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a  r  t  i  c l  e  i n  f o

Article history:

Received 25 October 2012

Received in revised form 12 May  2013

Accepted 16 May  2013

Keywords:

Verticum-type system

Nonlinear control system

Integrated pest control

a  b  s  t  r a  c t

Linear  verticum-type  control and  observation  systems  have  been  introduced for  modelling  certain  indus-

trial systems,  consisting  of  subsystems,  vertically connected  by  certain state  variables.  Recently the

concept  of  verticum-type  observation systems and the  corresponding  observability  condition  have  been

extended by  the  authors  to the  nonlinear  case.  In  the  present  paper the  general  concept  of  a nonlinear

verticum-type control  system  is introduced,  and  a  sufficient  condition  for  local controllability to  equi-

librium is obtained.  In  addition  to a usual  linearization, the  basic idea  is  a decomposition of the  control

of the  whole  system into the  control  of  the  subsystems. Starting  from  the  integrated  pest  control  model

of Rafikov  and Limeira (2012)  and  Rafikov  et  al.  (2012), a nonlinear  verticum-type  model  has  been  set

up an equilibrium control is obtained.  Furthermore,  a corresponding bioeconomical  problem is  solved

minimizing  the  total  cost  of  integrated  pest  control  (combining  chemical  control with  a biological one).

© 2013 Published by Elsevier Ireland Ltd.

1. Introduction

Verticum-type systems were introduced by Molnár (1989) for

modelling certain industrial systems. These systems, are hierar-

chically composed of linear subsystems such that a  part of the

state variables of each subsystem affect the dynamics of the next

subsystem. In Molnár (1989), for continuous-time linear systems,

necessary and sufficient conditions for observability and control-

lability of such systems were obtained. Other systems-theoretical

properties of  such systems were studied, e.g. in Molnár (1993) and

Molnár and Szigeti (1994).

Recently, apart from industrial systems, verticum-type sys-

tem models have been applied to population ecology. In  fact,

population interactions are typically nonlinear, but in  Gámez

et al. (2010) an ecological interaction chain of the type

resource–producer–primary user–secondary consumer turned out

to have a  verticum-like structure which admitted to  reduce the

monitoring (observability) problem to a  linearized version of the

original model. In Molnár et  al. (2012),  the concept of a nonlin-

ear verticum-type observation system has been introduced, and a

decomposition of the sufficient condition for observability of such

systems has been proved.
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The possible applications to dynamic models of population biol-

ogy are a  strong motivation for the introduction and study of

nonlinear verticum-type control systems which is the aim the

present paper. The application of mathematical systems theory to

monitoring and control of  population systems was initialized in

Varga (1989) and Varga (1992), providing sufficient conditions for

local controllability and observability of nonlinear systems with

invariant manifold to  frequency-dependent population models. For

further results on similar population systems, see also Scarelli and

Varga (2002),  López et al. (2004) and Varga (2008a).  Systems-

theoretical study of density-dependent multi-species population

models can be found, e.g. in  Varga et al. (2002, 2003, 2010),

Shamandy (2005),  López et al. (2007a,b) and Gámez et al. (2009,

2011, 2012).  For  a  general review on  the application of mathe-

matical systems theory in population biology, see Varga (2008b), a

recent update of this survey is  Gámez (2011).

In the present paper the concept of a  nonlinear verticum-type

system is  introduced and a  sufficient condition for local control-

lability to  equilibrium is  obtained. The application of  the obtained

results are then illustrated on a  model of integrated pest control,

based on earlier differential equations of parasitoid-host interac-

tion of Anderson and May  (1981, 1991), and its development by

Rafikov and Limeira (2012) concerning biological control of  the

Sugarcane Borer (Diatraea saccharalis). This is the major pest of

sugarcane in  the New World (Hill, 2008) and cannot be controlled

with insecticide treatments only (Hajek, 2004). Integrated control

means, that a  combination of a  biological agent and a  chemical

pesticide is applied (Dent, 1991).
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The paper is  organized as follows. In Section 2,  we  introduce

the concept of a nonlinear verticum-type system, and in terms of

the linearization of the single subsystems, a  Kalman-type sufficient

condition is obtained for the controllability of the whole system.

