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Abstract:  21 
 22 
For sustainable exploitation of renewable resources, the separation of a reserve area is a 23 

natural idea. In particular, in fishery management of such systems, dynamic modelling, 24 

monitoring and control has gained major attention in recent years.  In this paper, based on 25 

the known dynamic model of a fish population with reserve area, the methodology of 26 

mathematical systems theory and optimal control is applied. In most cases, the control 27 

variable is fishing effort in the unreserved area. Working with illustrative data, first a 28 

deterministic stock estimation is proposed using an observer design method. A similar 29 

approach is also applied to the estimation of the effect of an unknown environmental 30 

change. Then it is shown how the system can be steered to equilibrium in given time, 31 

using fishing effort as an open-loop control. Furthermore, a corresponding optimal 32 

control problem is also solved, maximizing the harvested biomass while controlling the 33 

system into equilibrium. Finally, a closed-loop control model is applied to asymptotically 34 

control the system into a desired equilibrium, intervening this time in the reserve area. 35 

Keywords: stock estimation, fishery resource management, reserve area, observer system, 36 
ecosystem monitoring, ecosystem control 37 
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1. Introduction 1 

 2 

In ecological management, in particular, in management of fish resources optimal control 3 

methods play an important role. Since the publication of the basic monograph by Clark 4 

(1976), a large number of publications have been dedicated to the development of the 5 

optimal control methodology applied to the management of renewable resources, see e.g.   6 

Goh (1980). We also call the attention to Clark (2010), the third, extended edition of 7 

Clark (1976). Modifying Clark’s model, Chaudhuri (1986, 1988) studied combined 8 

harvesting and considered the perspectives of bioeconomics and dynamic optimization of 9 

a two-species fishery, see also Kar and Chaudhuri (2004) concerning two prey one 10 

predator fishery. 11 

 12 
Recently, also qualitative properties of population systems, such as controllability and 13 

observability have been studied, see e.g. Shamandy (2002,) López et al. (2004), (2007a, 14 

b).  For an overview of the applications of mathematical systems theory in this context, 15 

we refer the reader to the review Varga (2008).  16 

 17 

Over the last decades, the problem of sustainability of marine fisheries, the study the 18 

effects of a reserve area has played an important role in the management of fish 19 

resources. In fact, the protection of a portion of the fishery stocks agains future 20 

overfishing, can be realized in a reserve (or no-take) area where fishing is prohibited, see 21 

e.g. Agardy (1997), Pauly et al. (2002) and a  recent overview of the ecological effects of 22 

marine reserves a Lester et al. (2009). For a survey of criticalv science gaps in the 23 

application of reserve areas we refere to Sale et al. (2005).  24 

 25 

To our knowledge, Dubey et al. (2003) was the first paper was the first paper where the effect of a 26 

reserve area on the exploitation of a fishery resource has been modelled and analyzed in terms of 27 

a continuous-time logistic dynamics. The authors derive sufficient conditions for the existence of 28 

equilibrium in the dynamic model, and they also analyze its stability properties. In Bischi and 29 

Lamantia (2007), based on a single-species discrete time logistic model with reserve area, the 30 

game-theoretic conflict of several fishing agents is studied, where the harvested fish is sold on a 31 

Cournot-type oligopolistic market. Cartigny et al. (2008) analyze the problem of designing the 32 

access of small- and large-scale fishermen to a protected fishing reproductive area. A comparison 33 

of different dynamic fishery models with reserve area is discussed in Loisel and Cartigny (2009).  34 
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 1 
In our paper, the stock estimation and monitoring of the considered population system 2 

will be based on the observability theory of nonlinear systems of Lee and Markus (1971), 3 

and on the observer design methodology of Sundarapandian (2002). We call the attention 4 

to the fact that the observer system also provides a deterministic stock estimation method 5 

for the reserved area, as well; see Guiro et al. (2009). In the latter a global observer was 6 

constructed for the same model of Dubey et al. (2003), with a different methodology, and 7 

a compact survey of observer design methods was also given. Although our observer is 8 

only local, i.e. provides stock estimates only near the equilibrium state, it may be more 9 

efficient than the global one, as shown in Gámez et al. (2011). In the latter paper the 10 

monitoring problem in the fishing effort model with reserve area has been studied, in 11 

particular, observer has been also constructed for the system under the effect of a 12 

seasonal change in the abiotic environment. In the present work we complete this with the 13 

estimation of an unknown environmental parameter, using the same observer design 14 

methodology.  15 

 16 

Finally, applying the usual discounted infinite time horizon optimal control model e.g. 17 

Clark, 1976 and Goth, 1980 discuss the optimal harvesting policy in terms of the fishing 18 

effort model. In the present paper we will use the same logistic dynamics with the fishing 19 

effort as control variable, but first we deal with a finite time horizon control model 20 

proving that a disturbed system can be controlled into equilibrium from nearby states, in 21 

given time, by an appropriate fishing effort strategy. In addition, for the finite time 22 

horizon model, using a toolbox developed in a MatLab environment in Banga et al. 23 

(2005) and Hirmayer et al. (2009), we obtain a time-dependent harvesting strategy which 24 

is optimal among those that steer the disturbed system back into the equilibrium. As for 25 

the infinite time horizon model, applying a theorem of Rafikov et al. (2008), we find a 26 

linear feedback control which, from the actual state calculates the corresponding fishing 27 

effort that asymptotically steers the system into the required equilibrium.   28 

 29 

The paper is organized as follows: In Section 2 first, from Dubey et al. (2003) we recall 30 

the dynamic model of a fish population with reserve area, and sufficient conditions for 31 

the stable coexistence of both subpopulations under the effect of a constant fishing effort. 32 

