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Abstract

In this paper we consider a biological system consisting of several preys and

several predators. We study the existence of a global attractor for such a system

and obtain an approximation to the model’s solution by means a numerical method.

1 Introduction.

In the last few years many papers have been devoted to the dynamics of applied popula-

tions to Biology. From a mathematical point of view it’s of a great interest to determine

qualitative properties on these differential systems (see [1], [2], [3]) which give information

about the behaviour of the solutions, due to the impossibility, in most cases to solve these

systems explicitly. For this reason, the numerical methods are reaching an important role

in this subject, in order to determine some properties of the solutions of these systems.

We consider a biological Kolmogorov system consisting of several preys and several

predators. The case of the usual predator-prey system has been extensively studied by

many authors. For instance, see [1] for optimal results.

We show some results about the logistic equation adapted to the notation necessary

for the Kolmogorov system studied. Using an iterative scheme, we find the existence of a

global attractor for the positive solutions of Kolmogorov system studied, which determine

an approximation of the solution of this system.

Finally, we present concrete examples determining these approximations with the help

of MATHEMATICA and we compare the results with the numerical resolution of them

using the Populus software. Therefore, we verify how these systems can be used to model

a process of biological fight and we get in this way another tool which help us to know

the development of some biological species.

∗This paper was sponsored by the UAL-CAJAMAR 2001 CR-UAL-011
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2 The Logistic Equation.

In this section we introduce some notations and we state some interesting properties,

which will be basic in our study, of the periodic logistic equation,

x′ = xF (t, x) , x ≥ 0. (1)

Given T > 0, we denote by CT the set of all continuous function F : R× [0,∞) → R
such that:

a) F (t, x) is T -periodic in t and locally Lipschitz continuous in x.

b) F (t, x) is decreasing in x.

c) F (τ, x) is strictly decreasing in x for some τ = τ(F ) ∈ R.
e) There exists R = R(F ) > 0 satisfying

∫ T
0
F (t, R)dt < 0.

In “Iterative schemes for some population models”(Nonlinear Word, 3, (1996), 695-

708), the following results were proved by A. Tineo.

Theorem 2.1 If F ∈ CT then equation (1) has a T -periodic solution UF , which is globally

asymptotically stable. That is, if u is a solution of (1) and u(0) > 0, then u is defined on

[0,∞) and

u(t)− UF (t)→ 0 as t→ +∞.

Moreover, UF > 0 if
∫ T

0
F (t, 0)dt > 0, and UF ≡ 0 if

∫ T
0
F (T, 0)dt ≤ 0.

We say that UF is the “global attractor” of (1).

Corollary 2.2 Let F, G ∈ CT and suppose F ≤ G. Then UF ≤ UG.

Theorem 2.3 Let {Fn} be a sequence in CT converging to F ∈ CT uniformly on compact

sets. Then UFn(t)→ UF (t), uniformly on R.

3 Kolmogorov System.

In this section we study a predator-prey model for a biological community consisting of

n−prey and m−predators developed under a Kolmogorov system. In a more precise way

we suppose the following system,

x′i = xifi(t, x1, . . . , xn, y1, . . . , ym) 1 ≤ i ≤ n

y′j = yjgj(t, x1, . . . , xn, y1, . . . , ym) 1 ≤ j ≤ m. (2)

where fi, gj : R× Rn+ × Rm+ → R are continuous functions, which are T -periodic in t and

locally Lipschitz continuous in (x, y).

70



         

We shall assume that:

P1) fi(t, x, y) is decreasing in (x, y) ∈ Rn+m
+ and gj(t, x, y) is increasing in x ∈ Rn+ and

decreasing in y ∈ Rm+ .

P2) There exist τi; θj ∈ R such that fi(τi, x, y); gj(θj, x, y) are strictly decreasing in

xi, yj respectively (i = 1, . . . , n; j = 1, . . . ,m).

P3) There exists R > 0 satisfying,

∫ T

0

fi(t, Rei, 0)dt < 0 1 ≤ i ≤ n

∫ T

0

gj(t, U
1(t), Rνj)dt < 0 1 ≤ j ≤ m.

Here {e1, . . . , en}, {ν1, . . . , νm} denote the canonical vector basis of Rn and Rm respec-

tively and U1 = (U1
1 , . . . , U

1
n) : R→ Rn+, where U1

i ; 1 ≤ i ≤ n; is the global attractor of

the equation,

z′ = zfi(t, zei, 0) 1 ≤ i ≤ n, (3)

See Theorem 2.1.

