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Abstract. In this paper we study a threshold value for the survival in the

predator-prey models. The result obtained can be applied to the case of
systems with some perturbation due to toxic effects or also in the case of

biological fight in greenhouse crops.
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1 Introduction

Searching solutions for the important economic influence of plagues on crops
has, as a matter of fact, evolved throughout time, and this evolution has been

particularly fast in the last decades, this has been like that as a consequence of
problems deriving from the exclusive use of synthetic pesticides (e.g., higher
incidence of pests, appearance of new species, endurance to pesticides, costs
increase, toxical and environmental problems)(Braungärtner and Gutierrez,

1989; Norton and Munford, 1993; Cabello, 1998).
It is relevant the role of organic enemies within crops, since they will give

rise to a death toll which will regulate pest populations, this is called “natural

control”. Obviously, this control is not enough in order to keep pests under

the threshold in which it might cause important economic damage on crops.
Whenever the action of natural enemies is intentionally manipulated, then

we are dealing with biological fight against pests, which is an alternative
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technique for quimical pest-control (Debach, 1984; Samways, 1990).
Within the frame of this biological fight, the role of the so-called predator-

prey models has an essential role; several mathematical studies have been

made about this, such as those by Lotka (1925), Volterra (1926), Watt (1959),
Curry and Demichele (1977). Nevertheless, the practical performance of
these works considering their relevance upon biological control will become
apparen later on (Hassell and Waage, 1984; Hassell, 1988; Mackauer et al.

1990).
What can be inferred from the facts above is that intend to study the

predator-prey models in order to obtain a precise threshold value for the sur-

vival of pests, so completing the result from theorem 1 [6] and the checking it
through a series of real data taken from a predator-prey action in greenhouse

crops.

2 The main result

We have the Kolmogorov-type equation,

x′ = xG(c(t), x), t ∈ IR+ = [0,∞). (2.1)

In (2.1), x is a measure of the population; c = c(t) represents demographic

parameters. It is assumed that:
1) G(z, x) ∈ C1[IR× IR+, IR], G(0, 0) = 0
2) G(z, x) is strictly decreasing in z and x.

3) c(t) denoted a bounded continuous function.

In the given a bounded continuous function α : [0, +∞) → IR we define,

α∗ = lim
t→+∞

sup α(t) ; α∗ = lim
t→+∞

inf α(t)

in this section we prove a result that complements theorem 1 in [6]

Theorem 2.1 If G(c∗, 0) = 0 then x∗ = 0 for any function solution x of
(2.1).

We define Γ := c∗, a threshold value for the persistence of the solution x.
To prove the Theorem 2.1 we need two intermediates results.
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Proposition 2.2 Let be a positive solution y the equation

y′ = y[m− f(t, y)], (2.2)

where m > 0 is constant and f : IR+ × IR+ → IR continuous and increasing
function, is such that

lim
y→0

f(t, y) = 0 uniformly in y. (2.3)

If y is defined and bounded on [0, +∞), then y∗ > 0.

Proof. For contradiction propose, suppose that

y∗ = 0, (2.4)

we shall show that
y∗ > 0. (2.5)

For contradiction propose, assume that y(t) → 0 as t → +∞. By (2.3),
then exists t0 ≥ 0 such that,

f(t, y(t)) ≤ 1
2
m ∀t ≥ t0,

an hence,

y′ ≥ 1
2
my on [t0, +∞).

Consequently, y(t) → +∞ as t → +∞, and this contradiction prove that
(2.5) holds.

By (2.4)-(2.5) and the arguments in section 1 [13], then exists a sequence
{tn} → +∞, such that

y(tn) → 0 and y′(tn) = 0. (2.6)

From this, m = f(tn, y(tn)) for all n ∈ IN, and by since again, m = 0.
This contradiction end the proof.

Lemma 2.3 Let [ρ0, ρ1] be a compact interval. If given ε > 0 there exists
δ > 0 with the following property.

G(z, 0)−G(z, µ) < δ for some (z, µ) ∈ [ρ0, ρ1]× (0, +∞) then, µ < ε.
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Proof. Suppose on the contrary the existence of ε > 0 and sequence {zn},{µn}
in [ρ0, ρ1], [ε, +∞) respectively such that,

G(zn, 0)−G(zn, µn) → 0 as n → +∞, (2.7)

without loss of generality, we can assume that zn → z0 for some z0 ∈ [ρ0, ρ1].
On the other hand G(zn, µn) ≤ G(zn, ε) and by (2.7),

G(z0, 0) ≤ G(z0, ε),

G(t, x) is strictly increasing in x, and this contradiction end the proof.