Then, based on a systems theoretical approach, a deterministic stock estimation method is 33 
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proposed. Section 3 is devoted to the estimation of the effect of an unknown 1 

environmental change, applying the same observer design methodology of the previous 2 

section. In Section 4, we deal with the equilibrium control of the system in given time, 3 

using fishing effort as an open-loop control, and also solve a corresponding optimal 4 

control problem. Finally, in Section 5, a closed-loop control model is applied to 5 

asymptotically control the system into a desired equilibrium, and a Discussion section 6 

completes the paper.  For the reader’s convenience, certain concepts and theorems of 7 

mathematical systems theory applied in the main body of the paper are shortly 8 

summarized in the Appendix.   9 

 10 

2. Deterministic stock estimation by observation in the fishing area 11 

 12 

First, from Dubey et al. (2003) we recall the dynamics of the fish population moving 13 

between two areas, an unreserved one (1) where fishing is allowed, and a reserved one (2) 14 

where fishing is prohibited. At time t, let x1(t) and x2(t) be the respective biomass 15 

densities of the same fish species inside the unreserved and reserved areas, respectively. 16 

Assume that the fish subpopulation of the unreserved area migrates into reserved area at a 17 

rate m12, and there is also an inverse migration at rate m21. Let E be the fishing effort 18 

applied to harvesting in the unreserved area and let us assume that in each area the 19 

growth of the fish population follows a logistic model. The dynamics of the fish 20 

subpopulations in the unreserved and reserved areas are then assumed to be governed by 21 

the following system of differential equations (2.1)-(2.2):  22 

 23 

 1221112
1

1
111 1 qExxmxm

K

x
xrx 








                                          (2.1) 24 

221112
2

2
222 1 xmxm

K

x
xrx 








 ,                                                    (2.2) 25 

 26 

where r1 and r2 are the intrinsic growth rates of the corresponding sub-populations, K1 27 

and K2 are the carrying capacities for the fish species in the unreserved and reserved 28 

areas, respectively; q is the catchability coefficient of in the unreserved area. All 29 

parameters r1, r2, q, m12, m21, K1 and K2 are positive constants. 30 

 31 
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In Dubey et al. (2003), it is checked that for a unique positive equilibrium ),( 21
  xxx

 
1 

of the dynamic model (2.1)-(2.2) the following set of inequalities are sufficient: 2 

 3 
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Furthermore, the Lyapunov function  8 
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also implies asymptotic stability of equilibrium x for system (2.1)-(2.2), globally with 10 

respect to the positive orthant of  R2. Throughout the paper we shall suppose conditions 11 

(2.3a)-(2.3c) to guarantee the stable coexistence of the system applying a constant 12 

reference fishing effort.  13 

 14 

Now, let us consider the problem of stock estimation in the reserve area on the basis of 15 

the biomass harvested in the free area. (For technical reason, its difference from the 16 

equilibrium value is supposed to be observed.) To this end, in addition to dynamics (2.1)-17 

(2.2) we introduce an observation equation 18 

                         19 

(2.4)                                              ),(:)( *
11 xxqExhy   20 

 21 

representing the observation of the biomass harvested in the free fishing area. Then 22 

linearizing observation system (2.1)-(2.2)-(2.4) near the equilibrium, we get the Jacobian 23 

of the right-hand side of (2.1)-(2.2) 24 

 25 
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and the observation matrix 27 
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1 

Now, for the linearized system we obviously have .2]|rank[ TCAC  Hence Theorem 2 

A.2 of Appendix implies local observability of the system near the equilibrium in the 3 

sense of Definition A.1 of Appendix. In other words, in principle, the whole system state 4 

(in particular the stock of the species in the reserve area) as function of time can be 5 

uniquely recovered, observing the biomass harvested per unit time. In the following 6 

illustrative example we will see how the state of the system (and hence the total stock) 7 

can be effectively calculated from the catch realized in the fishing area, applying the 8 

methodology of Sundarapandian (2002), see Appendix. 9 

 10 

Example 2.1. For a possible comparison, in this numerical example we use the same 11 

parameters as Guiro et al. (2009): r1=0.7, r2=0.5, K1=10, K2=2.2, m12=0.2, m21=0.1, 12 

q=0.25 and E=0.9,  13 
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Now the positive equilibrium is  )12.3,85.4(=*x  and with  16 
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If we take an initial condition )120,30(:0 x  for system (2.5), and similarly, we consider 21 

another nearby initial condition )100,35(:0 z  for the observer system (2.6), then the 22 

corresponding solution z  of the observer approaches the solution x  of the original 23 

system, as shown in Figure 1. We note that in this particular case the convergence is 24 

much faster than that of the global observer constructed in Guiro et al. (2009). 25 
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    1 

Figure 1. Solution of observer (2.6), approaching the solution of system (2.5) 2 

 3 

 4 

3. Estimation of the effect of an unknown environmental change 5 

 6 

Assume that the considered ecosystem consists, on the one hand, of a system of several 7 

interacting populations living in the given habitat, and the abiotic environment on the 8 

other. The latter may also be exposed to climatic (e.g. seasonal) changes and/or human 9 

intervention, such as e.g. pollution, described by certain abiotic parameters (e.g. 10 

temperature or concentration). In this section, considering the model (2.1)-(2.2), we 11 

suppose that the reference values of certain abiotic parameters change to unknown 12 

constant values.  The effect of this change will be described by a small additive term 13 