Section 3  is  devoted to the study of a  population system where the

theoretical results of the previous section are  applied. First, we  set

up a  multistage population dynamics model for the interaction of

sugar cane borer with its egg parasitoid. In Sections 3.1 and 3.2,

the existence of a positive equilibrium and its asymptotic stabil-

ity are proved. In Sections 3.3 and 3.4, supposing that the pest is

controlled by the release of parasitoid and by  the application of  a

pesticide, we obtain a  nonlinear verticum-type control system, and

apart from proving controllability of the system to  equilibrium, the

corresponding equilibrium control is  also constructed. Finally, an

optimal equilibrium control is obtained that minimizes the total

costs of simultaneous application of biological and chemical con-

trol.

2. Controllability of  nonlinear verticum-type systems into
equilibrium

Given k,  ni, ri ∈ N, i ∈ 0, k, n:=∑k
i=0

ni, r:=∑k
i=0

ri and

F : Rn ×  Rr → Rn,  a  continuously differentiable function.

For a  control u∗:=(u∗
0
, u∗

1
, . . . , u∗

k
) ∈ Rr with u∗

i
∈ Rri , i ∈ 0, k,  let

x∗:=(x∗
0
, x∗

1
, . . . , x∗

k
) ∈ Rn with x∗

i
∈ Rni (i  ∈ 0, k)  such that F(x*, u*) =  0.

Let us fix a time interval [0,  T], and for each ε > 0 define the class

of ε-small controls Uε[0, T]  as in Appendix A.

Consider the nonlinear control system

ẋ0 = F0(x0, u∗
0 + u0); F0 : Rn0 × Rr0 → Rn0 , (V0)

and for all i ∈ 1, k

ẋi = Fi(xi, xi−1, u∗
i +  ui); Fi : Rni × Rni−1 × Rri → Rni , (Vi)

and define

F(x, u∗ + u):=(F0(x0, u∗
0 + u0), F1(x1, x0, u∗

1 + u1), . . . ,

Fk(xk, xk−1, u∗
k + uk)), (Vi)

Definition 2.1.

ẋ = F(x, u∗ +  u),  (V)

is said to  be  a  (nonlinear) verticum-type control system with sub-

systems (Vi)  (i  ∈ 0, k,).

Remark 2.1. Equations (Vi) do not  define a standard control sys-

tem in  this setting, because of the presence of the “exogenous”

variable xi−1 connecting it to  equation (Vi−1) (i  ∈ 1, k).

Remark 2.2. From Theorem A.1 of the Appendix A we obtain that

there exists ε0 ∈ R+ such that for all u ∈ Uε0
[0, T] and x0 ∈ Rn with∥∥x0 −  x∗∥∥ < ε0 the initial value problem

ẋ(t) = F(x(t), u∗ + u(t)) (for a.e.  t  ∈ [0, T])

x(0) = x0

has a unique solution. In what follows T  >  0 will be considered fixed

and concerning controllability, the reference to it will be often sup-

pressed.

To study controllability of system (V), let  us linearize systems

(V0), at respective equilibria (x∗
0
, u∗

0
), obtaining the linearized sys-

tems

ẋ0 = A00x0 +  B0u0, (LV0)

where

A00 = ∂F0

∂x0
(x∗

0, u∗
0),  B0 = ∂F0

∂u0
(x∗

0, u∗
0);

and for all i ∈ 1, k, substituting xi−1 in (Vi)  with its equilibrium value

x∗
i−1

,  we similarly linearize (Vi)  with respect to  variables (xi, ui),

at the corresponding equilibrium (x∗
i
, u∗

i
), obtaining the linearized

systems

ẋi =  Aiixi + Biui,  (LVi)

with Aii = ∂Fi

∂xi
(x∗

i , x∗
i−1

, u∗
i ); Bi = ∂Fi

∂ui
(x∗

i , x∗
i−1

, u∗
i )  (i  ∈ 1, k).

