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ABSTRACT

The notion of Darwinian selection naturally implies the question of if there exists any biological
quantity that increases during the evolution of a population, indicating the ”progress” of
evolution. The first classical answer to this question was the Fundamental Theorem of Natural
Selection (Fisher 1930, 1958) which in its mathematical form states that the rate of increase in
mean fitness of a population is proportional to the variance of the potential fitness of an allele
chosen randomly, implying that the mean fitness increases during the selection. Later on,
different variants of this result were formulated. In this paper the possibility of an extension
of the Fundamental Theorem is considered under the hypothesis that mutation is also present.
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1 Introduction

Setting up mathematical models of selection and mutation processes was iniciated in the works
of the founding fathers of classical population genetics, Fisher (1930), Haldane (1937) and Wright
(1968-69). The Fisher model of natural selection (see also Fisher 1958) in mathematical form was
the first synthesis of Darwinism with Mendelian genetics. Despite the continuous criticism of this
Fundamental Theorem of Natural Selection, this model became a reference point in the research
of mathematical modelling of evolutionary processes The Fundamental Theorem in its first verbal
form says that “the increasing rate of the fitness of any organism at any moment is equal to the
variance of the fitness at the same moment”. Although this formulation was followed by several
corrections, criticisms and modifications (see e.g. Ewens (1992) and Lessard (1997)), Fundamental
Theorem stimulated many important works in the field of selection processes, even the extension of
the classical differential equation model of Fisher to the case of the presence of other evolutionary
factors such as the mutation and recombination, see Akin (1979), Hofbauer and Sigmund (1988,
1998) and their references. Other basic papers concerning the selection-mutation model, considered
in the present paper, are Crow and Kimura (1970), Moran (1976, 1977) and Hadeler (1981). A
survey of selection-mutation models can be found in Bürger (1998). In mathematical terms, a
consequence of Fisher’s Fundamental Theorem is that in the course of selection the mean fitness
of the population increases. For more recent results related this statement see Garay and Varga
(1999), Garay (2003) and (2007). In this work it will be studied whether it is possible to extend the
Fundamental Theorem to selection-mutation processes in a modified form. A literal generalization
of it, as it will be seen, would not be valid. The basic continuous-time model and the problem of
equilibrium are considered in Section 2. Section 3 is devoted to the formulation of a ”Fundamental
Theorem” in terms of the ”velocity of the evolution” and the “balance of the potential fitness”, that
corresponds to the case of the simultaneous presence of selection and mutation. In Section 4 an
approximate form of Fisher’s statement on the rate of change in mean fitness is derived, which is
valid for selection-mutation type evolutionary processes. Finally, in Section 5 the obtained results
are illustrated presenting an analysis of the effect of mutation on the evolutionary process in the
case of two- and three-allele models.

2 Dynamic selection-mutation model

A panmitic diploid population is considered with alleles A1, .., An at an autosomal locus. It is
supposed that at zygote level selection takes place, which is described by a nonnegative symmetric
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fitness matrix W ∈ IRn×n, and for each i, j ∈ {1, . . . , n}, wij is the fitness of a zygote AiAj . Then
according to Fisher’s classical model of natural selection, for frequency xi of allele Ai the following
dynamics holds:

ẋi = xi [(Wx)i− < x, Wx >] i ∈ {1, . . . , n}, (1)

where x = [x1, x2, . . . , xn]T denotes the population state, (Wx)i =
∑n

j=1 wijxj is the potential (or
marginal) fitness of allele Ai, and < x, Wx > is the mean fitness of the population. The biological
interpretation of dynamics (1) is the following: if the potential fitness of allele Ai is greater than
the mean fitness of the whole population, then the frequency of Ai is increasing, whereas in the
contrary case this frequency is decreasing.
Now, for each i, j ∈ {1, . . . , n}, i 6= j, the nonnegative number mij will denote the rate of mutation
Aj → Ai, and for all i ∈ {1, . . . , n} with the additional definition

mii := −
∑

j 6=i

mji.