(disturbance) Rw  in certain model parameters. In our illustrative numerical example it 14 

will be shown how we can recover the whole state process of the population system and 15 

estimate the unknown disturbance at the same time, by constructing and solving the 16 

corresponding observer system. Let us suppose, for example, that a disturbance takes 17 

place in the migration rates. Let us consider first the corresponding fishery system, 18 

completed with a trivial equation for the unknown constant parameter w,  19 
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where c1 and c2 are positive constants. Since equilibrium ),( 21
  xxx  is asymptotically 21 

stable for system (2.1)-(2.2), it is not hard to prove that equilibrium )0,,( 21
 xx  is 22 
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Lyapunov stable for system (3.1)-(3.3). Therefore Theorem A.5 of Appendix can be 1 

applied for the observer design.  2 

Let us suppose that, similarly to Section 2, the biomass harvested in unit time is observed: 3 

).(:),( *
11 xxqEwxhy                                                                        (3.4) 4 

Now the linearization of observation system (3.1)-(3.4) gives 5 
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Hence we easily obtain that 3]||[rank 2 TCACAC , if *
22 2xK   and *

22
*
11 xcxc  . 7 

Therefore, by Theorem A.2 (see Appendix), the system is locally observable near the 8 

equilibrium, and applying the method of Sundarapandian (2002) we can construct a 9 

corresponding observer system, as shown in the following  10 

 11 

Example 3.1. Using the same system parameters as in Example 2.1, with the presence of 12 

an unknown environmental disturbance w and coefficients c1=0.1, c2=0.3, we have   13 
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System (3.6) has a nonnegative equilibrium )0,12.3,85.4(x , and with 17 
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If we suppose that environmental perturbation corresponds to the value 2.0w  and we 

take an initial condition )2.0,5,10(:),( 00 wx , of system (3.6), and similarly, we consider 

another nearby initial condition, )3.0,10,15(:0 z  for the observer system (3.7). Figure 2 

shows that the corresponding solution z  approaches the solution x  of the original 

system, and also correctly estimates the “unknown” parameter w.  

 

 

a) b) 

 

c) 

Figure 2. Simultaneous state and parameter estimation in system (3.6) with its observer 

(3.7). For a better scaling, in the graphical representation the graph of  z3 is plotted only 

after the relatively large transient values. 
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4. Open-loop equilibrium control by harvesting 3 



 

 10

 1 

An important issue in conservation ecology is controlling a population system into 2 

equilibrium in given time, and maintain it there. In this section we will deal with this 3 

problem in the framework of the dynamic fishing effort model. We also consider the case 4 

when, during this operation, the total harvested biomass with certain discount factor is 5 

maximized.  6 

 7 

4.1 Open-loop control into equilibrium by fishing effort in given time 8 

Let us suppose that the system is deviated from its equilibrium, and we want to steer it 9 

back into equilibrium by replacing the constant fishing effort by a time-dependent effort 10 

considered as control.  Open-loop control means that we want to determine in advance a 11 

control as function of time, such that the corresponding time-dependent state of the 12 

system reaches the original equilibrium in given time. (The closed-loop controls to be 13 

considered in the next section will depend on the current state of the system.) 14 

 15 

Let us suppose that the total effort applied for harvesting the fish population is controlled 16 

in function of time in the form )(tuE  . Here, with the notation of the Appendix, we can 17 

consider control functions ],0[
0

TUu   defined on a fixed interval [0,T], with s:=1. 18 

Throughout this section, it will be is supposed that E0 , which means that there is 19 

only harvesting and no release of fish is allowed. Then our model (2.1)-(2.2) takes the 20 

form 21 
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control system (4.1) takes the form 26 
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))( ,( tuuxFx   .                                        (4.2) 1 

Here )(tu  is interpreted as an additional fishing effort. Obviously, to Eu  :  and 0:)( tu   2 
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(2.1)-(2.2).  4 
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Since  8 
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2

1
2   mxqABB , 9 

we get 2]|[rank ABB , and applying Theorem A.7 we obtain the local controllability of 10 

system (4.2) into x  on interval ],0[ T . 11 

The obtained local controllability means that from nearby states, the system can be 12 

steered into the equilibrium applying an appropriate small control. Now we proceed to 13 

the determination of such control.  14 

Fix an initial state 0x  from a neighbourhood of local controllability of system (4.1), and 15 

for each control function u  small enough (i.e. ],0[ TUu   for appropriate ],0] 0  , see 16 

conditions of system (A.6)-(A.7) of Appendix), let x  be the solution of (4.2) defined on 17 

],0[ T  and corresponding to the initial value 0x . Then a control ],0[ TUu    will steer 18 

initial state 0x  into equilibrium x , if and only if it minimizes functional  19 

2
)(:)(  xTxu  ( ],0[ TUu  ). 20 

 The above reasoning can be summarized in the following theorem: 21 

Theorem 4.1. Suppose that the parameters of system (4.1) satisfy conditions (2.3a)-22 

