
 

Insects 2020, 11, 196; doi:10.3390/insects11030196 www.mdpi.com/journal/insects 

Communication 

Selection of Predatory Mites for the Biological 

Control of Potato Tuber Moth in Stored Potatoes 

Juan R. Gallego, Otto Caicedo, Manuel Gamez, Joaquin Hernandez and Tomas Cabello * 

Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAMBITAL), 

Agrifood Campus of International Excellence (CEIA3), University of Almeria, Ctra. de Sacramento, s/n, 

04120 La Cañada, Almeria, Spain.; jgg436@ual.es (J.R.G.); ocs90@outlook.com (O.C.);  

mgamez@ual.es (M.G.); jhrodri@ual.es (J.H.) 

* Correspondence: tcabello@ual.es; Tel.: +34-950-015-001 

Received: 21 February 2020; Accepted: 16 March 2020; Published: 20 March 2020 

Abstract: Worldwide, the potato tuber moth (PTM), Phthorimaea operculella (Zeller), is one of the 

most severe pests affecting potato (Solanum tuberosum L.), whether in open-air crops or during tuber 

storage. This work examines the potential control of this pest by two species of predatory mites, 

Macrocheles robustulus (Berlese) and Blattisocius tarsalis (Berlese), on pest eggs under laboratory 

conditions. In the two first assays, the acceptance rate of the pest eggs was assessed for each 

predatory mite. Then, in a third assay, the functional response of B. tarsalis was studied. The results 

showed that Macrocheles robustulus did not prey on the pest eggs (number of eggs surviving = 4.33 ± 

0.38), whereas B. tarsalis did (number of eggs surviving = 0.5 ± 0.5). Likewise, B. tarsalis showed a 

type II functional response when it killed the eggs. The results showed the potential use of 

Blattisocius tarsalis as a biological control agent of P. operculella in potato under storage conditions. 

Keywords: Phthorimaea operculella; Blattisocius tarsalis; Macrocheles robustulus; prey acceptance; 

functional response 

 

1. Introduction 

Potato (Solanum tuberosum L.) is the fourth major food production crop in the world, after wheat, 

maize and rice. The cultivation area exceeds more than 19 million hectares and production is higher 

than 388 million tonnes [1]. Pests and diseases cause pronounced losses in potato crops; on average, 

40.3% of losses are caused by plant pathogens and viruses, 21.1% by animal pests and 8.3% by weeds 

[2]. In the second group, the principal arthropod pests affecting this crop are Leptinotarsa decemlineata 

(Say) (Coleoptera: Chrysomelidae), the potato tubermoth complex (Lep.: Gelechiidae) and aphids, 

mainly Myzus (Nectarosiphon) persicae Sulzer (Hemiptera: Aphididae), which are not just a pest but 

also an important virus vector in the crop [2,3]. Among the potato tubermoth complex is the common 

potato tubermoth (PTM), Phthorimaea operculella (Zeller), the Andean potato tubermoth, 

Symmetrischema tangolias (Gyen), and the Guatemalan potato tubermoth, Tecia solanivora Povolný [4], 

all economically important pest species. Of these, the PTM is a global pest of solanaceous crops and 

weeds, and is especially devastating to potatoes [5], causing losses of up to 80% in the field and up to 

100% during storage [6–9]. 

PTM is responsible for the greatest economic losses in potato. The pest originally comes from 

the tropical mountainous regions of South America. Currently, its distribution is considered 

cosmopolitan because it has expanded across five continents and is present in more than 90 countries 

[4,10]. The economic damage is associated with the close relationship between PTM and its host, its 

high adaptability to daily and seasonal changes, its high reproductive potential, and its capacity to 

develop on other Solanaceae, whether cultivated as wild [4,6,10]. 
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P. operculella attacks all the vegetative parts of the plant causing mines due to larvae feeding. 