4 An Iterative Scheme.

Associated to system (2), we have two sequences of nonnegative T -periodic functions

{UN = (UN
1 , . . . , U

N
n )} and {V N = (V N

1 , . . . , V N
m )}, N ∈ N, defined inductively as

follows: U0 = V 0 ≡ 0, and UN+1
i ; 1 ≤ i ≤ n; is the global attractor of the logistic

equation,

z′ = zfi(t, U
N
1 (t), . . . , UN

i−1(t), z, U
N
i+1(t), . . . , U

N
n (t), V N(t)), (4)

and V N
j 1 ≤ j ≤ m the global attractor of the equation

z′ = zgj(t, U
N+1(t), V N

1 (t), . . . , V N
j−1(t), z, V

N
j+1(t), . . . , V

N
m (t)). (5)

Remark. The above scheme is obtained, using some ideas in Lopez-Gomez, Ortega

and Tineo in “The Periodic Predator-Prey Lotka-Volterra Model”(Avances in differential

Equ. vol 1, 3, 1996, 403-423, section 3). In fact, the scheme in that paper is obtained

from (4)-(5) when m = n = 1

These sequences are well defined and we easily get:

0 ≤ U2 ≤ U4 ≤ . . . ≤ U2N ≤ U2N−1 ≤ . . . ≤ U3 ≤ U1

0 ≤ V 2 ≤ V 4 ≤ . . . ≤ V 2N ≤ V 2N−1 ≤ . . . ≤ V 3 ≤ V 1. (6)
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By (6), {U2N−1} , {U2N} , {V 2N−1} , {V 2N}; N ∈ N are monotone and uniformly

bounded sequences. So, we have well defined functions:

Ū(t) = limN→∞ U2N−1(t) ; U
¯
(t) = limN→∞ U2N(t);

V̄ (t) = limN→∞ V 2N−1(t) ; V
¯
(t) = limN→∞ V 2N(t).

(7)

Analogously, if (u(t), v(t)) is a solution of (2) such that u(0) > 0 ; v(0) > 0.

Inductively we can construct two sequences {uN = (uN1 , . . . , u
N
n )} and

{vN = (vN1 , . . . , v
N
m)}, defined on [0,∞) as follows: u0 = v0 ≡ 0,

(uNi )′ = uNi fi(t, u
N−1
1 (t), . . . , uN−1

i−1 (t), uNi , u
N−1
i+1 (t), . . . , uN−1

n (t), vN−1(t))

(vNj )′ = vNj gj(t, u
N(t), vN−1

1 (t), . . . , vN−1
j−1 (t), vNi , v

N−1
j+1 (t), . . . , vN−1

m (t))

uNi (0) = ui(0); vNj (0) = vj(0); (i = 1, . . . , n; j = 1, . . . ,m; N ∈ N)

(8)

It is not difficult to show that using the theorem 1.3.7 [2],

0 ≤ u2 ≤ u4 ≤ . . . ≤ u2N ≤ u ≤ u2N−1 ≤ . . . ≤ u3 ≤ u1

0 ≤ v2 ≤ v4 ≤ . . . ≤ v2N ≤ v ≤ v2N−1 ≤ . . . ≤ v3 ≤ v1.

On the other hand, using induction and Theorem 2.3 it is easy to show the following

result.

Corollary 4.1 For all N ∈ N, we have

uN(t)− UN(t)→ 0 as t→ +∞,

vN(t)− V N(t)→ 0 as t→ +∞,

where uN ; vN ;UN ;V N are defined in (8),(4) and (5).

Theorem 4.2 Let (u(t), v(t)) be a positive solution of (2).Then, (u, v) is defined on a

terminal interval of R and,

lim sup
t→∞

[ui(t)− Ūi(t)] ≤ 0 ≤ lim inf
t→∞

[ui(t)− U
¯ i(t)], 1 ≤ i ≤ n; t ≥ t0,

lim sup
t→∞

[vj(t)− V̄j(t)] ≤ 0 ≤ lim inf
t→∞

[vj(t)− V
¯ j(t)], 1 ≤ j ≤ m; t ≥ t0.

That is, [U,U ]× [V , V ] is an approximation of the solution of the system (2).

Example 1

The following example shows the case of an autonomous system with n = 2 and m = 1

in (2):

x′i = xi

[
ai −

n∑

j=1

bijxj − diy
]

y′ = y

[
−α +

n∑

i=1

βixi − γy
]

(9)
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with,

B ≡ (bij) =

(
1.4 −0.5

−0.5 1.7

)

α = 1, γ = 14, ~β = (1.2, 1.6), ~d = (2, 8) and ~a = (0.7, 0.8).

Then, with the help of the MATHEMATICA software, the algorithm done in the

annexe I obtains the chain of global attractors or approximate solutions expressed in the

next list,

ODD

Iteration k

xk1

xk2

yk

1 3 . . . 47 49

0.746 0.745 . . . 0.6181 0.6180

0.690 0.687 . . . 0.479 0.478

0.0763 0.0758 . . . 0.0397 0.0396

EVEN

Iteration k

xk1

xk2

yk

2 4 . . . 48 50

0.481 0.482 . . . 0.6088 0.6088

0.253 0.256 . . . 0.463 0.463

0.0005 0.001 . . . 0.0369 0.0369

In the Figure 1 we present the numerical resolution of the system done by the ”Populus”

software. Note that the result agrees with the approximation that we have obtained.

Example 2.