(2.3c). Then system (4.1) is locally controllable to equilibrium x  on interval ],0[ T . An 23 

initial state 0x  from a neighbourhood of local controllability will be steered into x  by a 24 

control ],0[ TUu   if and only if the latter is a solution of the following optimal control 25 

problem: 26 
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 4 

Remark 4.2. From the local controllability of control system (4.2), we know that the 5 

optimal control problem (4.3)-(4.5) has at least one solution. 6 

As a consequence of this theorem, for an effective calculation of an equilibrium control 7 

u , it is enough to solve the optimal control problem (4.3)-(4.5). To this end we can apply 8 

the toolbox developed for MatLab in Banga, et al. (2005) and Hirmajer et al. (2009). 9 

Actually, this program uses piecewise constant controls, providing in this way an 10 

approximate solution of the optimal control problem. Next, using this toolbox, we will 11 

illustrate the results of Theorem 4.1. 12 

Example 4.3. Let us consider the parameters of Example 2.1. Taking as initial condition 13 

)5.3,4(:0 x  and time duration T:=5, we apply the MatLab toolbox mentioned above. 14 

Figure 3.a) shows the obtained optimal control u ; the corresponding solution x  ending 15 

up at equilibrium )12.3,85.4(x  can be seen in Figure 3.b).     16 

 17 

 18 

 19 

a)                                                                            b) 20 
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 1 

c) 2 

Figure 3. a) Control function of system (4.1) for T=5,  b) Solution of control system  (4.1) for 3 

T=5, with initial value x(0)=(4, 3.5),  c) Solution of the uncontrolled system (2.5) for T=5, with 4 

initial value x(0)=(4,3.5). 5 

 6 

We note that, since by Remark 4.2, for the uncontrolled system, x  is asymptotically 7 

stable, the state would tend to x  , reaching it in “infinite time”, as seen in Figure 3.c. By 8 

our method the system state is steered into x   in given finite time.   9 

 10 

4.2. Open-loop equilibrium control by optimal fishing effort  11 

 12 

Since the equilibrium control of the previous section is usually not unique, it is 13 

reasonable to look for an equilibrium control that also maximizes the harvested biomass.   14 

For a more flexible model, we will consider the corresponding integral with and without 15 

discount. Although for infinite time-horizon problems an exponential discount factor is a 16 

technical necessity (see. Clark 2010 and references therein), similar discount is also used 17 

in finite time-horizon models (see e.g. Chakraborty et al. 2011).  18 

For 0  of the previous subsection and arbitrarily fixed 0 , with the same controlled 19 

population dynamics as (4.2), the corresponding optimal control problem is the 20 

following: 21 

max,)())((:)(
0

1   
T

t dttxtuEqeu                                   (4.6) 22 

],0[ TUu  ,                                                                            (4.7) 23 

))( ,( tuuxFx   ,                                             (4.8) 24 
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0)0( xx  ,   xTx )(                                                                   (4.9) 1 

Now, for a numerical solution of this problem using the mentioned MatLab toolbox of 2 

Banga et al. (2005), piecewise constant controls are considered. More precisely, for fixed 3 

positive integer N, let 
N

T
iti :   ),0( Ni be the uniform division of ],0[ T , and let us 4 

define the set of controls as follows: 5 

)},0(  [,] intervaleach on constant  is    :],0[{:],0[ 1, NittuTUuTS iiN   . 6 

Then, considering the set of admissible controls 7 

(4.9)} and (4.8) satisfies    :],0[{:],0[ ,, uTSuTS NN   ,  8 

0  and N  are chosen as to guarantee that ],0[, TS N

  is not empty. Hence functional   9 

in  (4.6) can be defined on the compact set N
N TS R],0[, 

  and is the composition of two 10 

continuous mappings ],0[],0[],0[ ,, TCTSTS NN  
 , assigning to each ],0[, TSu N

   11 

the pair (u,x), where x is the solution of (4.8), corresponding to u, and mapping 12 

R],0[],0[,  TCTS N , assigning to each pair ],0[],0[)( , TCTSu,x N  
  the 13 

integral   
T

t dttxtuEqe
0

1 )())(( . As a result of the above reasoning, we obtain the 14 

following  15 

 16 

Theorem 4.4.  For any parameter choice satisfying conditions  (2.3a)-(2.3c), the optimal 17 

control problem   18 

max,)())((:)(
0

1   
T

t dttxtuEqeu                                   (4.9) 19 

],0[, TSu N
                                                                            (4.10) 20 

))( ,( tuuxFx   ,                                             (4.11) 21 

0)0( xx  ,   xTx )(                                                                   (4.12) 22 

 23 

has a solution.  24 

The obtained result shows a possible bargain between the bioeconomic and conservation 25 

aspects of fishery management. Now we proceed to the illustration of the above optimal 26 

control model for different discount parameter values. 27 
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 1 

Example 4.5. Now, with the same model parameter values of the previous examples, 2 

T:=5, initial state )5.3,4(:0 x  and target  equilibrium )12.3,85.4(x , setting  3 

)9.0(  8.0:  E  and N:=20,  we present the numerical realization of model (4.9)-4 

(4.12), for discount parameters 50  and  5 0.5;  ;0: ,  in Figures 4; 5; 6 and 7, 5 

respectively. For each case, the optimal control û , the corresponding subpopulation 6 

biomasses x1 , x2 and the actual harvested biomass v are plotted against time, where 7 

function v is defined as 8 

  
t

dxuEqetv
0

1 )())((:)(     ( ],0[ tt ). 9 

It is also shown that once the system attains its required equilibrium x , this equilibrium 10 

is maintained with zero control (i.e. applying only the reference fishing effort).   11 

              12 

                                 13 

a)                                                                           b) 14 

