3 + x + 1)(2x^3 + 2x + 1)$.
- 3. Realizar otros productos de polinomios con módulos diferentes.
- 4. Encontrar el cociente y el resto cuando el primer polinomio se divide por el segundo en $\mathbb{Q}[x]$:
 - a) $x^3 7x 1; x 2;$
 - b) $x^4 2x^2 1$; $x^2 + 3x 1$;
 - c) $2x^3 3x + 1$; $x^2 + x + 1$;
 - d) $x^2 + x + 1; 2x 3;$
 - e) $3x^2 x 1$; $x^3 2$.
 - 5. Encontrar el resto en $\mathbf{Q}[x]$ cuando
 - i) $x^3 2x + 4$ se divide por x 2;
 - ii) $x^4 7x^2 + 3$ se divide por x + 1; y
 - iii) $x^{40} 8x^{12} + 3$ se divide por $x^4 1$.
 - 6. a) ¿Divide x 3 a $x^4 + x^3 + x + 4$ en $\mathbb{Q}[x]$? ¿y en $\mathbb{Z}[x]$?
- b) Encontrar para que valores de m la imagen de x-3 divide a la imagen de x^4+x^3+x+4 en $\mathbf{Z}_m[x]$.
- 7. Encontrar para que valores de m la imagen de x^3+3 divide a la imagen de $x^5+x^3+x^2+9$ en $\mathbf{Z}_m[x].$
 - 8. Encontrar todos los ceros de $x^2 2x$ en \mathbb{Z}_15 y en \mathbb{Z}_30 .
- 9. Encontrar la identidad de Bezout para los siguientes pares de polinomios en $\mathbb{Z}_2[x]$:

```
a) x^2 + x + 1; x^3;
```

b)
$$x^6 + x^5 + x^3 + x$$
; $x^8 + x^7 + x^6 + x^4 + x^3 + x + 1$;

c)
$$x^15 - 1$$
; $x^4 + x^2 + x$.

- 10. Encontrar el MCD en $\mathbb{Z}_3[x]$ de $x^5 + 2x + 1$ y $x^4 + 2$.
- 11. Encontrar el MCD y expresarlo como combinación lineal de los polinomios de $\mathbf{Q}[x]$ siguientes:

a)
$$x^2 - 3x + 2$$
; $x^2 + x + 1$;

b)
$$x^9 - 1$$
; $x^{11} - 1$.

12. Factorizar los siguientes polinomios en $\mathbb{Z}[x]$:

a)
$$x^6 + x^4 + x$$
;

b)
$$x^8 + x^7 + x^6 + x^4 + 1$$
;

c)
$$x^7 + x^6 + x^4 + 1$$
;

d)
$$x^8 + x$$
;

e)
$$x^{16} - x$$
;

f)
$$x^7 + x^3 + 1$$
.

13. Encontrar los ceros de los polinomios

a)
$$x^4 + 7x^3 + 11x^2 + 6x + 5$$
;

b)
$$3x^3 + 7x^2 - 7x - 3$$
.

14. Decidir si son o no irreducibles los siguientes polinomios:

a)
$$2x^4 - 8x^2 + 3$$
 en $\mathbf{Q}[x]$;

b)
$$x^5 + x^2 + 1$$
 en $\mathbf{Z}_2[x]$;

c)
$$x^5 + x^4 + 2x^3 + 2x + 2$$
 en $\mathbb{Z}_3[x]$.

15. Factorizar

a)
$$x^{15} + 3x^{10} + 2x^5 + 4$$
 en $\mathbf{Z}_5[x]$;

b)
$$x^4 + 2x^3 + 2x^2 + x + 4$$
 en $\mathbb{Z}_5[x]$;

c)
$$x^5 + x^4 + x^3 + x^2 + x + 1$$
 en $\mathbf{Z}_2[x]$ y $\mathbf{Z}_5[x]$.

16. Resolver si es posible:

a)
$$(x^3 + x + 1)f(x) \equiv 1 \pmod{x^4 + x + 1}$$
 en $\mathbb{Z}_2[x]$;

b)
$$(2x+1)f(x) \equiv x^3 \pmod{x^2+1}$$
 en $\mathbb{Z}_3[x]$.