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Abstract 13 

Mathematical systems theory and optimal control have been mostly developed in the context of 14 
engineering. In this paper it is shown how these techniques can be applied in population 15 
genetics. Based on the classical Fisher's selection model, first a very natural monitoring problem 16 
is studied: Can the change of the genetic state of a population (described in terms of allele 17 
frequencies) be uniquely recovered from the observation of the frequencies of certain 18 
phenotypes? We give sufficient conditions for a positive answer to this question in a typical 19 
case of heterosis (when mixed genotypes are better than the pure ones, implying stable 20 
coexistence of all allele types). The second question is: How to effectively estimate the genetic 21 
composition of the population from phenotypic observation? The answer is observer design, 22 
which is carried out for two different dominance structures, determining the manifestation of the 23 
genetic state. In a model of artificial selection we show how the population can be steered into 24 
equilibrium where maximal mean fitness is attained. Finally, the application of the above 25 
methodology is also extended to selection-mutation models, where both fitness parameters and 26 
mutation rates are controlled.  27 

 28 
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1. Introduction 1 

In the applications of mathematical systems theory the reconstruction of the state process from 2 

available measurements is an important issue for several reasons. E.g. the observation of certain 3 

state variables may be difficult, impossible or too expensive. Then, for the monitoring of the 4 

state process, we can observe only a transform of it. Observability of a system means that, from 5 

this observation, in principle, the original state process can be recovered in a unique way. 6 

Motivated by requirements of engineering, in terms of a matrix rank, a necessary and sufficient 7 

condition for observability of linear systems was obtained in Kalman et al. [1]. The sufficient 8 

part of this condition was then generalized to nonlinear systems in Lee and Markus [2]. The  9 

latter sufficient condition already could be applied to density-dependent population systems, 10 

since the models describing them are typically nonlinear, see e.g. in López et al. [3,4]. 11 

The observation (or monitoring) of the time-dependent genetic composition of a population is 12 

an important issue. Applying tools of mathematical systems theory, our objective is to recover 13 

the genetic state from phenotypic observation, in the framework of a dynamic model describing 14 

the change of the genetic composition of a population. (In static situation, in Garay and Garay 15 

[5] biological conditions were given for the allele frequency vector - phenotype frequency 16 

vector correspondence to be one-to-one.) This is motivated by the fact that, usually, it is easier 17 

or more economic to observe the phenotypic state of a population than its underlying genetic 18 

state. In this sense, in López et al. [6], a similar problem was studied, but considering the so-19 

called strategic model, where the state of the population is the allelic frequency vector in the 20 

zygote population, the phenotype of a zygote means a behavior strategy uniquely determined by 21 

its genotype, and an evolutionary game is played at phenotypic level. The difference between 22 

this model and Fisher's model we shall consider in this paper, is that the frequencies of the 23 

different phenotypes can be calculated from the frequencies of the different genotypes according 24 

to the dominance of alleles in the corresponding hereditary system, determining the 25 

manifestation of the genetic state. Moreover, in the model of Fisher, a phenotype is not 26 

necessarily a behavior type, it may also be a physical aspect of individuals. 27 
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Observability of Fisher's Model of Natural Selection was considered in Varga [7], giving 1 

sufficient condition guaranteeing that, observing phenotypic frequencies in function of time. 2 

The underlying genetic state in terms of allele frequencies can be recovered. This result was 3 

extended to a model with mutation in López [8], López et al. [9]. Later, applying the observer 4 

design method of Mathematical Systems Theory, in addition to observability, the genetic 5 

process has been effectively calculated from the observation of the mean phenotype. In the 6 

present paper, in the framework of Fisher's Model of Natural Selection, we illustrate the 7 

application of the general observer design methodology to different dominance structures with 8 

different phenotypic observations, in order to recover the underlying genetic process. 9 

Concerning controllability, as a model of artificial selection, in Varga [10], from Fisher's 10 

equations, a control system was constructed and, in terms of the model parameters, sufficient 11 

conditions were obtained for the system to be controllable to equilibrium, see also López et al. 12 

