Beginning: Jan. 1, 2015
End: Dec. 31, 2018
Summary:
This project combines both ambitious goals in fundamental research on
orthogonal polynomials, special functions and their analytic and
structural properties, with the applications of this knowledge in
other branches of mathematics (stochastic processes, combinatorics,
numerical analysis), physics (statistical physics, integrable systems,
quantum mechanics, quantum random walks, quantum computation), and
technology (signal processing and diagnostic tools in ophthalmology,
with applications in clinical practice). Some of the problems to be
tackled are:
- Further contributions to general orthogonal polynomials (OP) and
rational approximation, including the development of the
Riemann-Hilbert asymptotic analysis and its applications to the
study of critical phenomena related to non-linear special functions
or singularities appearing in the description of the electronic
structure of graphene; asymptotic analysis of polynomials of
non-standard orthogonality (Sobolev, Hermite-Padé, Wronskians), and
new approaches to OP on the unit circle.
- Development of electrostatic models for zeros of several classes
of polynomials and analysis of different extremal problems in
logarithmic potential theory, in particular, saddle points of energy
functionals on the plane, connected to several object from the
geometric function theory and non-linear phenomena such as laplacian
growth.
- Applications of newly developed tools to the study of
multiparticle diffusion processes and random matrices, their
possible phase transitions, as well as new insights into classical
Markov processes.
- Further development of the OP approach to Quantum Random Walks
(QRW), started by members of this team, in particular via Schur
functions as a tool to study the dynamics and topological phases in
QRW, with applications to quantum computing.
- Extension of known connections between bispectral problems,
integrable systems, Darboux transformations and signal processing to
broader contexts of block-Jacobi matrices, CMV matrices, and others.
- Search for more efficient algorithms for objective measurements of
the eye characteristics and diagnostics, such as the cornea shape
reconstruction, calculation of optical functions of the eye from the
measured wavefront aberrations, as well as analysis of these
aberrations from the known PSF (Point Spread Function) corresponding
to several defocus parameters.
Researchers:
- Andrei
Martínez-Finkelshtein (Universidad de Almería), principal
investigator
- Juan José Moreno
Balcázar (Universidad de Almería), principal investigator
- Pedro Martínez González (Universidad de Almería)
- Darío Ramos López (Universidad de Almería)
- Leandro Moral Ledesema (Universidad de Zaragoza)
- María José Cantero Medina (Universidad de Zaragoza)
- Luis F. Velázquez Campoy (Universidad de Zaragoza)
- Alejandro Zarzo Altarejos (Universidad Politécnica de Madrid)
- F. Alberto Grünbaum (Universidad de California Berkeley, EEUU)
- Ana Belén Castaño Fernández (Universidad de Almería)
- Juan Francisco Mañas Mañas (Universidad de Almería)
List of publications:
Preprints and papers in
press:
- A. Aptekarev, G.
López-Lagomasino, A. Martínez-Finkelshtein, On
Nikishin systems with discrete components and weak
asymptotics of multiple orthogonal polynomials, preprint
arXiv math.1403.3729.
- A. Aptekarev, G.
López-Lagomasino, A. Martínez-Finkelshtein, Strong
asymptotics for the Pollaczek multiple orthogonal
polynomials ensembles, preprint
arXiv
math.1410.1261.
- A.
Martínez-Finkelshtein, G. Silva, Critical
measures for vector energy: global structure of
trajectories of quadratic differentials, accepted
in Advances in Mathematics. Also preprint arxiv math.1509.06704.
- A.
Martínez-Finkelshtein, A. Sri Ranga,
Daniel O. Veronese, Extreme
zeros in a sequence of para-orthogonal polynomials and
bounds for the support of the measure, preprint arXiv
math.1505.07788.
- M.J.
Cantero, A. Iserles, OPUC and explicit determinantal
representations, in preparation.
- F.
A. Grünbaum, L. Velázquez, The CMV bispectral
problem, to appear in Int. Math. Res. Notices.
- F.
A. Grünbaum, L. Velázquez, On the generalization of
Schur functions: applications to OPRL and random and
quantum walks,
in
preparation.
- C.
Cedzich, T. Geib, F. A. Grünbaum, C. Stahl, L.
Velázquez, A. H. Werner, R. F. Werner, A topological
classification of one-dimensional symmetric quantum
walks, in
preparation.
2016:
- D.
Ramos-López, M.
A. Sánchez-Granero, M. Fernández-Martínez, and A.
Martínez-Finkelshtein, Optimal
sampling patterns for Zernike polynomials, Applied
Mathematics and Computation 274
(2016) 247-257. Also preprint arXiv
math.1511.00449.
- A.
Martínez-Finkelshtein, D.
Ramos-López, and
D. Robert Iskander, Computation
of 2D Fourier transforms and diffraction integrals
using Gaussian radial basis functions, Applied
and Computational Harmonic Analysis, doi
10.1016/j.acha.2016.01.007. Also preprint arXiv
math.1506.01670.
- A.
Martínez-Finkelshtein, P. Martínez-González, F. Thabet,
Trajectories of quadratic
differentials for Jacobi polynomials with complex
parameters, Comput.
Methods and Function Theory 16 (3) (2016),
347-364, doi 10.1007/s40315-015-0146-7. Also preprint arXiv
math.1506.03434.
- A. Martinez-Finkelshtein, E. A.
Rakhmanov, Do orthogonal
polynomials dream of symmetric curves?, to appear
in Foundations of Computational Mathematics, doi: 10.1007/s10208-016-9313-0.
Also preprint arXiv
math.1511.09175.
- M.
J. Cantero, A. Iserles, From ortogonal polynomials
on the unit circle to functional equations via
generating functions, Trans. Amer. Math. Soc. 368
(2016), 4027-4063.
- M.
J. Cantero, L. Moral, F. Marcellán, L. Velázquez, Darboux
transformations for CMV matrices, Adv. Math. 298
(2016), 122-206.
- C.
Cedzich, F. A. Grünbaum, C. Stahl, L. Velázquez, A. H.
Werner, R. F. Werner, Bulk-edge correspondence of
one-dimensional quantum walks, J. Phys. A: Math.
Theor. 49 (2016), 12pp.
- J.
F. Mañas-Mañas, F. Marcellán, J. J. Moreno-Balcázar, Asymptotic
behavior of varying discrete Jacobi–Sobolev orthogonal
polynomials, Journal of Computational and Applied
Mathematics 300 (2016) 341-353.