
Nonlinear Analysis: Real World Applications 11 (2010) 1918–1924

Contents lists available at ScienceDirect

Nonlinear Analysis: Real World Applications

journal homepage: www.elsevier.com/locate/nonrwa

Observer design for open and closed trophic chains
Z. Varga a,∗, M. Gámezb, I. Lópezb

a Institute of Mathematics and Informatics, Szent István University, Páter K. u. 1., H-2103 Godollo, Hungary
b Department of Statistics and Applied Mathematics, University of Almería, La Cañada de San Urbano, 04120 Almería, Espagne

a r t i c l e i n f o

Article history:

Received 18 March 2009
Accepted 29 April 2009

Keywords:

Ecological monitoring
Observer design
Trophic chain

a b s t r a c t

Monitoring of ecological systems is one of the major issues in ecosystem research. The
concepts and methodology of mathematical systems theory provide useful tools to face
this problem. In many cases, state monitoring of a complex ecological system consists in
observation (measurement) of certain state variables, and thewhole state process has to be
determined from the observed data. The solution proposed in the paper is the design of an
observer system, which makes it possible to approximately recover the state process from
its partial observation. Such systems-theoretical approach has been applied before by the
authors to Lotka–Volterra type population systems. In the present paper this methodology
is extended to a non-Lotka–Volterra type trophic chain of resource–producer–primary

consumer type and numerical examples for different observation situations are also
presented.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of sustainability of economic and social development in a broader sense also involves conservation aspects
of ecology. The problem of state monitoring of population systems, even under natural conditions, is an important issue
in conservation ecology. Nearly natural populations are often exposed to a strong human intervention, e.g. by wildlife
management, fisheries or environmental pollution. This means that human activity may improve or break the equilibrium
of the population system in question, it may also increase or decrease the genetic variability of the given populations. One
of the main tasks of conservation biology is to preserve the diversity of population systems and genetic variability of certain
populations. These problems make it necessary to extend the traditional approach of theoretical biology focusing only on a
biological object, to the study of the system ‘‘biological object – man’’. This, in dynamic situation, i.e. in case of a long-term
human intervention, typically requires the approach of mathematical systems theory (in frequently used terms, state-space
modelling). On the state-space approach to modelling in population biology, [1] is an early reference, see also [2].

Mathematical systems theory offers a methodology to face the monitoring problem. This discipline had been developed
by the 1960s to solve a variety of problems in engineering and industry. A basic reference is [3], see also [4]. A recent
reference on linear systems theory is [5]. While by now, mathematical systems theory became quite familiar to system
engineers, observability and controllability analysis of dynamic models in population biology is relatively new. In many
cases, state monitoring of a complex ecological system consists in observation (measurement) of certain state variables, and
thewhole state process has to be determined from the observed data. In amore general setting, the state process is a system
of differential equations, and instead of its concrete solution only a transform (in particular a subset of the components) of
it is known (measured). The considered system is called (locally) observable, if from the observation, the underlying state
process can be uniquely recovered (near an equilibrium state). Based on the sufficient condition for nonlinear observation
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systems published in [6], for different coexisting Lotka–Volterra type population systems, local observability results have
been obtained in part by some of the coauthors of the present paper in [7,8]. Later on, in addition to these theoretical results,
for Lotka–Volterra systemseven a so-called observer systems has been constructed that made it possible to numerically
recover the state process from the observation data, see [7–11]. We also mention that, based on an observability result of
[12] for nonlinear observation systems with invariant manifold, in [13] an observer systemwas designed for the frequency-
dependent model of phenotypic observation of genetic processes.

In the present paper ecological systems of non-Lotka–Volterra type will be considered. Up until now in [14], only
observability results have been obtained for systems of type resource–producer–primary consumer. In Section 2, from [14],
the model setup and basic conditions for the existence of an equilibrium of the system are shortly recalled. Section 3 is
the main body of the paper. First the theoretical background of the observer design is set up. Then the construction of the
observer and the asymptotic recovery of the state process is illustrated with numerical examples for different observation
situations. Section 4 is devoted to the discussion of the results.