Let x be the vector of frequencies of alleles in function of time. Then in terms of fitness matrix
W and the mutations matrix M := [mij ]n×n, the selection-mutation process is described with the
following system of differential equations:

ẋi = xi[(Wx)i− < x, Wx >] + (Mx)i (i ∈ {1, . . . , n}). (2)

This system defines a vector field in the simplex ∆n of allelic frequencies, see for example Akin
(1979).
In Varga and Zubiri (1993), using the Brower fixed point theorem, the existence of an equilibrium
was proved for the case of weak selection and small mutation. For the relation between the equilibria
of models (1) and (2), see Scarelli and Varga (2002). Introducing the notations wi(x) := (Wx)i

and w(x) :=< x,Wx >, a state x∗ in the interior
◦
∆n of simplex is called polymorphic equilibrium,

if for all i ∈ {1, . . . , n} equality wi(x∗) = w(x∗) holds. Concerning the existence and calculation
of a polymorphic equilibrium , from Scarelli and Varga (2002) the following lemma is recalled.

Lemma 2.1 Suppose that

(i) W is invertible,

(ii) for vector 1 := (1, . . . , 1) ∈ IRn relation < W−11,1 >6= 0 holds,

(iii)

x∗ :=
W−11

< W−11,1 >
> 0, (3)

(iv) W−11 ∈ KerM.

Then x∗ is a polymorphic equilibrium of the selection-mutation dynamics (2)

Remark 2.2. If the first three conditions (i)-(iii) hold, then x∗ is a polymorphic equilibrium of
the pure selection model (with M := 0).

3 Extension of Fisher’s Fundamental Theorem of Natural
Selection

Let ϕ be a selection-mutation process, that is, a solution of system (2). Then the composition
φ := w ◦ ϕ describes the evolution in terms of the mean fitness of the population. The velocity of
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the evolution in function of time is φ̇ = w′ ◦ϕ · ϕ̇. In terms of the derivative Dw of w with respect
to system (2), the velocity of the evolution at moment t is

φ̇(t) = Dw(ϕ(t)) (t ∈ Dϕ). (4)

Denoting by f the right-hand side of system (2), Dw(x) for an allelic state x ∈ ∆ncan be calculated
as follows:

Dw(x) = < w′(x), f(x) >= 2
∑n

i=1 wi(x){xi[wi(x)− w(x)] + (Mx)i}

= 2{∑n
i=1 xiw

2
i (x)− w2(x) +

∑n
i=1 wi(x)

∑n
j=1 mijxj}.

(5)

For an interpretation of the terms in (5) let x be a fixed state of the population. Let w(x) be the
random variable equal to the potential fitness of an allele chosen randomly from a population in
state x. The value of w(x) is wi(x) if the picked allele is Ai. Then a simple calculation shows that
the variance of w(x) is

V ar[w(x)] =
n∑

i=1

xi[wi(x)− w(x)]2 =
n∑

i=1

xiw
2
i (x)− w2(x).

Substituting the latter into (5), and transforming the term containing the mutation, the following
equality is obtained:

Dw(x) = 2V ar[w(x)] + 2
n∑

i=1

wi(x)


∑

j 6=i

mijxj −

∑

k 6=i

mki


 xi


 .

Here the term

B(x) :=
n∑

i=1

wi(x)
∑

j 6=i

mijxj −
n∑

i=1

wi(x)


∑

k 6=i

mki


 xi (6)

can be interpreted as the “balance of the potential fitness” due to the mutation process. The first
term expresses the total gain in potential fitness due to mutation, whereas the second one is the
total lost in potential fitness caused by mutation, being the population in state x. Combining
formulas (4)-(6), the dynamics of the evolution is obtained in the following form:

φ̇(t) = 2V ar[w(ϕ(t))] + 2B(ϕ(t)) (t ∈ Dϕ) (7)

Therefore, the following extension of the Fisher theorem is proved.

Theorem 3.1 In the selection-mutation process the velocity of the evolution is proportional to the
sum of the variance of the potential fitness and the balance of the potential fitness due to mutation.

Remark 3.2. In the case of pure selection (M := 0), the Theorem reduces to. Fisher’s classical
Fundamental Theorem of Natural Selection:

φ̇(t) = 2V ar[w(ϕ(t))] (t ∈ Dϕ). (8)

Due to the nonnegativity of the variance the mean fitness is increasing throughout the evolution.

4 Estimation of the velocity of evolution

Suppose now that in the case of pure selection there exists a unique polymorphic equilibrium x∗

defined in (3) of Section 2. Then x∗ is obviously the unique interior point of ∆n such that

wi(x∗) = w(x∗) (i ∈ {1, . . . , n}).
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This fact implies the positivity of the variance V ar[w(x)] for all x ∈
◦
∆n\{x∗}. In this situation the

mean fitness of the population strictly increases. In the presence of mutation, in general, a similar
behaviour is not possible. Indeed, from Hofbauer and Sigmund (1989), Th. 24.6 it is known that
selection and mutation matrices can be chosen such that system (2) has a periodic solution. This
periodicity obviously excludes a strict increase of the mean fitness. Hence the question arise, to
what extend mutation can change the velocity of the selection process. Let be

M∗ := max
i

∑

k 6=i

mki.