When the food value of the leaves decreases, the larva moves from the aerial part of the plant to look 

for tubers [4]. This movement usually happens immediately before the harvest. The pattern of the 

damage evolution caused by P. operculella means that control must be carried out in the field as well 

as under storage conditions [11]. For more than a century, chemical control has been widely used for 

pest control in potato production [12]. However, in response to potential health risks, consumer 

demand for healthier products, long-term environmental costs and the development of resistances to 

chemical pesticides, the popularity of integrated pest management (IPM) has increased as an 

alternative to chemical control [13–16]. Legislation reflects this shift with policies introduced to 

reduce their use and restrict the active ingredients of certain insecticides [16,17]. For example, all EU 

member states adopted IPM policies in 2014 as the main strategy for reducing the negative impacts 

caused by rapidly withdrawing pesticides from food production [16,18]. Furthermore, it has been 

suggested that IPM is the only way of controlling moths present in the stored tubers [19]. Therefore, 

there is a growing interest in using biological control tactics. 

The use of predatory mites, particularly those belonging to Phytoseiidae family (Acari: 

Mesostigmata), has become one of the main IPM tools to protect crops worldwide [16,20,21]. The use 

of other families of predatory mites for the control of edaphic plant-eaters is also common and these 

are available commercially. Most of the available species belong to the Macrochelidae and Laelapidae 

families [21,22]. Nevertheless, there are other species, which belong to the same family or to other 

families, that have a potential practical application but have not yet been studied properly [22]. 

Several studies have considered the use of species belonging to the Blattisociidae family as a 

potential control agent of mites and pest insects under storage conditions [23–25], although little 

knowledge exists about the biology of many species in this genus [26]. In some laboratory studies, 

predation by Blattisocius tarsalis (Berlese), B. dendriticus Berlese and B. keegani Fox has been researched 

for their potential as biological control agents [23,26,27]. Recently, the potential of B. mali (Oudemans) 

in control P. operculella has been studied with promising results [25]. 

Another group that includes abundant predatory mites is the Macrochelidae family in the order 

Mesostigmata; these species have also proven to be important biological control agents in Diptera 

species and other pest insects [15,28,29]. 

Considering the above information, this work aims to assess the potential of B. tarsalis and 

Macrochels robustulus (Berlese) mites as biological control agents of PTM. To this end, two acceptance 

assays of PTM eggs, as B. tarsalis and M. robustulus food have been conducted along with a further 

assay in which B. tarsalis predation behaviour has been analysed in terms of changes in prey density 

(the PTM eggs), studying the functional response. 

2. Materials and Methods 

2.1. Biological Material and Experimental Conditions 

The B. tarsalis mites were identified and obtained from a casual infestation of an Ephestia 

kuehniella Zeller (Lepidoptera: Pyralidae) small moth in the Agricultural Entomology Laboratory of 

the University of Almeria in September 2018, using the Nesbitt [30] and Haines [31] keys. The 

specimens were reared in the Agricultural Entomology Laboratory of the University of Almeria for 9 

months before the experiments began. The B. tarsalis mite colonies were kept in the laboratory 

following the Nielsen et al. methodology [24] with slight modifications. Plastic containers were used 

to house them; these were filled with a vermiculite layer, which had a relative humidity (R.H.) of 

75%, obtained from a saturated aqueous solution of NaCl [32]. The mites were fed with 0.20 gr. of E. 

kuehniella eggs every 3 days. The containers were kept under the following environmental conditions: 

25 ± 1 °C and 16:8 light:darkness (L:D) hours. Koppert Biological Systems (La Mojonera, Almeria, 

Spain) provided cardboard cylinders of 50,000 M. robustulus predatory mites (Macro-mite®). 