Figure 4. a) Optimal control, b) corresponding subpopulation biomasses and harvested biomass 15 

as function of time; without discount, 0: . 16 

 17 

 

 18 
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a)                                                                                 b) 1 

Figure 5. a) Optimal control, b) corresponding subpopulation biomasses and harvested biomass 2 

as function of time; with discount parameter 5.0: . 3 

 4 

a)                                                                                 b) 5 

Figure 6. a) Optimal control, b) corresponding subpopulation biomasses and harvested biomass 6 

as function of time; with discount parameter 5:   7 

 8 

a)                                                                      b) 9 

Figure 7. a) Optimal control, b) corresponding subpopulation biomasses and harvested biomass 10 

as function of time; with discount parameter 50:  11 

 12 

5. Closed-loop control steering the population system asymptotically into 13 

equilibrium 14 

 15 

In this section we suppose that the environmental authority decides to intervene in the 16 

reserve area, controlling the biomass x2(t) of the corresponding subpopulation, on the 17 

basis of the actual system state vector x(t). More concretely, the objective is to find a 18 

feedback control that steers the population of fish population inside the unreserved area to 19 

a desired level dxx 1
*
1  . In order to solve this problem, the method of Rafikov et al. 20 
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(2008) will be applied. To this end, based on the fishery resource model (2.1)-(2.2), we 1 

consider the following control system 2 

                 .1

              1

221112
2

2
222

1221112
1

1
111

Uxmxm
K

x
xrx

qExxmxm
K

x
xrx

























    (5.1) 3 

Our objective is to find a feedback control that steers the fish population inside the 4 

unreserved area to a desired level dxx 1
*
1  . The corresponding value dxx 2

*
2   and *u  can 5 

be calculated solving the following system of linear equations: 6 

.01

01

**
221

*
112

2

*
2*

22

*
1

*
221

*
112

1

*
1*

11





















uxmxm
K

x
xr

qExxmxm
K

x
xr

     (5.2) 7 

We note that  *u  is interpreted as a constant intervention rate in the fish population inside 8 

the reserve area that would maintain the desired level  dxx 1
*
1   of fish population inside 9 

the free area. 10 

Now, following section A.3 of Appendix, we rewrite the feedback control version of 11 

system (5.1) in the form  12 

BUxgLxx  )( , 13 

where U is a continuous control function,  14 



















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
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


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
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2
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21212

21121 B
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mqEmr
L  15 

and 16 

.
)2(

)2(
)()(:)(

*
22

2
2

2

2

*
11

2
1

1

1
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
















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
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xyy
K

r

xyy
K

r

xgxygxq  17 

Assume that to constant control *u  R , there corresponds an equilibrium state x*, i.e. 18 

0)( ***  BuxgLx . 19 

Then, for the new variables 20 

** :;: uUuxxy   21 
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we have 1 

.)( BuyqLyy                              (5.3)  2 

Now, for the construction of the required linear feedback, we apply Theorem A.8 of 3 

Appendix with illustrative numerical data: 4 

Example 5.1. Considering the the same model parameters of the previous examples,  r1= 5 

0.7, r2= 0.5, q= 0.25, E=0.9, m12= 0.2, m21= 0.1, K1= 10 and K2= 2.2; we obtain that 6 

system (2.1)-(2.2) has an asymptotically stable positive equilibrium, where x1=4.85. Then, 7 

we suppose that the objective is to increase the fish population in the unreserved area, for 8 

example to a level x1d= 6. To this end, from system (5.2) we calculate x2d= 8.7 and 9 

*u =12.52.  10 

Furthermore, for matrices L and B we have 11 




















1

0
:    ,

4.02.0

1.0275.0
: BL  12 

and we also choose  13 

 1:;
10

01
: 








 RQ .  14 

Now, from the matrix Riccati equation 15 

01   QPBPBRPLPL TT ,  16 

using the function LQR of MATLABTM v7.0 we  calculate  17 

.
049.2796.7

796.7024.103
: 








P  18 

P and Q are obviously positive definite symmetric matrices. Furthermore, for the 19 

auxiliary function l we have 20 

).54.376.74()09.108.174()93.021.17(42.14)( 2212
2
1

2
221 yyyyyyyyyl   21 

Its first order partial derivatives are 22 

)54.376.74()18.216.348(27.43)( 2221
2
11 yyyyyylD   23 

).09.776.74()79.241.34(09.1)( 2122
2
12 yyyyyylD   24 

Obviously 25 

0)0()0()0( 210  lDlDlD , 26 

and for the Hessian of  l  at the origin we obtain 27 











41.3476.74

76.7416.348
(0)Hl , 28 
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implying that the origin is a strict local minimum point of function l . Applying Corollary 1 