Now we  define the matrices A ∈ Rn×n,  B ∈ Rn×r as follows:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A00 0 0 ... 0 ... 0

A10 A11 0 ... 0 ... 0

0 A21 A22 ... 0 ... 0

· · ·  ... · ... ·
·  · ·  ... · ... ·
·  · ·  ... · ... ·
0 0 0 ... · Ak−1,k−1 0

0 0 0 ... · Ak,k−1 Ak,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Aii−1 = ∂Fi

∂xi−1

(x∗
i , x∗

i−1
, u∗

i ), (i  ∈ 1, k).

B =

⎛
⎜⎜⎜⎜⎜⎝

B0 0

B1

·
·

0 Bk

⎞
⎟⎟⎟⎟⎟⎠ ,

obtaining linear control system

ẋ  =  Ax + Bu (LV)

of  verticum type (see Molnár, 1989).

We recall a  sufficient condition for controllability of linear

verticum-type systems.

Theorem 2.1. (Molnár, 1989)  Suppose that

rank

⎡
⎢⎢⎢⎢⎢⎣

Bi

AiiBi

...

A
ni−1

ii
Bi

⎤
⎥⎥⎥⎥⎥⎦ = ni(i ∈ 0, k).

Then the linear verticum-type system (LV) is controllable.

Suppose that for each i ∈ 0, k

rank

⎡
⎢⎢⎢⎢⎢⎣

Bi

AiiBi

...

A
ni−1

ii
Bi

⎤
⎥⎥⎥⎥⎥⎦ = ni,

then by  Theorem 2.1 the verticum-type system (LV) is controllable.

Hence, the linearization of the control system (V) is control-

lable. Therefore, by Kalman’s theorem on controllability of  linear
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systems (see Lee and Markus, 1971), the rank condition (A.3) of

Appendix A is  fulfilled, implying local controllability of system (V)

to equilibrium x∗.

The above reasoning can be summarized in the following suffi-

cient condition for local controllability of  nonlinear verticum-type

systems:

Theorem 2.2. If

rank

⎡
⎢⎢⎢⎢⎢⎣

Bi

AiiBi

...

A
ni−1

ii
Bi

⎤
⎥⎥⎥⎥⎥⎦ = ni(i ∈ 0, k),

then control system (V) is  controllable near its equilibrium x*.

In what follows the above result will be applied to the analysis

of a control system modelling integrated pest control.

3. Application to the model for the integrated control
sugarcane borer (D.  saccharalis) by an  egg parasitoid
(Trichogramma galloi),  combined with chemical control

Consider the mathematical model of  interaction between the

sugarcane borer (D.  saccharalis) and its egg parasitoid T. galloi which

consist of three differential equations, proposed in Rafikov and

Limeira (2012) and Rafikov et al. (2012), from which we have added

it one more differential equation:

ẋ1 = r
(

1 − x1

K

)
x1 −  m1x1 −  n1x1 −  ˇx1x2 (3.1a)

ẋ2 = ˇx1x2 −  m2x2 −  n2x2 (3.1b)

ẋ3 = n1x1 − m3x3 − n3x3 (3.1c)

ẋ4 = n3x3 − m4x4 − n4x4 (3.1d)

where x1 is  egg density of the sugarcane borer, x2 is  density of eggs

parasitized by T.  galloi, x3 is small larvae density of the sugarcane

borer, x4 is  large larvae density of the sugarcane borer, r  is net repro-

duction rate, K  is carrying capacity the environment, m1,  m2,  m3, m4

are mortality rates of egg, parasitized egg, small larvae and large lar-

vae populations, respectively, n1 is fraction of the eggs from which

the larvae emerge in  unit time, n2 is fraction of the parasitized eggs

from which the adult parasitoids emerge in unit time, n3 is frac-

tion of the small larvae population which moult into large larvae

stage in unit time, n4 is  fraction of the large larvae population which

emerge to adult population in  unit time, ˇ  is the rate of parasitism.

In the following two subsections we investigate the stable coex-

istence in the model.

3.1. Existence of a positive equilibrium

First, we find a  necessary and sufficient condition for the exist-

ence of a  positive equilibrium of system (3.1).  To this end, define

functions f0 :  R2 → R2,

f0(x1, x2):=

⎛
⎝ rx1

(
1 − x1

K

)
−  m1x1 −  n1x1 −  ˇx1x2

ˇx1x2 − m2x2 − n2x2

⎞
⎠

and f1 : R3 → R2,

f1(x1, x3, x4):=
(

n1x1 − m3x3 − n3x3

n3x3 − m4x4 − n4x4

)
.