Also we can pose the autonomous case supposing that the predator breed, for that we

use the model analogy to (9), changing the second equation:

x′i = xi

[
ai −

n∑

j=1

bijxj − diy
]
, y′ = y

[
α +

n∑

i=1

βixi − γy
]

(10)

Like in the Example 1 we are going to see a concrete case for the model (10), using

the next coefficients,

B ≡
(

1.3 −0.2

−0.1 1

)
,

and that, α = 0.2, γ = 8.5, ~β = (0.2, 0.7), ~d = (13, 5), and ~a = (1.3, 0.5). Again by the

algorithm of the Annexe I we obtain,

ODD

Iteration k

xk1

xk2

yk

1 3 . . . 49 50

1.094 0.832 . . . 0.475445 0.475444

0.609 0.463 . . . 0.264891 0.26489

0.009 0.081 . . . 0.0565309 0.0565308
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EVEN

Iteration k

xk1

xk2

yk

2 4 . . . 48 50

0.006 0.205 . . . 0.475443 0.475444

0.003 0.114 . . . 0.26489 0.26489

0.0239 0.0378 . . . 0.0565307 0.0565308

Again the graphic expression of the numerical resolution, using the same software, end

up as the next form.

Figure 1: Numerical resolution to example 1

Figure 2: Numerical resolution to example 2
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ANNEX I

Using Mathematica, we have developed the next program which has been used for the

iterative schemes of the examples 1 and 2 posed in the beginning of this chapter.

• Main Procedure.

Clear ["Global"];

Presa[mb
¯
,a
¯
,d
¯
,aalfa

¯
,bbeta

¯
,ggamma

¯
,n
¯
,error

¯
,flag

¯
]:=

Module[{sx,sy=0,y,iter=0,listax={},listay={},er=109̂},
While [iter<n &&er>error, iter++; sx=LinearSolve[mb,a-sy*d];

If[EvaluacionSinAlfa, sy=Solve[ggamma*y==-aalfa+({bbeta}.
Transpose[{sx}])[[1,1]],y][[1,1,2]], sy=Solve[ggamma*y==aalfa+({bbeta}.
Transpose[{sx}])[[1,1]],y][[1,1,2]] ];

If[iter>1,

er=Max[Abs[{sx-Last[listax], sy-Last[Listay]}]] ];

AppendTo[listax,sx];AppendTo[listay,sy]; ];

Return[If[flag==1,{listax,listay,er},{sx,sy,er}]]]
• Receipts of Data.

file=Input["Archivo de datos:"];

datos=ReadList[file,Number,NullRecord->True,RecordList->True];

n=Lenght[datos[[1]]]; mb=Table[datos[[i]],{i,1,n}];a=datos[[n+1]];
d=datos[[n+2]]; bbeta=datos[[n+3]];niter=datos[[n+4,1]];

error=datos[[n+5,1]];flag=datos[[n+6]];

If[datos[[n+7]]=={},EvaluacionSinAlfa=True, aalfa=datos[[n+7]];flag=0;

(*Fin entrada*)

If[EvaluacionSinAlfa,

(*Case in which the variable “alpha” haven’t taken of the card index of the data*)

ss=Solve[({bbeta}.Inverse[mb].Transpose[{a}])[[1,1]]-x==0,x];
mensaje1="Alfa(<"<>ToString[ss[[1,1,2]]]<>"):"; aalfa=Input[mensaje1];

var2=Max[{Max[Table[(({bbeta}.Inverse[mb].Transpose[{a}])[[1,1]]-aalfa*
(Inverse[mb].Transpose[{d}])[[i,1]]/(Inverse[mb].Transpose[{a}])[[i,1]],
{i,1,Length[a]}]], ({bbeta}.Inverse[mb].Transpose[{d}])[[1,1]]}],

(*Case in which the variable “alpha” can take only positive values*)

var2=Max[Table[(({bbeta}.Inverse[mb].Transpose[{a}])[[1,1]]+aalfa*
(Inverse[mb].Transpose[{d}])[[i,1]]/(Inverse[mb].Transpose[{a}])[[i,1]],
{i,1,Length[a]}]]];
mensaje2="Gamma(>"<>ToString[var2]<>"):";

ggamma=Input[mensaje2];
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• Numerical Resolution. Presentation of Results.

(*Resolution by Iterative Methods of Differential System*)

sol=Presa[mb,a,d,aalfa,bbeta,ggamma,niter,error,flag];

(*Presentation of Results*)

If[flag==1,

(*Visualization of the sequence of the iterations obtained*)

Print["Lista x:",MatrixForm[sol[[1]]]]; Print[""]; Ip={};li={};
For[i=1,i<=Length[sol[[2]]],i++, If[Mod[i,2]==0,

AppendTo[Ip,sol[[2,i]]],AppendTo[li,sol[[2,i]]]]]; Print[li,lp],

(*Final solution adjusted to the level of error stablished.*)

Print["x=",sol[[1]]]; Print["y=",sol[[2]]]; Print["Errores=",sol[[3]]];]
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[2] Gámez, M., Modelo depredador-presa. Aplicaciones al control biológico. Tesis doc-

toral, Universidad de Almeria, Spain (1999) 134 pp.

[3] Hallam, T.G. and Zhien, Ma., Persistence in population models with demographic

fluctuations. Jour. Math. Biol., 24, (1986), 327-339.
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