[11], where controllability of the population to a state with maximal mean fitness was 13 

considered. In Scarelli and Varga [12], controllability of Fisher's model with mutation was 14 

studied, where time-dependent mutation rates were considered as control functions, while in 15 

López et al. [9] the controllability of the same model was investigated with time-dependent 16 

fitness parameters as control functions. This construction can be considered as a control-17 

theoretical model of artificial selection. We also emphasize that a developed methodology is 18 

available for induced allele mutations, a quick reference is e.g. McClean [13].  19 

In the present paper, as an illustration of application of this methodology, with a particular 20 

choice of the genotype to be controlled, for Fisher’s selection model, we not only "theoretically" 21 

state local controllability, but also effectively calculate the corresponding equilibrium control, 22 

that is a control that steers nearby states to the equilibrium. On the one hand, we will consider 23 

the control of fitness parameters, which is a model of traditional artificial selection. On the 24 

other hand, we also address the control of mutation rates, which can be considered as a model 25 

for artificial mutation used in genetic engineering.  26 

In Section 2, we recall basic results on existence and stability of an equilibrium in Fisher's 27 

selection model. In Section 3, observability of Fisher's model is studied in a particular case of 28 
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heterosis (when mixed types are better than the pure ones), implying stable coexistence of all 1 

allele types, with maternal inheritance. Section 4 is dedicated to the observer design for the 2 

Fisher's model in two different dominance structures. In Section 5, for a given inheritance 3 

pattern, we construct a control (selection strategy) that steers the system into equilibrium, where 4 

maximal mean fitness is attained. In Sections 6 and 7 we extend the application of the above 5 

methodology to selection-mutation processes of population genetics.  6 

 7 

2. Description of model and existence of equilibrium 8 

We shall consider a diploid panmictic Mendelian population with alleles A1,...,An, at an 9 

autosomal locus. Assume that the diploid zygote individuals undergo a selection described in 10 

terms of a fitness matrix W nnR  with non-negative components, where, for each i, j n,1 , wij 11 

is the Malthusian fitness value of an AiAj zygote (defined as the difference of the birth rate and 12 

the death rate of AiAj individuals or the average number of offspring of a zygote of genotype 13 

AiAj). Then, according to Fisher's classical model of natural selection, for the time-dependent 14 

frequency xi of allele Ai, we have  15 

 WxxiWxixix ,)(     (i n,1 )                                               (2.1) 16 

where  17 

)(xwi j

n

j
iji xwWx 




1

)(  18 

is the potential (marginal) fitness of allele Ai, and  19 

    )(xw lk

n

lk
kl xxwWxx 




1,

,    20 

is the mean fitness of the population in state x . The biological interpretation of Fisher's model 21 

is the following: if the potential fitness of Ai is greater than the average fitness of the whole 22 

population, then the frequency of Ai will increase, in the contrary case it will decrease. 23 

The state vector x  of allele frequencies is an element of the standard simplex 24 
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}1),,1(0:{
1

 


n

i
ii

n
n xnixx R . 1 

It is easy to see that the standard simplex n
nR  and its interior  2 

)},1(0:{ nixx inn 


 3 

are positively invariant for dynamics (2.1). A state nx


  is called a polymorphic equilibrium 4 

of the population if in this state all alleles have the same potential fitness, or equivalently, 5 

  )( )(   xwxwi  (i n,1 ).  6 

Theorem 2.1. (See e.g. Varga [10]) Assume that the following regularity condition holds: W  7 

is invertible; with 1 =(1,…,1)T Rn, 11,1W 0 holds, and for 8 

x* = 
11

1

,1

1





W

W
,                                           (2.2) 9 

we have 0x . Then x  is the unique polymorphic equilibrium. If the matrix  10 

nnnjinijijnnij wwwwppP   ,)( )1()1(  11 

is negative definite, then x  is globally asymptotically stable for system (2.1) on n