A.11 of Appendix, we have the local asymptotic stability of the zero equilibrium of 2 

system (5.3). Therefore, applying (A.11) (see Appendix), we obtain the required feedback 3 

control for 4 

21 049.2796.7 yyu         5 

Hence, from equalities x = *x +y and U= *u +u, we can calculate the closed-loop control 6 

system for (5.1): 7 

08.52049.2796.71.02.0
2.2

15.0

9.025.01.02.0
10

17.0

2121
2

22

121
1

11
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

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

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 

xxxx
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xxx
x

xx





  (5.4) 8 

Figure 8.a) shows the time-dependent control U(t), which turned out to be always 9 

positive. This, in biological terms, is interpreted as release of hatchery-bred juvenile fish 10 

inside the reserved area.  11 

In Figure 8.b) we show how the first coordinate of the solution of the controlled system 12 

asymptotically reaches the desired value x1d=6.   13 

                    
a)                                                                     b) 14 

Figure 8. a) Time-dependent control U(t) obtained for system (5.4), b) biomass in the 15 

unreserved area without and with control (with the same initial state x0(30,120)), biomass 16 

approaches the desired value x1d=6. 17 

6. Discussion 18 

Over the last decade, tools of mathematical systems theory has been successfully applied 19 

to both density-dependent multi-species and structured single-species dynamic population 20 

models, for a survey of our results on the subject see Varga (2008). The majority of stock 21 

assessment methods use a statistical approach, see Cadrin et al. (2005). Recently Guiro et 22 

al. (2009) used a global observer system for deterministic stock estimation. Our observer 23 

system method proposed in this paper is local, but can not only perform better near 24 



 

 20

equilibrium, but it also turned out to be able to estimate stock and environmental 1 

parameters simultaneously. This method can be also extended to general spatially 2 

structured populations, as well as to stage-, age- or size structured populations. For 3 

example, in a size-structured model only fish of cachable size are harvested and therefore 4 

observed, and the total state vector containing all size classes are estimated. Similarly, the 5 

state of a population system in time-dependent environment can be also estimated with an 6 

appropriate observer system.  7 

 8 

It has been shown that the usual fishing activity, apart from purely profitable commercial 9 

activity, can be also applied for purposes of conservation ecology. Among all harvesting 10 

strategies steering the system into equilibrium, an economically optimal one can be also 11 

calculated, according to different discount parameters. In this way both bioeconomic and 12 

conservation tasks can be dealt with in our model, providing a complex management 13 

approach to fishing activity. On the basis of an appropriate dynamic population model, 14 

this method also applies to the management of other harvested populations.   15 

 16 

Since, in general, the parameters of a model can be estimated with certain error, an 17 

important question of modelling methodology is to what extend the conclusions drown 18 

from the model would change due to this error.  In our case, it is not hard to prove that 19 

both observability and controllability of the considered systems are robust against small 20 

changes in the model parameters.   21 

 22 

 As for our result on the optimal equilibrium control by fishing effort, we note that the 23 

considered optimization problems are typically non-convex, and then in their numerical 24 

solution the mathematical programming problem obtained by discretization is also not 25 

convex, and the usual algorithms may provide only a local extremum. In our case this is 26 

not a problematic issue, since serious we always consider local problems, near the 27 

equilibrium.   28 

 29 

Finally, we found that the intervention of the competent authority in the reserve area can 30 

be also efficiently modelled by Rafikov’s approach to linear feedback control that already 31 

turned out to be efficient also in a cell population model of radiotherapy, see Gámez et al. 32 

(2009).  33 



 

 21

 1 

Acknowledgements. The research has been supported by the Hungarian Scientific 2 

Research Fund OTKA (K81279). The valuable comments of the anonymous referees are 3 

acknowledged.  4 

References 5 

Agardy, T.S. 1997. Marine Protected Areas and Ocean Conservation, R.G. Landes Co   6 

Banga, J.R., Balsa-Canto, E., Moles, C.G., Alonso, A. A., 2005. Dynamic Optimization 7 

of Bioprocesses: Efficient and Robust Numerical Strategies. Journal of Biothecnology 8 

117, 407-419.  9 

Bischi, G.I., Lamantia F. 2007.  Harvesting Dynamics in protected and unprotected areas. 10 

Journal of Economic Behavior and Organization, vol. 62, 348-370. 11 

Cadrin S. X., Friedland K. D., Waldman J. R. (Eds.) 2005. Stock Identification Methods: 12 

Applications in Fishery Science. New York (NY): Academic Press  13 

Cartigny, P., Gómez, W., Salgado, H. 2008. The spatial distribution of small- and large-14 

scale fisheries in a marine protected area. Ecological Modelling,  212, 513-521 15 

Chakraborty, K., Das, S., Kar, T.K. 2011. Optimal control of effort of a stage structured 16 

prey–predator fishery model with harvesting. Nonlinear Analysis: Real World 17 

Applications (in press). Doi:10.1016/j.nonrwa.2011.06.007 18 

Chaudhuri, K. 1986. A bioeconomic model of harvesting a multispecies fishery; 19 

Ecological  Modelling, 32, 267-279 20 

Chaudhuri, K. 1988. Dynamic optimization of combined harvesting of a two species 21 

fishery.  Ecological  Modelling, 41, 17-25. 22 

Clark, Colin W. 1976. Mathematical Bioeconomics: The Optimal Management of 23 

Renewable Resources.  24 

Clark, Colin W. 2010. Mathematical Bioeconomics: The Mathematics of Conservation, 25 

Third Edition, John Wiley & Sons. 26 

Dubey, B., Chandra, P. and Sinha, P. 2003. A model for fishery resource with reserve 27 

area. Nonlinear Analysis. Real World Applications. 4, 625-637. 28 

Gámez, M., López, I., Garay, J. and Varga, Z. 2009, Observation and control in a model 29 

of a cell population affected by radiation. Biosystems 9, 172-177. 30 



 

 22

Gámez, M., López, I., Garay, J. and Varga, Z. 2011, Monitoring and control in a spatially 1 

structured population model. In: B. Murgante, O. Gervasi, A. Iglesias, D. Taniar, B. O. 2 

Apduhan (Eds.), Computational Science and Its Applications Vol. V, pp. 511-520, 3 