The PTM population was reared in the same laboratory after the specimens were provided by 

the Plant Protection Laboratory of Almeria (Andalusian Regional Government, Spain). The rearing 

methodology described by Fenemore [33] was used, and small potatoes (variety: Marilyn®, category 
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1, size 28/45 mm; H.Z.P.C. Holland B.V., Joure, The Netherlands) were used to feed the larvae. Plastic 

containers (1000 mL) were used as mating and oviposition chambers for the PTM with 20 adult pairs 

confined inside each one. The containers were closed at the top with surgical gauze and secured with 

an elastic band. A filter paper disc was placed over the gauze as a substrate for the oviposition of the 

females. The filter paper discs carrying the eggs were placed in contact with the tubers, the surfaces 

of which were previously prepared with holes made with a pin to facilitate entry of the hatching 

larvae into the tubers. Additionally, a vermiculite layer was arranged to promote the pupal 

formation. Once larval development was complete, the substrate was sieved to remove the pupae 

and place them into a new mating and ovipositional container until the adults emerged. The 

environmental conditions for the offspring were 25 ± 1 °C, 60–80% R.H. and a photoperiod of 16:8 h 

(L:D). 

2.2. Acceptance Tests of P. operculella Eggs as Prey 

Two “no-choice” bioassay tests were carried out in which acceptance and predation of PTM eggs 

by M. robustulus and B. tarsalis was assessed. To this end, the methodology of Gallego et al. was 

followed [25], with female mites placed individually in glass test tubes (7.0 cm x 1.0 of diameter). A 

piece of white cardboard (5.0 cm× 0.9 cm) was placed in each test tube to which five PTM eggs were 

stuck using a thin paintbrush (00), water was then introduced together with a piece of moistened 

sponge (0.5 × 0.5 cm). The test tubes were sealed with cotton. During the next 48 hours, under the 

previously stated environmental conditions, the females were left to prey on the eggs. In the check 

(control), the process was carried out as above but without introducing adult female mites into the 

test tubes.  

The experimental design was univariate and fully randomised, with only one factor: predatory 

mite compared with check. There were 20 mite repetitions and 20 for the control repetitions. In the 

case of M. robustulus species, the experiment was repeated twice with different commercial batches. 

At the end of the assay, the eggs were examined under a binocular microscope and the number of 

eggs preyed upon and/or partially consumed by mites was counted. The eggs were then left to 

develop over the next 7 days to allow for possible PTM larvae emergence. The environmental 

conditions were 25 ± 1 °C, 80–90% R.H. and 16:8 h of L:D. 

The values corresponding to the number of PTM eggs that survived were analyzed statistically 

using a generalized linear model (GZLM) with the Poisson distribution and the log link function; 

likewise, the average values were compared by pairs using the Wald test at p = 0.05. To perform this, 

IBM SPSS version 25 statistical software was used. 

The mites’ effectiveness at controlling the PTM eggs was assessed using the modified Abbot 

equation [34]): 

�� = �
� −��

100 − ��� ∗ 100 (1)

where, ER = efficiency rate (correcting % efficacy for the natural mortality), M = mortality rate in the 

treatment (mite) and M’ = mortality rate in the check (control). 

2.3. Study of Predation Behaviour at Different Prey Densities: Functional Response 

The methodology of Nielsen [35] and Garcia-Martin et al. [36] was followed. The procedure was 

carried out after the prey acceptance bioassay, with the following exceptions: First, different PTM egg 

densities were offered to the female adult mite (1, 2, 3, 6, 9, and 12 PTM eggs); second, the exposure 

time to predation was only 24 hours (1 day); and third, the number of treatment replications was 20. 

Two statistical analyses were performed to fit the type of functional response to the mortality 

data collected. In the first one of these, a previous estimate was carried out to determine the type of 

functional response. The data were fitted to the polynomial function used by Juliano [37]:  

��
��

=
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� + ����

�)
 (2)



Insects 2020, 11, 196 4 of 10 

 

where Ne is the number of prey eaten; N0 the initial value of prey offered; and P0, P1, P2, and P3 are the 

intercept, linear, quadratic, and cubic coefficients, respectively, estimated using the maximum 

likelihood method. Statgraphics version 18 software was used for the adjustments. P0–P3 parameters 

were obtained from a logistic regression. If the P1 coefficient was not significantly different from zero, 

it corresponded to a type I functional response; if the P1 value was significantly negative, this would 

demonstrate type II functional response while a significantly positive P1 value would demonstrate a 

type III functional response. We understand a value to be different from zero when zero is not 

included in its confidence interval. 