 , and x  is 12 

a global strict maximum point of nw


 . If P is positive definite, then x  is unstable for 13 

system (2.1), the state of the population "escapes" from the equilibrium x  with minimal mean 14 

fitness. 15 

 16 

3. Analysis of observability in a particular case of heterosis in the Fisher's model with 17 

maternal inheritance 18 

Consider the Mendelian population of Section 2. It is known that, if the hereditary system is 19 

maternal, this population can display all possible phenotypic states, i.e. vectors of phenotypic 20 

frequencies (Garay and Garay [5]). Suppose that the inheritance is maternal, and consider for 21 

simplicity three alleles A1, A2 and A3, where the genotypes A1A2 and A1A3 have the same 22 
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phenotype 1A  as A1A1; the genotypes A2A1 and A2A3 have the same phenotype 2A  as A2A2; 1 

and the genotypes A3A1 and A3A2 have the same phenotype 3A  as A3A3. Then, by the Hardy-2 

Weinberg law, for any allelic frequency vector 3x  of system (2.1), the corresponding 3 

phenotypic frequencies are the following: 4 

.:A

,:A

,:A

2
323133

32
2
2122

3121
2
11

xxxxx

xxxxx

xxxxx







 5 

3.1. Existence and stability of a polymorphic equilibrium of the model 6 

Let us consider the following, three-allele Fisher model 7 

 WxxiWxixix ,)(      (i 3,1 ),                                              (3.1) 8 

where the fitness matrix is 9 

,

111

111

111



























W                                            (3.2) 10 

with parameters  , }0{)1,1( A . 11 

Now we discuss the stability properties of the corresponding Fisher selection equations, for 12 

different parameter values of this fitness matrix. First fix A , , and check the regularity 13 

condition for the calculation of the polymorphic equilibrium (see e.g. Varga [10]): 14 

0)24(det 2  W  if and only if,   )2(2 , 15 

0
)24(

4
,

2
1 









11W  if and only if  4,)2(2  , 16 
































4
,

4

2
,

4,1

1
*

11

1

W

W
x ,                              (3.3) 17 

which is positive if and only if,  18 

either 0,02,04   ; or 0,02,04   . 19 
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For the analysis of the stability of *x , we easily calculate the corresponding auxiliary matrix 1 














2

2
P , 2 

(see e.g. Varga [10]) whose principal minors are  3 

2 , )4(   . 4 

Case A) Let A , , and 04   . Obviously 0  and therefore all off-diagonal 5 

entries of the fitness matrix are greater than those of the principle diagonal, that is, we are in a 6 

case of heterosis, all heterozygotes are fitter than any homozygote. From the principle minors 7 

we obtain that in this case matrix P  is negative definite, which implies that the polymorphic 8 

equilibrium *x  is (globally) asymptotically stable. 9 

Case B) Let A ,  and 04   . In this case, all homozygotes are fitter than any 10 

heterozygote. Now matrix P  is positive definite, which implies that the polymorphic 11 

equilibrium *x  is unstable. 12 

3.2. Observability  13 

For the analysis of the observability of the model of the previous subsection, we consider the 14 

parameter values where the polymorphic equilibrium *x  exists and it is asymptotically stable, 15 

that is, when A ,  and 16 

 4,)2(2  , 0,02,04   , 17 

or equivalently, when  18 

A ,  and 02   . 19 

 20 

Observation of the first phenotype 21 

If we observe the first phenotype 1A , the observation function is defined by 22 

))(()( *
3

*
1

*
2

*
1

2*
13121

2
1 xxxxxxxxxxxhy  .                           (3.4) 23 
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(For technical reason the observed quantity is the deviation of the frequency of the first 1 

phenotype 1A  from its value at equilibrium.) 2 

Now, we provide a sufficient condition for local observability of the system (3.1) with fitness 3 

matrix W  defined in (3.2). We recall that local observation in this case means that, near the 4 

equilibrium, observing only the frequency of the first phenotype, in principle, the whole genetic 5 

process (in terms of allele frequencies) can be recovered in a unique way (see Definition A.2 of 6 

the Appendix). 7 

Theorem 3.1. Suppose that  8 

A , , 02   , and    .                                    (3.5) 9 

Then observation system (3.1)-(3.4) is locally observable at x  in 3



 . 10 

Proof. We will apply Theorem A.3 of Appendix with 3



H . The tangent space of 3



  at x  11 

is  12 









 