"Lecture Notes in Computer Science" 6786, Springer-Verlag Berlin Heidelberg 4 

Goh, B.S. 1980. Management and analysis of biological populations. Elsevier, 5 

Amsterdam 6 

Guiro, A., Iggidr, A., Ngom, D. and Touré, H. 2009. On the stock estimation for some 7 

fishery systems, Review in fish biology and fisheries, 19, 313-327. 8 

Hirmajer, T., Balsa-Canto, E., Banga, J., 2009.  DOTcvpSB, a Software Toolbox for 9 

Dynamic Optimization in Systems Biology. BMC Bioinformatics 10, 199. 10 

Lee, E.B. and Markus, L. 1971. Foundations of Optimal Control Theory. Wiley New 11 

York.  12 

Lester, S.E., Halpern, B.S., Grorud-Colvert, K., 3, Lubchenco, J., Ruttenberg, B.I., 13 

Gaines, S.D., Airamé, S., Warner, R.R. 2009. Biological effects within no-take marine 14 

reserves: A global synthesis. Mar Ecol Prog Ser, 384, 33-46. 15 

Loisel, P., Cartigny, P. 2009. How to model marine reserves? Nonlinear Analysis: Real 16 

World Applications, 10 (3), 1784-1796. 17 

López, I., Gámez, M. and Carreño, R. 2004. Observability in dynamic evolutionary 18 

models. Biosystems, 73, 99-109. 19 

López I, Gámez M, Molnár. 2007a. Observability and observers in a food web. Applied 20 

Mathematics Letters 20 (8), 951-957.  21 

López, I., Gámez, M., Garay, J. and Varga, Z. 2007b. Monitoring in a Lotka-Volterra 22 

model. Biosystems, 83, 68-74.  23 

Kar, T.K. and Chaudhuri, K. S. 2004. Harvesting in a two prey one predator fishery: a 24 

bioeconomic model. The ANZIAM J. 45(3), 443-456 (Australian Mathematical Society). 25 

Pauly, D., Christensen V., Guénette S., Pitcher T.J., Sumaila U.R., Walters C.J., Watson R., 26 

Zeller D. 2002. Towards sustainability in world fisheries. Nature, 418, 689-695 27 

Rafikov, M., Balthazar, J.M., Bremen, H.F. von, 2008. Mathematical Modelling and 28 

Control of Population Systems: Applications in Biological Pest Control. Applied 29 

Mathematics and Computation, 2, 557-573. 30 



 

 23

Sale, P. F., Cowen, R. K., Danilowicz, B. S., Jones, G. P., Kritzer, J. P., Lindeman, K. C., 1 

Planes, S.,., Polunin, N. V.C., Russ, G.R.,  Sadovy, Y. J. and Steneck, R.S. 2005. Critical 2 

science gaps impede use of no-take fishery reserves. Trends in Ecology and Evolution, 3 

20,74-80. 4 

Shamandy, A. 2005. Monitoring of trophic chains. 2002. Biosystems, Vol. 81, Issue 1, 5 

43-48. 6 

Sundarapandian, V. 2002. Local Observer Design for Nonlinear Systems. Mathematical 7 

and Computer Modelling, 35, 25-36  8 

Varga, Z. 1992. On observability of Fisher's model of selection. Pure Math. and Appl. 9 

Ser. B, 1, 15-25. 10 

Varga, Z. 2008. Applications of mathematical systems theory in population biology. 11 

Periodica Mathematica Hungarica , Vol. 56 (1), 157-168.  12 

 13 

 14 

Appendix  15 

A.1. Observability and observer of nonlinear systems 16 

Given positive integers m, n, let  17 

mnnn hf RRRR  :,:  18 

be continuously differentiable functions and for some  nx R*  we have that 0)( * xf  19 

and 0)( * xh . 20 

We consider the following observation system 21 

)(xfx            (A.1) 22 

)(xhy   ,            (A.2) 23 

where y  is called the observed function. 24 

Definition A.1 Observation system (A.1)-(A.2) is called locally observable near 25 

equilibrium *x , over a given time interval ],0[ T , if there exists 0 , such that for any 26 

two different solutions x  and x  of system (A.1) with  |)(| *xtx  and 27 

)],0[(|)(| * Ttxtx   , the observed functions xh   and xh   are different. (  28 

denotes the composition of functions. For brevity, the reference to ],0[ T  is often 29 

suppressed). 30 



 

 24

For the formulation of a sufficient condition for local observability consider the 1 

linearization of the observation system (A.1)-(A.2), consisting in the calculation of the 2 

Jacobians 3 

)(: *xfA    and  )(: *xhC  . 4 

Theorem A.2 (Lee and Markus, 1971). Suppose that 5 

.]|...|||[ 12 nCACACACrank Tn      (A.3) 6 

Then system (A.1)-(A.2) is locally observable near x . 7 

Now, we recall the construction of an observer system will be based on Sundarapandian (2002). 8 

Let us consider observation system (A.1)-(A.2).  9 

Definition A.3.  Given a continuously differentiable function nmnG RRR : , system  10 

                                                      ),( yzGz                                          (A.4) 11 

is called a local asymptotic (respectively, exponential) observer for observation system 12 

(A.1)-(A.2) if the composite system (A.1)-(A.2), (A.4) satisfies the following two 13 

requirements.  14 

i)    If )0()0( zx  , then )()( tztx  , for all 0t .  15 

ii) There exists a neighbourhood V  of the equilibrium *x of nR  such that for all 16 