A more exact statistical analysis was then conducted, and mortality data were fitted to the 

equations proposed by Hassell [38] (equations 3 and 4) and Cabello et al. [39] (equation 5) for 

predators (when there is no prey replacement): 

� Type I: 

�� = � �1 − ���(−�′� �� − ��
��

�
��  (3)

� Type II: 

�� = � �1 − ���(−�′� �� − ��
��
�
�� (4)

� Type III: 

�� = � �1 − ��� �−
� ⋅ � ⋅ �

1 + ��(���( − �) − 1) ⋅ �
(� − ��

��
�
)�� (5)

where Na represents the number of prey attacked, N the number of prey offered, a’ the attack rate of 

the predator, T the time length of the assay, P the number of predators used, Th the handling time of 

the prey by the predator (capture time and feeding time), and α the predation potential. In this assay, 

the following data were used: T = 1 day and p = 1 predator. The statistical software used for this type 

of functional response fitting was TableCurve 2D, version 5.01. 

3. Results 

3.1. Acceptance Tests of P. operculella Eggs as Prey 

For the predatory species M. robustulus, the average number of surviving PTM eggs was 

4.33±0.38 with no differences when compared with the check 4.70 ± 0.49 (Figure 1a). In the statistical 

analysis of the data (the number of surviving eggs), the treatment had no effect (Omnibus test: 

likelihood ratio chi-squared test = 0.358, d.f. = 1, p = 0.549). Likewise, the corresponding mortality 

values were not dissimilar: 13.33 ± 2.93% and 6.00 ± 2.10, respectively, for the mite and the check.  

 
(a) 

 
(b) 

Figure 1. Number (±SE) of survivors and the mortality rate of Phthorimaea operculella eggs when 

exposed for 48 hours to an adult female mite of (a) Macrocheles robustulus or (b) Blattisocius tarsalis 

compared to the check, in the acceptance of prey assay test under laboratory conditions (values with 

different letters mean significant differences at p = 0.05). 

In contrast, the number of surviving PTM eggs and the mortality rate for adult females B. tarsalis 

mites was different to that of the check (Figure 1b). In the statistical analysis of the number of 
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survivors, a highly significant effect was found (Omnibus test: likelihood ratio chi-squared test = 

112.414, d.f. = 1, p < 0.0001). The number of surviving eggs in the mite treatment (0.05 ± 0.05) was 

significantly lower than in the check (4.40 ± 0.47). Such values represent a mortality rate of 99.00 ± 

1.00% in the treatment and 12.00 ± 3.37% in the check. As a result, according to equation 1, the 

efficiency rate ER = 98.86%. 

3.2. Study of Predation Behaviour at Different Prey Densities: Functional Response 

Table 1 shows the adjustment parameters to the polynomial function (equation 2) of the number 

of PTM eggs preyed upon by female B. tarsalis mites. As mentioned before, in the Materials and 

Methods section, the P1 value was significantly negative; therefore, the above analysis demonstrates 

that this mite presents a type II functional response (when considering a value different from zero, 

when zero is not included in its confidence interval, as happened in this case). 

The above result is consistent with the fitting results carried out with the three types of functional 

responses shown in Table 2. These confirm type II (equation 4), because the corrected Akaike 

Information Criterion (AICC) shows the lowest value. Figure 2 presents the type II functional response 

of the predatory mite. 

 
 

Figure 2. Type II functional response (number of pest eggs killed) of the adult female of Blattisocius 

tarsalis when different egg densities of Phthorimaea operculella were offered as prey for 24-hours under 

laboratory conditions (whisker plot: 95% confidence intervals). 

Table 1. Logistic regression analyses results for the proportion of Phthorimaeae operculella eggs killed 

by the adult female of Blattisocius tarsalis in the bioassay carried out under laboratory conditions. 