Then the right-hand side  of (3.1) is given by f : R4 → R4,

f  (x) = f  (x1, x2, x3, x4):=
[

f0(x1, x2)

f1(x1, x3, x4)

]
.

Then a  nonzero vector x*  ∈ R4 is an equilibrium for the consid-

ered dynamics if and only if f(x*) =  0. The unique solution of this

equation is easily obtained:

x∗
1 = n2 + m2

ˇ
(3.2)

x∗
2 = ˇKr − r(n2 + m2) −  (n1 +  m1)Kˇ

ˇ

x∗
3 = n1(n2 +  m2)

ˇ(n3 + m3)
(3.3)

x∗
4 = n1n3(n2 + m2)

ˇ(n3 + m3)(n4 + m4)

Now it is easy to  see that a necessary and sufficient condition for

x* >  0 is

r  > n1 + m1 + r

Kˇ
(n2 +  m2). (3.4)

In biological terms this condition says that fixing all parame-

ters in (3.4), except K,  a carrying capacity for sugarcane borer high

enough implies coexistence in  the system. Alternatively, rearrang-

ing (3.4) in the form

r[K  ̌ −  (n2 + m2)] >  Kˇ(n1 +  m1),

we obtain that, fixing all parameters in (3.4),  except r,  if the Malthus

parameter of the sugarcane borer is high enough, the coexistence

is also guaranteed.

The stability of coexistence is analyzed in  the next subsection.

3.2. Asymptotical stability of the equilibrium

System (3.1) is a  nonlinear verticum-type system in  the sense

of the Definition 2.1,  composed from the following subsystems:

ẋ1 =  rx1

(
1 − x1

K

)
− m1x1 − n1x1 −  ˇx1x2

ẋ2 =  ˇx1x2 − m2x2 − n2x2

(3.5)

and

ẋ3 = n1x1 − m3x3 − n3x3

ẋ4 = n3x3 − m4x4 − n4x4

(3.6)

First we analyze the stability of the single subsystems. For  system

(3.5),  we calculate the Jacobian

f ′
0(x1) =

(
r −  2

r

K
x1 − m1 − n1 − x2ˇ  −ˇx1

ˇx2 0

)
,

where x1 =  (x1, x2). For subsystem (3.5) at the equilibrium

x1∗:=(x∗
1
, x∗

2
) we have

A0:=f ′
0(x1∗)  =

(
− r

K
x∗

1 −ˇx∗
1

ˇx∗
2

0

)
,

the characteristic polynomial of which is

�2 + r

K
x∗

1� + ˇ2x∗
1x∗

2 =  0.
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Hence, by the Routh–Hurwitz criterion we obtain the asymptotic

stability of equilibrium x1*.

Repeating the same reasoning for subsystem (3.6), we  have

f ′
1(x∗

1, x2)  =
(

−m3 − n3 0

n3 −m4 −  n4

)
,

where x2 =  (x3, x4). Subsystem (3.6) has a  positive equilibrium

(x∗
1
, x2∗:=(x∗

3
, x∗

4
)), and the Jacobian A1:=f ′

1
(x∗

1
, x2∗)  has negative

eigenvalues

�1 =  −m3 −  n3; �2 =  −m4 −  n4

implying asymptotic stability of equilibrium (x∗
1
, x2∗) of subsystem

(3.6).

Now we analyze the stability of  the positive equilibrium x∗ =
(x∗

1
, x∗

2
, x∗

3
, x∗

4
) of system (3.1).  The corresponding Jacobian is

A:=f ′(x∗)  =

⎛
⎜⎜⎝

A0

0 0

0 0

n1 0

0  0
A1

⎞
⎟⎟⎠ .

having characteristic equation

(�2 + a1� + a2)(� +  a3)(� +  a4) = 0,

where

a1 = r(m2 + n2)

Kˇ
> 0; a2 =  ˇ2x∗

1x∗
2 >  0; a3 = m3 +  n3 > 0;

a4 = m4 +  n4 > 0.