Vzx )0(),0( , the estimation error )()( txtz   decays asymptotically (respectively, 17 

exponentially) to zero. 18 

Theorem A.4. (Sundarapandian, 2002). Suppose that the observation system (A.1)-(A.2) 19 

is Lyapunov stable at equilibrium, and that there exists a matrix K  such that matrix 20 

KCA   is Hurwitz (i.e. its eigenvalues have negative real parts), where )( *xfA   and 21 

)( *xhC  . Then dynamic system defined by 22 

)]([)( zhyKzfz      23 

is a local exponential observer for observation system (A.1)-(A.2). 24 

Now, for the estimation of a change in the dynamical parameters of an ecosystem, we 25 

recall that Sundarapandian (2002) also considered the possibility of an “input generator” 26 

determined by an external system called exosystem )(wsw  , in terms of which we can 27 

form a composite (nonlinear) system with inputs of the form 28 

),(

)(

))(,(

xhy

wsw

wuxFx









     (A.5) 29 



 

 25

where we suppose that kknkn sF RRRRR  :  ,:  are continuously differentiable 1 

and 0)( ,0)( ,0)0,( ***  wswuxF . Variable u  is interpreted as a time-dependent 2 

vector of system parameters of the original system (A.1), corresponding to right-hand 3 

side f . For the construction of an observer for the composite system we can apply the 4 

following 5 

Theorem A.5 (Sundarapandian, 2002).  Suppose that observation system (A.5) is 6 

Lyapunov stable at equilibrium. If system (A.5) has a local exponential observer, and that 7 

there exists a matrix K  such that matrix KCA   is stable (its eigenvalues have negative 8 

real parts), where ),( ** wxFA   and )( *xhC  . Then dynamic system defined by 9 

)]([))(,( zhyKwuzFz        10 

is a local exponential observer for observation system (A.5). 11 

 12 

A.2. Controllability of nonlinear systems 13 

 14 

Given ,, Nsm  let msmF RRR :  be a continuously differentiable function. For a 15 

reference control value su R  , let  mx R be such that  0),(  uxF . For technical 16 

reason we shall need a rather general class of controls. Let us fix a time interval ],0[ T , 17 

and for each  R  define the class of essentially bounded  - controls 18 

 ],0[)(|],0[:],0[ TteveryalmostfortuTLuTU s 
  . 19 

Then it can be shown that there exists R0  such that for all ],0[
0

TUu   and 20 

mx R0  with 0
0  xx  the initial value problem 21 

]),0[..())(,)(()( TteafortuutxFtx     (A.6) 22 

0)0( xx         (A.7) 23 

has a unique solution. We notice that x  is an equilibrium state for the zero-control 24 

system. 25 

Definition A.6. Control system (A.6)-(A.7) is said to be locally controllable to x  on 26 

],0[ T , if there exists ],0] 0   such that for all 0x  from the   -neighbourhood of x , 27 

there is a control ],0[ TUu   that controls the initial state 0x  to equilibrium x , i.e. for 28 

the solution x of the initial value problem (A.6)–(A.7), equality x(T)= x  holds. 29 
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Let us linearize system (A.6)-(A.7) around ),(  ux , introducing the corresponding 1 

Jacobians 2 

    ),(: 1
 uxFDA ,   ),(: 2

 uxFDB .  3 

Then we have the following sufficient condition for local controllability:  4 

Theorem A.7 (Lee and Markus, 1971)  5 

If nBAABBrank n  ]...[ 1  then system (A.6)-(A.7) is locally controllable to x  on 6 

],0[ T . 7 

 8 

A.3. Closed-loop asymptotic control into equilibrium in nonlinear systems   9 

 10 

For rnnn BLrn   RRΝ ,,, , and continuously differentiable function nng RR : , 11 

consider the control system 12 

BUxgLxx  )(      (A.8) 13 

where U is a continuous control function. Assume that to a constant control u* rR , 14 

there corresponds an equilibrium state x*, i.e., 15 

0)( ***  BuxgLx       (A.9) 16 

Then, from (A.8) and (A.9), for the new variables 17 

** :;: uUuxxy   18 

we have 19 

)()(:)()( ** xgxygyqwithBuyqLyy     (A.10)  20 

A feedback control will be given below which asymptotically steers system (A.10) into 21 

the zero equilibrium. 22 

Theorem A.8 (Rafikov et al., 2008) If there exist matrices P, Q, RRnxn; P positive 23 

definite and Q symmetric, such that the function 24 

nTTT RyyPhyPyyqQyyyl  )()(:)(  25 

is positive definite, and P satisfies the equation 26 

01   QPBPBRPLPL TT        27 

Then the linear feedback 28 

PyBRyu T1:)(        (A.11) 29 

asymptotically steers any initial state y(0) to zero. 30 
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Remark A.9 The statement 0lim  y is obviously equivalent to *lim xx  . 1 

Remark A.10 According to Rafikov et al. (2008), the feedback control (A.11) also 2 

minimizes the functional 3 





0

))(())(())(([:)( dttyRutyutyly T      4 

however, we do not use this statement. 5 

Corollary A.11 (M. Gámez et al. 2009). Using the notation of the previous theorem, let 6 

us suppose that function l is locally positive definite. Then there exists a neighbourhood V 7 

of zero in Rn such that for all x(0) V, for the solution x of system (A.8) we have 8 

*lim xx  . 9 

 10 