Parameter Value SE 95% Confidence Level F.R. Type 

P0 (Intercept) 1.3021 0.4021 0.5139 2.0902 
II 

P1 (Linear) −0.2499 0.1187 −0.4825 -0.0073 

Table 2. Parameters and statistical significance for the functional response equations type I, II, and III 

when different densities of Phthorimaeae operculella eggs were exposed to the adult female of 

Blattisocius tarsalis, for 24 hours, under laboratory conditions. 

Type 
Fit curve Parameters (±SE) 

Statistical 

Parameters 

a’ (day-1) Th (day) α d.f. R2 AICC 

I 
0.8907 

(±0.1175) 
̶ ̶ 6 0.8996 0.3989 

II 
2.1258 

(±1.2096) 

0.1014 

(± 0.0419) 
̶ 5 0.9408 0.3106* 

III ̶ 
0.1678 

(± 0.0193) 

0.6339 

(± 0.2725) 
5 0.9393 0.3933 
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4. Discussion 

With the aim of selecting a predatory mite species for the biological control of P. operculella, the 

results of this study have demonstrated the potential of M. robustulus and B. tarsalis. The first 

acceptance tests allowed us to select B. tarsalis in the functional response study against the pest. 

Since 2010, the M. robustulus species has been commercially available to use against Diptera, 

Thysanoptera and Lepidoptera pests [21,40]. This species is effective at controlling thrips in soil 

[41,42]. The available information, on this species and others belonging to the same group, is poorly 

researched and studied. However, they can be useful biological control agents against organisms that 

live all or part of their lives in the soil [40]. Given the control potential of this species as indicated 

above, we performed acceptance tests of PTM eggs as prey for M. robustulus. 

However, the results seem to indicate that PTM eggs are not adequate prey for M. robustulus 

even though the Macrochelidae family is characterised by its acceptance of a wide prey range. A 

possible explanation might be that this family is closely linked to the habitat. Accordingly, Filipponi 

[43] found that densities of several Macrocheles species depended on the composition and physical 

conditions of the environment. This author also observed that in each of the mite’s development 

stages, it has a different prey preference. In this way, deutonymphs and protonymphs prefer to attack 

eggs whereas the adults prefer dipteran larvae. In part, this could explain the poor results obtained. 

Firstly, the assay was performed in a test tube, which is very different from the preferred habitats. 

Secondly, the test we carried out using only adult female predators, whose prey stage preference 

appears to be larvae. This has been cited by Filipponi for at least 21 species of Macrochelidae [43]. 

Nevertheless, other species of the same family (e.g., M. muscaedomesticae (Scopoli)) have been 

observed preying on eggs and small larvae from this species [44].  

The differences found between M. robustulus and M. muscaedomesticae may be due, on the one 

hand, to the above-mentioned differences in prey preference between species and stages; on the other 

hand, it might be due to the different methodology followed in the trials. In this respect, M. 

muscaedomesticae is the most studied species of this genus. The species has demonstrated effective 

control of the common fly, Musca domestica L. (Diptera: Muscidae) and other synanthropic dipteran 

species [28]. Nevertheless, in this case, effectiveness requires the combined presence of other 

alternative prey, such as mites, nematodes, and annelids [45]. Available information on this species, 

and others belonging to the same group, is limited and poorly researched. However, they can be 

useful biological control agents against organisms that live all or part of their lives in the soil [40]. 

With respect to B. tarsalis and according to the consulted literature, this is the first time that PTM 

eggs have been cited as prey for this mite species. It should be mentioned that other species of the 

same genus such as B. keegani and B. mali have been cited as predators of PTM eggs [25,46,47]. 

According to the values for the surviving PTM eggs found, the predation rate of the B. tarsalis 

female adult averages 4.95 eggs/female in 48 hours (99.00 ± 4.47% mortality) (Figure 1b), which 

represents a predation rate (over 24 hours) of 2.24 eggs/female per day. This value is higher than the 

values found for B. tarsalis in Plodia interpunctella Hübner eggs (Lepidoptera: Pyralidae) [48] and in 

E. kuehniella eggs [24], or for B. keegani in Amyelois transitella eggs (Lepidoptera: Pyralidae) [26]. 

Although, B. keegani has been indicated as a possible alternative to B. tarsalis for the biological control 

of E. kuehniella in stored products [26]; therefore, it could be very interesting to test this species, in the 

future, in the control of P. operculella in storage potatoes. 