2. Description of the dynamic model

In order to illustrate the application of the methodology of mathematical systems theory, a relatively simple food web, a
trophic chain has been chosen, that in addition to populations also involves a resource (energy or nutrient). In the following,
the model setup is shortly recalled from [14], see also [15,16]. For further details on trophic chains (and general food webs)
see e.g. [17,18].

The consideredmodel describes how a resourcemoves through a trophic chain. A typical terrestrial trophic chain consists
of the following components:

resource, the 0th trophic level (solar energy or inorganic nutrient),
which is incorporated by
a plant population, the 1st trophic level (producer),
which transfers it to
a herbivorous animal population, the 2nd trophic level (primary consumer).
Let us note that, in a longer trophic chain, the herbivores can be consumed by a predator population, the 3rd trophic

level (secondary consumer), which can be followed by a top predator population (tertiary consumers). In the present paper,
for technical simplicity only trophic chains of the type resource– producer–primary consumer will be studied. According to
the possible types of 0th level (energy or nutrient), two types of trophic chains will be considered: open chains (without
recycling) and closed chains (with recycling). At the 0th trophic level, resource is the common term for energy and nutrient.

Let x0 denote the time-varying quantity of free resource, say nutrient present in the system, x1 and x2, in function of
time, the biomass (or density) of the producer (species 1) and the primary consumer (species 2), respectively. Let Q be the
resource supply considered constant in the model. Let α0x0 be the velocity at which a unit of biomass of species 1 consumes
the resource, and assume that this consumption increases the biomass of species 1 at rate k1. A unit of biomass of species
2 consumes the biomass of species 1 at velocity α1x1, converting it into biomass at rate k2. Both the plant and the animal
populations are supposed to decrease exponentially in the absence of the resource and the other species, with respective
rates of decrease (Malthus parameters)m1 andm2.

Finally, in a closed system the dead individuals of species 1 and 2 are recycled into nutrient at respective rates 0 < β1 < 1
and 0 < β2 < 1, while for an open system (where there is no natural recycling) β1 = 0, β2 = 0 holds. Then with model
parameters

Q , α0, α1,m1,m2 > 0; k1, k2 ∈]0, 1[; β1, β2 ∈ [0, 1[,
for the trophic chain the following dynamic model can be set up:

ẋ0 = Q − α0x0x1 + β1m1x1 + β2m2x2 (2.1)

ẋ1 = x1(−m1 + k1α0x0 − α1x2) (2.2)
ẋ2 = x2(−m2 + k2α1x1). (2.3)

Let function f be defined in terms of the right-hand side of this system:

f : R3 → R3, f (x) = f (x0, x1, x2) :=
[
Q − α0x0x1 + β1m1x1 + β2m2x2

x1(−m1 + k1α0x0 − α1x2)
x2(−m2 + k2α1x1)

]
.

In [14], necessary and sufficient conditions were found for the existence of a non-trivial ecological equilibrium x∗of dynamic
system (2.1)–(2.3), where all components are present: system (2.1)–(2.3) has a unique equilibrium x∗ = (x∗

0, x
∗
1, x

∗
2) > 0 if

and only if the resource supply is high enough, i.e.

Q > Q1 := m1m2

α1k1k2
− β1m1m2

α1k2
. (2.4)

Remark 2.1. For β1 > 0 the threshold Q1 is lower than that for β1 = 0. Clearly, in the latter case the lack of recycling from
species 1, a higher value of resource supply is necessary to produce the required positive equilibrium.
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Remark 2.2. A linearization shows that under the same condition (2.4), this equilibrium x∗ is also asymptotically stable,
which means stable coexistence in ecological sense.

3. Construction of an observer system for a trophic chain

Concerning different observation situations, in [14] local observability of system (2.1)–(2.3) has been proved. (For the
concept of local observability see Appendix). Now, following the Theorem of [19] (see Appendix), we shall construct, in an
explicit way, the local exponential observer for the three cases considered by [14]. To this end, for the linearization of system
(2.1)–(2.3), we calculate the corresponding Jacobian at equilibrium x∗,

A := f ′(x∗) =
[−α0x

∗
1 −α0x

∗
0 + β1m1 β2m2

k1α0x
∗
1 0 −α1x

∗
1

0 k2α1x
∗
2 0

]
.