3

1

3
* 0:

i
izzT R , 13 

and matrix )( *xhC   is given by 14 

 *
1

*
1

*
1 1 xxxC  . 15 

For a symmetric matrix 33)(  ijwW  , matrix 33
* )()(  ijlxfL   is determined by 16 

))(2( ** xwwxl ijiij  .                                                    (3.6) 17 

For our case, W  is defined in (3.2) and x  in (3.3). In order to check condition (A.3) of the 18 

Appendix, suppose that QKerTz  * . Then, 0Cz  implies 01 z .  Hence we get 19 

32 zz  . Furthermore, 0CLz  which gives 20 

0
4

)( 3 



 z

. 21 
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By condition (3.5),   , 02   , also implying 0  and therefore 04   . 1 

Furthermore, also by the definition of set A  we have 0 . Then all this implies 03 z , and 2 

hence 0z . Applying Theorem A.3 of the Appendix, we obtain local observability of system 3 

(3.1)-(3.4) at x  in 3



 . 4 

Remark 3.2. Note that if   , we cannot guarantee local observability of system (3.1)-(3.4) 5 

with fitness matrix (3.2), at equilibrium x  (defined in (3.3)), in 3



 . 6 

 7 

Observation of the second phenotype 8 

If we observe the second phenotype 2A , the observation function is 9 

))(()( *
3

*
2

2*
2

*
1

*
232

2
212 xxxxxxxxxxxhy  .                           (3.7) 10 

Now, we show that the sufficient condition of Theorem A.3 for local observability of system 11 

cannot be applied to observation system (3.1)-(3.3), (3.7). 12 

Now matrix )( *xhC   is given by 13 

 *
2

*
2

*
2 1 xxxC  , 14 

and the linearization matrix L  is calculated by (3.6), with the corresponding coefficients of 15 

fitness matrix defined in (3.2). In order to check condition (A.3) suppose that QKerTz  * . 16 

Then 0Cz  implies 02 z . Hence we get 31 zz  . However, for our particular fitness 17 

matrix we have 0CLz , and 02 zCL  for any values of   and  , since in this model 18 

*
3

*
1 xx  . Therefore, any 0z  verifying conditions 02 z  and 31 zz   belongs to 19 

QKerT * , therefore conditions of Theorem A.3 are not satisfied.  20 

 21 

Observation of the third phenotype 22 

If we observe the third phenotype 3A , the observation function is 23 

))(()( 2*
3

*
2

*
3

*
1

*
3

2
32313 xxxxxxxxxxxhy  .                           (3.8) 24 



10 

 

Now matrix )( *xhC   is 1 

 1*
3

*
3

*
3  xxxC . 2 

Next, reasoning in analogous way to the proof of Theorem 3.1, it is easy to obtain the same 3 

sufficient condition for local observability of the system (3.1) - (3.3), (3.8) with fitness matrix 4 

W  defined in (3.2): 5 

Theorem 3.3. Suppose that  6 

A , , 02   , and   . 7 

Then observation system (3.1)-(3.8) with fitness matrix defined in (3.2) is locally observable at 8 

x  in 3



 . 9 

Remark 3.4. In this model when the equilibrium is asymptotically stable and the parameters of 10 

model   and   are different, then observing the first or the third phenotype we can recover 11 

the allelic state of the population from phenotypic observation. 12 

Remark 3.5. When in this model we are in a case of heterosis where the fitness of all 13 

heterozygotes is the same, that is,   , we cannot guarantee the local observability of the 14 

model observing only one phenotype. 15 

Remark 3.6. If we observe any two phenotypes in this population (then, of course, all 16 

phenotype frequencies are known), and as we are in a case of maternal inheritance, the quadratic 17 

function that maps allele distributions into phenotypic distributions is invertible (see Garay and 18 