Hence, applying the Routh–Hurwitz criterion, we  obtain the fol-

lowing

Theorem 3.1.  Under condition (3.4), system (3.1a)–(3.1d) has

unique positive equilibrium x*, which is asymptotically stable.

The latter theorem, in  biological terms, guarantees stable coex-

istence of  the system.

3.3. Controllability of the system

Let us introduce time-dependent controls in  systems

(3.1a)–(3.1d) in two ways. First, we add new parasitized eggs

of the sugarcane borer. In mathematical terms, this control as a

positive effect, is formalized as a  time-dependent decrease u2(t)

in mortality rate m2 of  parasitized eggs. Similarly, we apply a

selective chemical control (Talpaz and Borosh, 1974) to the small

larvae of sugarcane borer, and this control, as a negative effect, is

considered as a time-dependent increase u3(t) in mortality rate m3

of small larvae. Hence we  have the following control system.

ẋ1 = rx1

(
1  − x1

K

)
− m1x1 −  n1x1 −  ˇx1x2 (3.7a)

ẋ2 = ˇx1x2 − (m2 −  u2(t))x2 −  n2x2 (3.7b)

ẋ3 = n1x1 − (m3 + u3(t))x3 −  n3x3 (3.7c)

ẋ4 = n3x3 − m4x4 − n4x4 (3.7d)

Remark 3.1. In the above model we have supposed that the

applied pesticide kills only small larvae of the plague. In fact, there

are pesticides that are effective and applied to  a  particular cycle of

insect pests (Lambert and Peferoen, 1992; Barrett et al., 2002; Yu,

2008; Dhadialla et al., 2010)

Remark 3.2. We note that from Theorem A.1 of Appendix A and

from the continuous dependence of  the solution on the control,

it follows that for controls small enough, the solutions of system

(3.7a)–(3.7d) remain in  the positive orthant.

Our main objective is a  qualitative and quantitative analysis of

control system (3.7a)–(3.7d),  applying the theoretical results of the

previous section, concerning nonlinear verticum-type control sys-

tems. In the present subsection Theorem 2.2 will be applied to  show

that our  population system can be controlled into equilibrium.

We  start with the analysis of  the first subsystem

ẋ1 =  rx1

(
1 − x1

K

)
− m1x1 − n1x1 − ˇx1x2 (3.8a)

ẋ2 =  ˇx1x2 − (m2 − u2(t))x2 −  n2x2 (3.8b)

With function F0 : R3 → R2

F0(x1, x2, u2):=

⎛
⎝ rx1

(
1 − x

K

)
− m1x1 − n1x1 −  ˇx1x2

ˇx1x2 − (m2 − u2)x2 − n2x2

⎞
⎠ ,

control system (3.8a) and (3.8b) takes the form

ẋ1 = F0(x1, u∗
2 + u2(t)).

Obviously, to u∗
2
:=0 and u2(t) := 0 (t ∈ [0, T]), there corresponds

the positive equilibrium x1∗ of dynamic system (3.1a) and (3.1b).

Now we show that control system (3.8) is  locally controllable to

x1∗ on [0, T]. For the application of Theorem A.2 of the Appendix A,

let us calculate the Jacobians

A00:= ∂F0

∂x1
(x1∗, 0) =

[
− r

K
x∗

1 −ˇx∗
1

ˇx∗
2

0

]
, B0:= ∂F0

∂u2
(x1∗, 0)  =

[
0

x∗
2

]
.

Since

det[B0|A00B0]  = ˇx∗
1(x∗

2)2
/= 0

we get rank[B0|A00B0] = 2, and applying Theorem A.2 of Appendix

A we obtain local controllability of  system (3.8) into x1∗ on interval

[0, T].

Analogously, let us consider the second subsystem

ẋ3 =  n1x1 −  (m3 + u3(t))x3 − n3x3 (3.9a)

ẋ4 =  n3x3 −  m4x4 −  n4x4 (3.9b)

With notation F1 : R4 → R2

F1(x1, x3, x4, u3):=
(

n1x1 − (m3 +  u3)x3 − n3x3

n3x3 −  m4x4 −  n4x4

)
,

for the control system (3.9a) and (3.9b) we  get

ẋ2 = F1(x1, x2, u∗
3 +  u3(t))

Now, to u∗
3
:=0  and u3(t) :=  0 (t  ∈ [0, T]), there corresponds the

positive equilibrium (x∗
1
, x2∗) of dynamic system (3.1c) and (3.1d).