Case 1. We consider the observation of the resources of system (2.1)–(2.3), where the observation function is

h(x) := x0 − x∗
0 ⇒ C := h′(x∗) = (1, 0, 0). (3.1)

In order to construct the local observer for the considered observation system, we need to determine a matrix H =
col(h1 , h2, h3) such that matrix A-HC is Hurwitz, i.e. all its eigenvalues have negative real parts. According to the Hurwitz
criterion (see e.g. [5]), in terms of the normed characteristic polynomial of A-HC, the following necessary and sufficient
condition holds:

p(λ) = λ3 + a2λ
2 + a1λ + a0 is Hurwitz ⇔ a0, a1, a2 > 0 and a2 · a1 > a0. (3.2)

This matrix H can be determined from the following theorem:

Theorem 3.1. Let us suppose that the resource supply is high enough, Q >
m1m2
α1k1k2

and matrix

H :=
(
h1
0
1

)

is such that h1 > max
{

m1x
∗
1

m2x
∗
2
,

α0x
∗
0

β2k2

}
. Then the dynamic system defined by

ż = f (z) + H[y − h(z)]
is a local exponential observer for system (2.1)–(2.3) with the observation of the resource defined by (3.1).

Proof. It is sufficient to show that under the conditions of the theorem, x∗ is a Lyapunov stable equilibrium of system (2.1)–
(2.3), and the matrix A-HC is Hurwitz. Then the proof can be concluded by applying the Theorem of [19] (see Appendix).

First, from Q >
m1m2
α1k1k2

inequality Q > Q1 also follows, which on the one hand, as quoted at the end of Section 2, implies
the existence of a unique positive equilibrium. On the other hand, in [14,15] it was proved, both in open systems (with
β1 = 0, β2 = 0) and in partially or totally closed systems (i.e. at least one of inequalities 0 < β1 < 1 and 0 < β2 < 1 holds)
condition Q > Q1 also implies (asymptotic) stability of the equilibrium.

From (2.1)–(2.3) the coordinates of the positive equilibrium x∗are

x∗
0 = −α1Q − β1m1m2

k2
+ β2m1m2

− α0m2
k2

+ α0β2k1m2
,

x∗
1 = m2

k2α1
,

x∗
2 = −α0k1Q + − α0m1m2

k2α1
− β1k1α0m1m2

k2α1

− α0m2
k2

+ α0β2k1m2
.

Now it will be proved that for the coefficients of the normed characteristic polynomial of A-HC conditions (3.2) hold.
To cut short the rather tedious calculations, the following statements can be checked: Hypotheses Q >

m1m2
α1k1k2

and
k1, k2 ∈]0, 1[; β1, β2 ∈ [0, 1[ imply Q >

m1m2
α1

and also α0x
∗
0 − β1m1 > 0, furthermore, the latter is sufficient for a1 > 0

and also used in the proof of a2 · a1 − a0 > 0. On the other hand,

h1 >
m1x

∗
1

m2x
∗
2

⇒ α1h1k2x
∗
2 − β1m1 > 0, to be used in the proof of a0 > 0

h1 >
α0x

∗
0

β2k2
⇒ β2m2h1 − α0α1x

∗
0x

∗
1 > 0 ⇒ a2 · a1 − a0 > 0.
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Fig. 1. Some solutions of systems (2.1)–(2.3).
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Fig. 2. Solutions of systems (2.1)–(2.3) and (3.3).

From x∗
1 = m2

k2α1
, k1, k2 ∈ ]0, 1[ and β2 ∈ [0, 1[ inequality α1k2x

∗
1x

∗
2 −β2k1k2m2x

∗
2 > 0 can be derived, which implies a0 > 0.