Garay [5]). Therefore, it is also possible to recover the allelic state of population, independently 19 

from the dynamics. 20 

 21 

4. Design of an observer system from phenotypic observation 22 

In this section, for two different situations we shall see how to recover the genetic population 23 

from the observation of one phenotype, by the construction of the so-called observer system 24 

(see Section A.1 of Appendix).  25 
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The observer we construct will not only approximate the solution of the original system, but in 1 

case of observation of a single phenotype (i.e. in systems-theoretical terms we have a single-2 

output system), the solution of the observer is also a substitute of the latter in the sense that the 3 

interior of the simplex is long-term invariant for the observer system. In other words, the values 4 

z(t) of the solution of the observer system, for t large enough, can be interpreted as frequency 5 

vectors.  6 

Theorem 4.1. Considering dynamics (2.1) with a scalar-valued the observation function h, 7 

suppose that an interior equilibrium x  is asymptotically stable for system (2.1), for a matrix 8 

1)(  nikK  with Rik , 



n

i
ik

1

0  holds, and KCL   is Hurwitz (i.e. its eigenvalues have 9 

negative real parts), where )( *xfL   and )( *xhC  . Then  10 

)]([)( zhyKzfz    (4.1) 11 

is a local exponential observer for the observation system (see Definition A.4 of the Appendix), 12 

and for any solution of x  of system (2.1) initially close enough to x ,  n



  is locally long-term 13 

invariant for the observer system at equilibrium x . (The latter means that for )0(z  from an 14 

appropriate neighborhood of x  in n



  , there exists a R0t  such that ntz


)(  for all 15 

).,( 0  tt  16 

Proof. Under our conditions, from Sundarapandian’s theorem (Theorem A.7 of the Appendix), 17 

it follows that (4.1) is an observer system for system (2.1) with observation function h. 18 

Furthermore, by the asymptotic stability of x , we can suppose that 


 xtx

t
)(lim . Let us sum the 19 

coordinates of system (4.1): 20 

0))()(()())(()( 












i
i

i
i

i
i

i
i

i
i kzhxhzfzhykzfz , 21 
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 implying 1)(  tz
i

i , if 1)0( 
i

iz . Moreover, since 0))()((lim 


txtz
t

 and 1 

nxx


 
lim , there exists R0t  such that ntz



)(  for all ).,( 0  tt  2 

 3 

Observation of one phenotype in the case of maternal inheritance 4 

If we consider a population with n  alleles and n  phenotypes with a maternal hereditary system 5 

and observe the l -th phenotype lA  of a population, then the observation function is 6 

)()( **

11

**

1

jl

n

j

jl

n

j

jl

n

j

jl xxxxxxxxxhy  


.                            (4.2) 7 

Example 4.2. To illustrate the design of an observer we consider the three-allele three-8 

phenotype model (3.1) of Section 3.1 with 5.0  and 25.0 . It is easy to check that 9 

0.2857)0.4286, 0.2857, (x  is a positive asymptotically stable equilibrium for this system.  10 

If the first phenotype is observed with observation function (3.4), then as conditions (3.5) are 11 

verified, by Theorem 3.1, we have local observability of system (3.1)-(3.4) at x  in 3



 . 12 

Now we obtain the following linearization matrices: 13 

   0.28570.2857.285711 *
1

*
1

*
1  xxxC , 14 






















4490.03061.03776.0

4592.06735.04592.0

3776.03061.04490.0

L . 15 

In order to apply Theorem 4.1 we have chosen the following gain matrix satisfying the 16 

condition of this theorem: 17 




















1

0

1

K , 18 

also obtaining with this choice that matrix KCL   has only eigenvalues with negative real 19 

parts. Therefore the observer system for observation system (3.1)-(3.4) is 20 
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 
i

zhyKWzziWziziz )))(((,)(         (i 3,1 ) .                               (4.3) 1 