For local controllability of control system (3.9) to  (x∗
1
, x2∗) on [0,

T], we calculate the Jacobians

A11:= ∂F1

∂x2
(x∗

1, x2∗, 0) =
[

−m3 − n3 0

n3 −m4 − n4

]
,

A10:=∂F1

∂x1
(x∗

1, x2∗, 0) =
[

n1

0

]
B1:= ∂F1

∂u3
(x∗

1, x2∗, 0) =
[

−x∗
3

0

]
.
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From

det[B1|A11B1] =  n3(x∗
3)2

/= 0,

again we get rank[B1|A11B1] =  2, and applying Theorem A.2 we

obtain the local controllability of system (3.9) into x2∗ on interval

[0, T].

Then by Theorem 2.2,  we obtain the following.

Theorem 3.2. Control system (3.7a)–(3.7d) is  controllable near its

equilibrium x*.

3.4. Calculation of an equilibrium control

Fix an initial state x0 from a neighbourhood of local controlla-

bility of system (3.7),  and for each control function u  small enough

(i.e. u ∈ Uε[0, T] for appropriate ε  ∈ [0, ε0],  see conditions of system

(A.1) and (A.2) of Appendix A), let x be the solution of  (3.7) defined

on [0, T] and corresponding to the initial value x0.  Then a  control

u ∈ Uε[0, T]  will steer initial state x0 into equilibrium x∗, if and only

if it minimizes functional

˚(u):=|x(T) − x∗|2(u  ∈ Uε[0,  T]).

The above reasoning can be summarized in  the following theorem:

Theorem 3.3. Suppose that the parameters of system (3.7) satisfy

conditions (3.4). Then system (3.7) is  locally controllable to equilib-

rium x∗ on interval [0, T]. An initial state x0 from a neighbourhood

of local controllability will be steered into x∗ by  a  control u ∈ Uε[0, T]

if and only if the latter is  a solution of the following optimal control

problem:

˚(u):=|x(T) − x∗|2 → min, (3.10)

u ∈ Uε[0, T],  x(0) = x0, (3.11)

ẋ = F(x, u∗ + u(t)).

Example 3.1. With the parameters of Rafikov and Limeira (2012),

let us consider system (3.1) with parameters

n1 =  n2 = 0.1; n3 =  n4 =  0.0244; m1 = m2 = 0.036; m3 = 0.001;

m4 = 0.0016 and K  =  25,000.

On the other hand, choosing r = 0.19008;  ̌ =  0.0003, condition

(3.4) is verified.

Then, for these parameters we have the following positive equi-

librium of model (3.1):

x∗
1 = 452.8; x∗

2 = 170.8; x∗
3 = 1784; x∗

4 = 1675.

The main objective of the biological pest control is to maintain

the pest population in an equilibrium level below the economic

level. For this pest density the threshold level is  2500 (see Rafikov

and Limeira, 2012).

For system (3.1), with initial condition x0 := (100, 200, 2500,

500), the corresponding solution x, tending to equilibrium x∗ =
(x∗

1
, x∗

2
,  x∗

3
, x∗

4
), can be seen in Fig. 1.

Remark 3.3. The set of parameters of Example 3.1 is not excep-

tional. According to  our Theorem 3.1, there is a  stable coexistence

whenever the model parameters satisfy inequality (3.4). From the

discussion following inequality (3.4) we can conclude that there

is no positive equilibrium at all, e.g. if the carrying capacity for

sugarcane borer is  not high enough, or alternatively, if the ratio

Kˇ(n1 + m1)/K  ̌ − (n2 +  m2) is  too low.

Applying the results found in  the previous sections, our objec-

tive is to determine a control of system (3.7), that steers the system

into equilibrium.

Fig. 1. Solution of system (3.1), with initial value x0 := (100, 200, 2500, 500).

Fix time duration T: =  200 and take initial condition x01 := (100,

200) for system (3.8). For the calculation of the corresponding solu-

tion we apply the MatLab toolbox mentioned above. Fig.  2b  shows

the obtained optimal control u2(t); the corresponding solution x1

ending up  at equilibrium x1∗ = (4.85, 3.12) can be seen in Fig. 2a.