Then for all x ∈ ∆n, by the nonnegativity of wi(x), w(x) and
∑

j 6=i mijxj , the following inequality
holds:

B(x) ≥ −M∗
n∑

i=1

xiwi(x) = −M∗w(x).

Therefore, for any selection-mutation process ϕ, a lower estimate of the velocity of evolution is
obtained:

φ̇(t) ≥ 2V ar[w(ϕ(t))]− 2M∗w(ϕ(t)) (t ∈ Dϕ) (9)

Now, defining W ∗ := max
i,j

wij , for the mean fitness of the population, the following estimate holds:

w(x) =
n∑

i,j=1

wijxixj ≤ W ∗ (t ∈ Dϕ).

The above reasoning can be summarized in the following theorem, which is considered an ap-
proximate form of Fisher’s theorem, expressing the effect of small mutation on the velocity of
selection.

Theorem 4.1 Given a selection matrix W , for all ε > 0 there exists δ > 0 , (δ :=
ε

2W ∗ ) such
that for any mutation matrix M with M∗ < δ,

φ̇(t) > 2V ar[w(ϕ(t))]− ε (t ∈ Dϕ) (10)

holds.

5 Analysis of the velocity of evolution in two- and three-
allele models

In general, the mutation can essentially change the course of the evolution, even it can make de-
crease the mean fitness of the population.In this section the effect of mutation on the velocity of
the selection process is analyzed in two examples, illustrating the application of the above results.
In this section with the example of two alleles we shall see how the results of Section 3 can be used
for an finer analysis of the effect that produces mutation in the evolution.

Example 5.1. Consider a two-allele model corresponding to the selection-mutation equation (2)
with the following selection and mutation matrices,

W :=
[

p q
q r

]
and M :=

[ −a b
a −b

]

with parameters a, b, p, q, r > 0, such that the fitness of the heterozygote is greater than those the
homozygotes: q > p, r. Then,

W−11 =
1

pr − q2

[
r −q
−q p

] [
1
1

]
=

1
pr − q2

[
r − q
p− q

]
,
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< W−11,1 >=
r − 2q + p

pr − q2
> 0

and

x∗ =
W−11

< W−11,1 >
=

1
r − 2q + p

[
r − q
p− q

]
> 0.

Therefore, the application of Lemma 2.1 implies that x∗ is the unique polymorphic equilibrium of
the pure selection model.
Assume now that the respective rates of mutations A1 → A2 and A2 → A1 are proportional to the
respective advantages of the heterozygote A1A2 over the homozygotes A1A1 and A2A2. In Scarelli
and Varga (2002) it was proved that then x∗ is also an equilibrium of the model with mutation.
Now it will be seen which are the population states where mutation speeds up or slows down the
evolutionary effect of selection. The definition (6) of function B now reads

B(x) = (px1 + qx2)(bx2 − ax1) + (qx1 + rx2)(ax1 − bx2)
= (w2(x)− w1(x))(ax1 − bx2).

It is clear that the mutation effect depends of the sign of B(x). Fix a state x ∈
◦
∆n different from

equilibrium x∗, and suppose that in this state x the potential fitness of A2 is greater than that of
A1, Then the fact that in state x the velocity ax1 of mutation A1 → A2 is greater than the velocity
bx2 of mutation A2 → A1, implies that the mutation speeds up the selection, in the opposite case
the mutation slows down the selection process.

Example 5.2. Now a three-allele model is considered under the following conditions: All ho-
mozygotes have the same fitness wii = 1, and the fitness of each heterozygote is the same,
wij = p ∈ IR+ \ {1} ( i 6= j), furthermore, the sum of the rows of the mutation matrix is
equal to zero, that is, the sum of the rates of mutation from any allele to the rest of the alleles
coincides with the sum of the rates of mutation from the rest of alleles to this allele.
Now the corresponding dynamic selection-mutation model is

ẋi = xi[(Wx)i −W (x)] + (Mx)i i ∈ {1, 2, . . . , n, (11)

where the selection and mutation matrices are

W :=




1 p p
p 1 p
p p 1


 and M :=




m11 m12 m13

m21 m22 m23

m31 m32 m33




with mij ∈ IR+, con mii =−
∑

j 6=i mji i, j ∈ {1, 2, 3} and
∑3

j=1 mij =0 for all i ∈ {1, 2, 3}.
Since det W = (p− 1)2(2p + 1) 6= 0,the fitness matrix is invertible and

W−1 =
1

det W




1− p2 p2 − p p2 − p
p2 − p 1− p2 p2 − p
p2 − p p2 − p 1− p2


 .