At the same time, matrix K  satisfies the conditions of Theorem 4.1, therefore 3



  is locally 2 

long-term invariant. 3 

In order to show how the observer system approximately provides the solution of the original 4 

system from the phenotypic observation, suppose that the initial condition for the original 5 

system is )4.0,35.0,25.0()0( x  and )3.0,4.0,3.0()0( z  for the observer system (4.3). In 6 

Figure 1, we can see how the solution of the observer system practically ends up in the solution 7 

of the original system. 8 

 9 

Fig. 1. Solution of the original system (3.1) and solution of the observer system (4.3) with initial 10 

conditions )4.0,35.0,25.0()0( x  and )3.0,4.0,3.0()0( z , respectively 11 

 12 

Example 4.3. We consider a single-locus three-allele, codominant inheritance pattern. Since the 13 

most known example is AB0 blood group system, we will us the same notation for the three 14 

alleles: A, B and 0. A and B are dominant over 0, A and B are co-dominant. In other words, the 15 

genotypes AA, A0 and 0A have the same phenotype A ;  BB, B0 and 0B have the same 16 

phenotype B , AB and 00 have the respective phenotypes AB and 0 .  According to the Hardy-17 
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Weinberg proportions, for any allele frequency vector 3x , whose coordinates correspond to 1 

frequencies of alleles A, B and 0, respectively, the corresponding phenotype frequencies are: 2 

.:0

,2:AB

,2:B

,2:A

2
3

21

32
2
2

31
2
1

x

xx

xxx

xxx





 3 

We note that at population level these phenotype frequencies, i.e. the phenotypic process, and 4 

the underlying genetic process may be interesting for healthcare studies. In fact, e.g., it is known 5 

that the carriers of blood groups AB,B,A  and 0  have different susceptibilities to certain 6 

diseases such as certain malignant tumors, gastric ulcer or certain infectious diseases (see e.g. 7 

Vogel and Motulsky [14]). Therefore, the genetic composition (the allele frequencies) of the 8 

population, estimated from phenotype frequencies, may have implications for morbidity trends 9 

in the population. Assume that the only phenotype we observe is 0 . Then the observation 10 

function is 11 

2*
3

2
3 )()( xxxhy  .                                                        (4.4) 12 

Just for an illustration we consider the following simple fitness matrix:  13 


















134

313

431

W . 14 

The corresponding polymorphic equilibrium 0.4)0.2,0.4, (x  is asymptotically stable, and 15 

system (3.1)-(4.4) is locally observable in 3



  (see Varga [7]). Therefore, in this model, 16 

although the frequencies of alleles A, B and 0 are not directly observed, they can be 17 

reconstructed by observing only the time-dependent frequency of phenotype 0 . 18 

Next we shall recover (estimate) the genetic process from this phenotypic observation by the 19 

construction of the observer system. Moreover, similarly to Example 4.2, the solution of the 20 

observer system not only approximates the solution of the original system but also is a kind of 21 
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substitute of it, since according to Theorem 4.1, 3



  is locally long-term invariant for the 1 

observer system at equilibrium x , and therefore the solutions of the observer system can be 2 

interpreted as time-dependent allele frequency vectors. The corresponding linearization 3 

matrices are  4 

   8.000200 *
3  xC , 5 






















68.188.048.0

44.084.044.0

48.088.068.1

L . 6 

The choice of gain matrix is  7 

















0

1

1

K , 8 

implying that KCL   is Hurwitz. Applying Theorem 4.1, the observer system is 9 

   
i

zxKWzziWziziz )2
3

2
3(,)(         (i 3,1 ) .                               (4.5) 10 

In order to graphically illustrate how the solution of the observer system approximates the 11 

solution of the original system, we consider an initial condition for the original system 12 