With T: = 200 and initial condition x02 := (2500, 500) for system

(3.9),  we  calculate the solution. Fig. 3b  shows the obtained optimal

control u3; the corresponding solution x2 ending up  at equilibrium

x2∗ =  (1784, 1675) can be  seen in Fig. 3a.

Finally, if for system (3.7) we  take initial condition x0 =  (x01,  x02),

with the values of the two previous examples, we can check that

with the obtained controls the system arrives into the equilibrium

in time T =  200 (see Fig. 4).

It is easy to  see that the control that steers the system into the

equilibrium is  not unique, we can optimize over the set of equi-

librium controls, minimizing the total cost. This problem will be

addressed in the next section.

3.5. Optimal equilibrium control

For a more flexible model, we will consider the corresponding

integral with and without discount. Although for infinite time-

horizon problems an exponential discount factor is a technical

necessity (see Clark, 2010 and references therein), similar discount

is also used in  finite time-horizon models (see e.g. Chakraborty

et al., 2012).

For ε  >  0 of  the previous subsection, with the same controlled

population dynamics as (3.7), the corresponding optimal control

problem is  the following:

� (u):=
∫ T

0

c2u2(t) + c3u3(t)dt → min, (3.12)

u ∈ Uε[0,  T], (3.13)

ẋ = F(x,  u∗ +  u(t)), (3.14)

x(0) = x0, x(T) = x∗. (3.15)

Now, for a  numerical solution of this problem using the men-

tioned MatLab toolbox of Banga et al. (2005),  piecewise constant

controls are considered. More precisely, for fixed positive integer

N, let  ti := i(T/N) (i ∈ 0, N) be the uniform division of [0, T], and let  us
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Fig. 2. (a) Solution of control system (3.8) for T =  200, with initial value x01 := (100, 200), (b) control function of system (3.8) for T  = 200, (c) solution of the uncontrolled system

(3.5) for T =  200, with initial value x01 := (100, 200).

define the set of controls as follows:

Sε,N[0,  T]:={u ∈ Uε[0, T]  : u is constant on each interval

[ti−1, ti](i ∈ 1, N)}.

Then, considering the set of admissible controls

S∗
ε,N[0, T]:={u  ∈ Sε,N[0, T] : u satisfies (3.13) and (3.14)},

ε > 0 and N are chosen as to guarantee that S∗
ε,N[0,  T] is  not empty.

Hence functional � in  (3.12) can be defined on the compact set

S∗
ε,N[0, T] ⊂  RN and is  the composition of two continuous mappings

S∗
ε,N [0, T] → S∗

ε,N [0, T] × C [0,  T],  assigning to each u ∈ S∗
ε,N[0, T]

the pair (u,x), where x is the solution of (3.14),  corresponding to

u, and mapping S∗
ε,N[0,  T] × C[0, T] → R,  assigning to each pair

(u, x)  ∈ S∗
ε,N[0,  T] ×  C[0, T] the integral � (u) =

∫ T

0
c2u2(t) +

c3u3(t)dt. As a  result of  the above reasoning, we obtain the

following

Theorem 3.4. For any parameter choice satisfying conditions

(3.4),  the optimal control problem

� (u):=
∫ T

0

c2u2(t) + c3u3(t)dt → min, (3.16)

u ∈ S∗
ε,N[0, T]  (3.17)

ẋ =  F(x, u∗ +  u(t)), (3.18)

x(0) = x0, x(T) = x∗ (3.19)

has a  solution.

The obtained result shows a  possible bargain between the bioe-

conomic and integrated control. Now we proceed to the illustration

of the above optimal control model for different discount parameter

values.