Furthermore, our found values are similar to those found for B. tarsalis in Ephestia cautella eggs 

(Lepidoptera: Pyralidae) [23,24] and in other insect eggs [49]. With respect to PTM, B. tarsalis causes 

a mortality rate higher than those caused by B. mali (another species from the same genus) when 

dealing with the same amount of prey (PTM eggs) examined under similar conditions [25]. 

Of these species, B. tarsalis is the best studied [22,26]. B. tarsalis is a common predator of moth 

eggs (Lepidoptera), whose distribution is cosmopolitan in nature and has been reported across many 

regions of the world 23]. 

The predator B. tarsalis completes its development not only preying on the eggs of moths, P. 

interpunctella [48], E. cautella and E. kuehniella [23,24] but also eggs of other insect orders, such as mites, 

booklice and beetles [49,50]. Moreover, it has been mentioned as a phoront in some Lepidoptera 
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species; Treat reported it on Epizeuxis aemula Hübner (Lepidoptera: Erebidae) and on Apamea 

devastator (Brace) (Lepidoptera: Noctuidae) [51]. 

B. tarsalis prefers lepidopteran eggs rather than eggs from other species. Haines observed this 

preference with respect to Tribolium castaneum Herbst beetle eggs (Coleoptera: Tenebrionidae) [23]. 

They can survive on them even when there is a lack of moth eggs, but they do not control them [15]. 

Additionally, it has been shown that this species can be an effective pest control agent in flour silos 

and stores, and has the capacity to control several pests that develop under storage conditions; such 

as the Mediterranean flour moth, E. kuehniella in flour silos [24,35,49,52], and the flour mite, Acarus 

siro L. (Acari: Acaridae), under laboratory conditions [53]. 

B. tarsalis shows a type II functional response (Tables 1 and 2, Figure 2). This type of functional 

response is the most common for predatory mite and insect species [54]. Likewise, Riudavets et al. 

[49] found this type of response for the same mite species, but in two different prey eggs: Lasioderma 

serricorne (Coleoptera: Ptinidae) and P. interpunctella. 

A functional response of this type is determined by two biological parameters: the attack rate of 

the predator (a’) and the handling time by the prey of the predator (Th). In our case, an attack rate on 

the PTM eggs of a’ = 2.1258 ± 1.2096 (days-1) was found to have a better value than those reported by 

Riudavets et al. [49] for L. serricorne (0.043 days-1) and P. interpunctella (0.074 days-1), indicating that 

B. tarsalis seems to be a better control agent in P. operculella than the other two species. 

This type of functional response allows us to determine the minimum release doses 

(corresponding to the optimal laboratory conditions) of the predatory mite under real conditions for 

biological control programmes. It should be mentioned that the potential of B. tarsalis as a biological 

control agent needs to be determined with further assays, whether under field conditions or in stored 

potatoes, because the P. operculella pest species develop in both situations. 

5. Conclusions 

1. The predatory mite Blattisoicius tarsalis accepted the eggs of the pest species Phthorimaea 

operculella as prey. In addition, the adult female has an efficiency rate of 98.86% in 48 hours on the 

pest eggs. 

2. The Blattisocius tarsalis mite presents a type II functional response, which is the most frequent 

found in predatory mite and insect species. The attack rate (a’) was 2.126 day-1 and the handling time 

of the prey (Th) was 0.101 days. 

3. The potential of Blattisocius tarsalis as a potato tuber moth control agent, especially in stored 

potatoes, appears to be very good. 

4. The development of biological pest control using Blattisocius tarsalis should evaluate, in trials 

on stored potatoes, the different methods utilising predatory mites developed to date: preventive 

methods (the use of non-prey food and/ or factitious prey), curative methods (augmentation by 

means of inoculative releases), etc. 
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