Furthermore, W−11 = 1/(2p + 1)1 y < W−11,1 >= 3/(2p + 1) 6= 0. Now Lemma 2.1 implies that
the only polymorphic state for the pure selection model is

x∗ :=
W−11

< W−11,1 >
=

1
3
1 > 0.

which by the “double symmetry” of W is no surprise.
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Condition x∗ ∈ KerM is easily checked:

Mx∗ =
1
3
M1 =

1
3




m11 + m12 + m13

m21 + m22 + m23

m31 + m32 + m33


 = 0,

because by condition
∑3

j=1 mij = 0 for all i ∈ {1, 2, 3}.
Therefore, the conditions of Lemma 2.1 are fulfilled, implying x∗ is a polymorphic equilibrium of
dynamics (11). Now the value of the “balance of potential fitness” can be calculated from the
definition (6) of function B :

B(x) =
3∑

i=1

wi(x)
∑

j 6=i

mijxj −
3∑

i=1

wi(x)(
∑

k 6=i

mki)xi

= w1(x)(m12x2 + m13x3) + w2(x)(m21x1 + m23x3) + w3(x)(m31x1 + m32x2)
−w1(m21 + m31)x1 − w2(m12 + m32)x2 − w3(m13 + m23)x3

= (m21x1 −m12x2)(w2(x)− w1(x)) + (m31x1 −m13x3)(w3(x)− w1(x))
+(m32x2 −m23x3)(w3(x)− w2(x)).

Again, the mutation effect depends of the sign of the balance B(x). For a state x ∈
◦
∆N , different

from the equilibrium x∗ suppose that, for all i, j ∈ {1, 2, 3}, i > j, the potential fitness of Ai is
higher that the potential fitness of Aj , and the velocity mijxj of mutation Aj → Ai is higher than
the velocity mjixi of mutation Ai → Aj . Then in state x mutation speeds up the selection process.
In a similar way, simple biological conditions can be obtained for the mutation to slow down the
selection process.
In the particular case when mutation matrix has the form

M =



−a 0 a

a −b b− a
0 b −b


 a, b ∈ IR+, b ≥ a,

the balance of the potential fitness simplifies to

B(x) = ax1(w2(x)− w1(x))− ax3(w3(x)− w1(x)) + [bx2 − (b− a)x3](w3(x)− w2(x))
= ax1(w2(x)− w1(x)) + b(x2 − x3)(w3(x)− w2(x)) + ax3(w3(x)− w2(x)− w3(x) + w1(x))
= a(x1 − x3)(w2(x)− w1(x)) + b(x2 − x3)(w3(x)− w2(x)).

Then, for instance in state x ∈
◦
∆N , different to equilibrium x∗, for the mutation to accelerate

the selection process the following biological conditions are sufficient: x1 > x3, x2 > x3, w2(x) >
w1(x), w3(x) > w2(x); while conditions x1 > x3, x2 > x3, w2(x) < w1(x), w3(x) < w2(x) imply
that mutation will slow down the selection process.

6 Conclusion

Fisher’s classical model of natural selection is a mathematical synthesis of the basic principles
of the Darwinian theory of evolution and the Mendelian genetics. The resulting Fundamental
Theorem guarantees that the mean fitness of population increases in the course of the selection.
The Fundamental Theorem can not be extended to selection-mutation processes just by adding
a mutation term to the dynamic selection model. In fact, the mean fitness of the population
will not necessarily increase. However, introducing the concept of balance of the potential fitness
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due to mutation, as an extension of Fisher’s Fundamental Theorem, it can be shown that in the
selection-mutation process the velocity of the evolution is proportional to the sum of the variance
of the potential fitness and the balance of potential fitness. In terms of the model parameters,
the discrepancy from the classical Fisher theorem is also estimated. Moreover, for an outlook it
is worth to mention that a similar analysis of the effect of mutation could be carried out to the
Fundamental Theorem formulated in terms of the so-called relative advantage, that similarly to
the the classical case, increases in the course of a pure selection process, see Garay and Varga
(1999).
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