Example 3.2. For the same parameters used in  the previous exam-

ple (Example 3.1) for model (3.7), we  take c2 =  10 ; c3 =  0.001 for the

constant weights in the cost functional � . In Fig. 5a  we see how the

trajectories arrive at the equilibrium, minimizing the given func-

tional with the controls shown in  Fig. 5b.  We  remind that these

controls act in different phases of development, therefore when the

level of  larvae is low enough (after time 140), the chemical control

is reduced and even stopped (at time 150), and the application of

biological control acting directly on eggs is  sufficient. This fact is

also very reasonable, since in  this way  the appropriate chemical

agent may  have time to decompose.
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Fig. 3. (a) Solution of control system (3.9) for T  =  200, with initial value x02 := (2500, 500), (b) control function of system (3.9) for T  =  200, (c) solution of the uncontrolled

system (3.6) for T  = 200, with initial value x02 := (2500, 500).

4. Discussion

We have extended earlier results on controllability of linear

verticum-type systems to the nonlinear case, giving a sufficient

condition for local controllability of nonlinear verticum-type sys-

tems. We note that  although the given rank condition is  only

sufficient but not necessary, this fact does not limit the possibilities

of applications.

The study of the nonlinear case was mainly motivated by the

fact that most models of  population ecology are nonlinear. Our

general theorem is  applied to the study of an entomo-ecological

model of integrated pest control where, apart from a  parasitoid

agent a chemical control is  also applied. We  have seen that under

certain conditions, the uncontrolled system tends to an equilibrium

where, however, the density of the pest may  be too high. Our con-

trol model makes it possible not only to reach an equilibrium more

quickly, but also steer the system to  an equilibrium in  given time,

where the pest density is  below a given “economic threshold”. The

latter means that  after the damage caused by the pest, it is still

economically reasonable to maintain the crops.

At this point we  remark that our  model can be modified in two

alternative ways to use a predator agent instead of chemical con-

trol. One of the possibilities is to consider the control function as  the
Fig. 4. Solution of  control system (3.7) for T = 200, with initial value x0 = (100, 200,

2500, 500).
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Fig. 5. (a)  Solution of control system (3.7) for T =  200, with initial value x0 =  (100, 200, 2500, 500). (b) Control function of system (3.7) for T =  200.

action of a  specific predator of small larvae, adding an equation to

the second subsystem that describes predator dynamics. The other

option is  introducing an additive control term (instead of the mul-

tiplicative control representing the chemical agent) describing the

time-dependent release of predator agents. In this case there is no

need to include a  predator dynamics in the system.
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Appendix A.

Given n,  r  ∈ N, let F  : Rn × Rr → Rn be a  continuously differentiable

function. For a reference control value u∗ ∈ Rr,  let  x∗ ∈ Rn be such that

F(x∗, u∗) = 0. For technical reason we shall need a rather general class

of controls. Let us fix a  time interval [0, T], and for each ε ∈ R+ define

the class of  essentially bounded ε-small controls

Uε[0, T]:={u ∈ Lr
∞[0, T]||u(t)||∞ ≤ ε  for almost every t ∈ [0, T]}.

From Lee and Markus (1971) we recall the following

Theorem A.1. There exists ε0 ∈ R+ such that for all u ∈ Uε0
[0, T]

and x0 ∈ Rn with ||x0 − x∗|| <  ε0 the initial value problem

ẋ(t) = F(x(t), u∗ + u(t)) (for a.e. t ∈ [0, T]) (A.1)

x(0) = x0 (A.2)

has a unique solution. We notice that x∗ is  an equilibrium state for

the zero-control system.

Definition A.1. Control system (A.1) and (A.2) is said to be locally

controllable to  x∗ on [0, T], if there exists ε ∈ [0, ε0]  such that for all

x0 from the ε-neighbourhood of x∗, there is  a control u ∈ Uε[0, T]  that

controls the initial state x0 to equilibrium x∗,  i.e.  for the solution x

of the initial value problem (A.1) and (A.2), equality x(T) = x*  holds.

Let us linearize system (A.1) and (A.2) around (x∗, u∗), introduc-

ing the corresponding Jacobians

A:= ∂

∂x
F(x∗, u∗), B:= ∂

∂u
F(x∗, u∗).

Then we have the following sufficient condition for local controlla-

bility:

Theorem A.2. (Lee and Markus, 1971)

If

rank

⎡
⎢⎢⎢⎣

B

AB

...

An−1B

⎤
⎥⎥⎥⎦ = n (A.3)

then system (A.1) and (A.2) is locally controllable to x∗ on [0, T].
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