Finally, inequalities h1, a0, x
∗
1 > 0 directly imply a2 > 0. As a conclusion, all inequalities in (3.2) hold for the characteristic

polynomial of p. Therefore matrix A-HC is Hurwitz, which concludes the proof. �

Example 3.2. As a numerical example, we consider the following parameter values: Q := 10; α0 := 0.3; α1 := 0.1; β1 :=
0.2; β2 := 0.3;m1 := 0.1;m2 := 0.4; k1 := 0.5; k2 := 0.5. In this case the considered system (2.1)–(2.3) has a positive
equilibrium x∗ = (4.52, 8, 5.78), which is asymptotically stable (see Fig. 1).

Now, with matrix

H :=
(10

0
1

)
,

conditions of Theorem 3.1 are satisfied, therefore we can construct the following observer system

ż0 = 10 − 0.3z0z1 + 0.2 · 0.1z1 + 0.3 · 0.4z2 + 10
[
y − (

z0 − x∗
0

)]
ż1 = z1(−0.1 + 0.5 · 0.3z0 − 0.1z2)
ż2 = z2(−0.4 + 0.5 · 0.1z1) + 1[y − (z0 − x∗

0)].
(3.3)

If we set initial condition x(0) := (3, 7, 2) near the equilibrium of system (2.1)–(2.3), and similarly, we consider another
nearby initial condition, z(0) := (2.9, 7.2, 1.8) for the observer system (3.3), Fig. 2 shows that the corresponding solution z

tends to the solution x of the original system.

Case 2. Now we consider the case when the plant of system (2.1)–(2.3) is observed. The observation function then is

h(x) := x1 − x∗
1 ⇒ C := h′(x∗) = (0, 1, 0). (3.4)

Similarly to Case 1, we can prove the following theorem providing an observer for the case (3.4).
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Fig. 3. Solutions of systems (2.1)–(2.3) and (3.5).

Theorem 3.3. Given a matrix

H :=
(
h1
h2
0

)

with h1 > m1 and h2 > 0, dynamic system defined by

ż = f (z) + H[y − h(z)]
is a local exponential observer for system (2.1)–(2.3) with the observation of the plant, as given in (3.4).

Proof. The scheme of the proof is similar to that of the previous one.We only have to prove thatmatrix A-HC is Hurwitz and
the application Theorem of [19] will conclude the proof. Since from [14] we have x∗

1 = m2
k2α1

, and k1, k2 ∈]0, 1[; β2 ∈ [0, 1[,
therefore we obtain that β2k1m2 − α1x

∗
1 < 0. Moreover, since β1 ∈ [0, 1[ and h1 > m1, we have that h1 − β1m1 > 0.

Applying these inequalities and taking into account that the case of a positive equilibrium x∗ > 0 is considered and h2 > 0,
it is easy to check that conditions (3.2) hold, therefore matrix A-HC is Hurwitz, and the proof is complete. �

Example 3.4. With the same model parameters as in Example 3.2, we consider

H =
(0.5
0.1
0

)
.

Then conditions of Theorem 3.3 are verified and therefore we can construct the following observer system

ż0 = 10 − 0.3z0z1 + 0.2 · 0.1z1 + 0.3 · 0.4z2 + 0.5 [y − (z1 − x∗
1)]

ż1 = z1(−0.1 + 0.5 · 0.3z0 − 0.1z2) + 0.1 [y − (z1 − x∗
1)]

ż2 = z2(−0.4 + 0.5 · 0.1z1).
(3.5)

If we set again initial condition x(0) := (3, 7, 2), near the equilibrium of system (2.1)–(2.3), and similarly, we consider
another nearby initial condition, z(0) := (2.9, 7.2, 1.8) for observer system (3.5), Fig. 3 shows that the corresponding
solution z tends to the solution x of the original system.

Case 3. Let us finally consider the observation of the herbivorous species of system (2.1)–(2.3), where the observation
function is

h(x) := x2 − x∗
2 ⇒ C := h′(x∗) = (0, 0, 1). (3.6)

Similarly to Theorems 3.1 and 3.3, it is not hard to prove the following theorem providing an observer for the case (3.6).