Proof of Theorem 2.1 Let us define,

ρ0 = inf(c), ρ1 = sup(c) and fix ε > 0

Fix also δ > 0 satisfying the assuming in Lemma 2.3. Since,

mα := G(c∗ − α, 0) → 0 as α → 0;

There exists β > 0 such that mβ < δ. On the other hand, there exists

t0 ≥ 0 such that, c(t) ≥ c∗ − β ∀t ≥ t0, and hence,

x′ ≤ x[mβ − f(t, x)] on [t0, +∞)

when f(t, x) := G(c(t), 0)−G(c(t), x).

Let y be the solution of (2.2) determined by the initial condition y(t0) =
x(t0). By the monotony of function G we have f(t, y) ≤ mβ, then y ≤
embty(t0) and this implies that y is defined and bounded on [t0, +∞). and by
comparison y(t) ≥ x(t) for all t ≥ t0.

On the other hand, it is easy to show that f satisfy the assumptions in
Proposition 2.2 an hence y∗ > 0.

By Lemma 2.2 of [13] there exists a sequence tn → +∞, such that,
y′(tn) → 0 and y(tn) → y∗ > 0. And by (2.2),

mβ = lim
n→+∞

[G(c(tn), 0)−G(c(tn), y(tn))] .

Since c(t) is bounded, we can assume, without loos of generality, that c(tn) →
z0 ∈ [ρ0, ρ1], and them

mβ = G(z0, 0)−G(z0, y∗) < δ.

By Lemma 2.3, y∗ < ε and the proof follows since x∗ ≤ y∗.
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3 Application to the predator-prey model

When analyzing the predator-prey model, we can consider the predator ac-

tivity as an external factor which acts upon the development of the prey
population. According to this, we will try to obtain some conclusions based

upon a predator-prey model.
We considers,

x′ = x(a− bx− dy) (3.1)

y′ = y(α− βx− γy) (3.2)

which a, b, d, α, β, γ positive constants which determine a predator-prey model
with friction.

We define c(t) := a− dy(t), in this way we have that (3.1) is a equation

of type (2.1) where the thresholds value Γ =
a
d
, in this way of Theorem 2.1

we have if y(t) → a
d as t → +∞, then we have the extinction of the prey.

We are trying to confront the result obtained above with unpublished
data (Novartis S.A.), where the activity of the pest population ”franklin-
iella occidentalis” (Thys: Thripidae) is studied and also that of its predator

”Orius” (Hem: Anthocoridae) on pepper crops on greenhouse, located in

La Mojonera Almeria (Spain) through the year 1997-98. According to the

model (3.1)(3.2), the following graph is obtained in [5], which is represented
in figure 1. However, the same result. i.e., extinguishment is obtained when-
ever y reaches the Γ threshold, as shown in figure 2. On the contrary, it can
also be observed that whenever this threshold value is not reached by the

y predator population, then the x prey population manages to persist, as
shown in figure 3.
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Figure 1: Adjustment Orius-Frankliniella in pepper in 1997/98. La Mojonera
(Almeŕıa)

Time

0

0.05

0.1

0.15

0.2

0.25

D
en

si
ty

 r
el

at
iv

e

Prey

Predator

Threshold

Figure 2: Predator equal to Threshold value Γ

6



Time

0

0.05

0.1

0.15

0.2

0.25

0.3

D
en

si
ty

 r
el

at
iv

e

Prey

Predator

threshold

Figure 3: Predator under Threshold value Γ

4 Discusion.

Many studies have been concerned with biological fight in the last few years,
since it could become a relevant instrument, either alternate or complemen-
tary, for pest-controlling in vegetable cultive. Thus, one of the main problems
would be to establish the extent to which the predator should be used in or-

der to extinguish or keep the pest alive, in a harmless level for crops. The
results obtained in this work could be extremely useful in order to determine
precisely how the process above can be carried out, since it may be relevant
even from an economic point of view.

It can also be mentioned the relevance of these results within the field
of biological fight control, an issue under observation in plenty of studies

nowadays.
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