Theorem 3.5. Let Q >
m1m2
α1k1k2

be satisfied, and define matrix

H :=
(
h1
h2
0

)
,

where h1 > m1 and h2 > m2. Then the dynamic system defined by

ż = f (z) + H[y − h(z)]
is a local exponential observer for system (2.1)–(2.3) with the observation of the plant, with h defined in (3.6).
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Fig. 4. Solutions of systems (2.1)–(2.3) and (3.7).

Example 3.6. For the model parameters of the previous examples, with

H :=
(0.5
0.5
0

)
,

conditions of Theorem 3.5 hold, and hence we obtain the following observer system

ż0 = 10 − 0.3z0z1 + 0.2 · 0.1z1 + 0.3 · 0.4z2 + 0.5 [y − (z2 − x∗
2)]

ż1 = z1(−0.1 + 0.5 · 0.3z0 − 0.1z2) + 0.5 [y − (z2 − x∗
2)]

ż2 = z2(−0.4 + 0.5 · 0.1z1).
(3.7)

Set again initial condition x(0) := (3, 7, 2), close to the equilibrium of system (2.1)–(2.3), and as a nearby initial condition
for the observer system (3.7) also choose z(0) := (2.9, 7.2, 1.8). Now Fig. 4 shows that the corresponding solution z tends
again to the solution x of the original system.

4. Discussion

In the paper the construction of an observer system was applied for the state monitoring of a simple trophic chain of
the type resource–producer–primary consumer, recovering the whole state process from the only observation of different
components of the systems, such as the resource, the plant (producer) and a herbivorous animal. The applied methodology
can also be extended to more complex models of food webs, involving the observation of certain abiotic environmental
components and/or certain indicator species. A similar approachmay be also useful for themonitoring of population systems
in changing environment, where the change of certain abiotic parameters of the ecosystem is governed by an ‘‘external’’
dynamic system (describing an industrial pollution or climatic changes).
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Appendix

Given positive integersm, n, let

f : Rn → Rn, h : Rn → Rm

be continuously differentiable functions and suppose for some x∗ ∈ Rn we have that f (x∗) = 0 and h(x∗) = 0.
We consider the following observation system

ẋ = f (x) (A.1)
y = h(x), (A.2)

where y is called the observed function.
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Definition A.1. Observation system (A.1) and (A.2) is called locally observable near equilibrium x∗, over a given time interval
[0, T ], if there exists ε > 0, such that for any two different solutions x and x̄ of system (2.1) with |x(t) − x∗| < ε and
|x̄(t) − x∗| < ε(t ∈ [0, T ] ), the observed functions h ◦ x and h ◦ x̄ are different. (◦ denotes the composition of functions. For
brevity, the reference to [0, T ] is suppressed.)
For the formulation of a sufficient condition for local observability consider the linearization of the observation system (A.1)
and (A.2), consisting in the calculation of the Jacobians

A := f ′(x∗) and C := h′(x∗).

Theorem A.2 ([6]). Suppose that

rank[C |CA|CA2| · · · |CAn−1]T = n. (A.3)

Then observation system (A.1) and (A.2) is locally observable near equilibrium x∗.

Now, the construction of an observer system will be based on [19]. Let us consider observation system (A.1) and (A.2).

Definition A.3. Given a continuously differentiable function G : Rn × Rm → Rn, system

ż = G(z, y) (A.4)

is called a local asymptotic (respectively, exponential) observer for observation system (A.1) and (A.2), if the composite system
(A.1) and (A.2), (A.4) satisfies the following two requirements:

(i) If x(0) = z(0), then x(t) = z(t), for all t ≥ 0.
(ii) There exists a neighbourhoodV of the equilibrium x∗ of Rn such that for all x(0), z(0) ∈ V , the estimation error z(t)−x(t)

decays asymptotically (respectively, exponentially) to zero.

Theorem A.4 ([19]). Suppose that equilibrium x∗ of system (A.1) and (A.2) is Lyapunov stable, and that there exists a matrix H

such that matrix A-HC is Hurwitz (i.e. its eigenvalues have negative real parts), where A := f ′(x∗) and C := h′(x∗). Then dynamic

system defined by

ż = f (z) + H[y − h(z)] (A.5)

is a local exponential observer for observation system (A.1) and (A.2).
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