)25.0,4.0,35.0()0( x  and )2.0,35.0,45.0()0( z  for the observer system, see Figure 2. 13 
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 1 

Fig. 2. Solution of the original system (3.1) and solution of the observer system (4.5) with initial 2 

conditions )25.0,4.0,35.0()0( x  and )2.0,35.0,45.0()0( z , respectively 3 

 4 

5. Optimization of mean fitness of the population via artificial selection 5 

In mathematical terms, an important implication of the Fisher’s Fundamental Theorem is that 6 

during the infinite selection process the mean fitness of the population increases. A natural 7 

population has the tendency to be in a state of maximum mean fitness. In our model of artificial 8 

selection we want to control the population into the state of maximum mean fitness, controlling 9 

the population by changing the fitness parameters of certain genotypes, realizing the artificial 10 

selection in terms of controlling the number of offspring. Under appropriate conditions, this 11 

state of maximum mean fitness is reached at an asymptotically stable polymorphic equilibrium 12 

x . (If the polymorphic equilibrium is unstable, the state of the population “escapes” from the 13 

equilibrium with minimal mean fitness.) In case of an asymptotically stable polymorphic 14 

equilibrium, the latter is reached in "infinite time". In our model, instead, the genetic state can 15 

be controlled to equilibrium (state of maximal mean fitness) in given finite time.  16 

For an illustrative example we consider a population with three alleles A1, A2 and A3 at an 17 

autosomal locus. It is logical to suppose that we cannot distinguish individuals of the same 18 
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phenotype. Then for a concrete illustration we consider the same hereditary system used in 1 

López et al. [11]: We suppose that homozygotes have different phenotypes, A1 is dominant over 2 

A2  and A3, while A2 is dominant over A3. It is supposed that the fitness of homozygotes A3A3 is 3 

controlled (that is, a control term ],0[ TUu   is added to fitness 33w , see Section A.2 of 4 

Appendix). For a general fitness matrix W , in López et al. [11], in biological terms we obtained 5 

a sufficient condition for the existence of an optimal artificial selection strategy: If genotypes  6 

A1A3 and A2A3 have different fitness values ( 2313 ww  ), then the system is locally controllable 7 

to x  within 


3 , guaranteeing maximal mean fitness to the population if the conditions of 8 

Theorem 2.1 are satisfied. For   small enough, 


n is an  1n -dimensional regular 9 

submanifold positively invariant with respect to controls Uu , see (Varga [21]). 10 

In this section, we shall provide an approximate numerical solution of the corresponding 11 

optimal control problem, applying it to a concrete numerical example using a MatLab toolbox. 12 

For 0 , let us consider the corresponding optimal control problem: 13 

max))(()(  TxwuJ ,                                           (5.1) 14 

],0[ TUu  ,                                                              (5.2) 15 

],)([  xWxxW uiuixix        (i 3,1 ) ,                                      (5.3) 16 

                                       3
0)0(



 xx ,                                                         (5.4)                                                       17 

where 18 




















)(*
3231

232221

131211

tuuww

www

www

Wu , with 33
* wu  . 19 

Now, for a numerical solution of this problem using the MatLab toolbox of Banga et al. [15], 20 

see also Hirmajer et al. [16], piecewise constant controls will be considered. The application of 21 

these particular step functions is justified by the following theorem guaranteeing an appropriate 22 

suboptimal solution among the piecewise constant controls corresponding to uniform division of 23 
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the time interval. Therefore, in the presented numerical example the solution provided by the 1 

toolbox will be considered the numerical solution of the optimal control problem (5.1)-(5.4).  2 

Theorem 5.1.  Assume that for a parameter choice, in addition to the conditions of Theorem 3 

2.1, inequality  2313 ww   also holds. Then, for every initial state 0x close enough to x , the 4 

optimal control problem (5.1)-(5.4) has a solution u0. Furthermore, for any δ > 0, this optimal 5 

control problem admits a piecewise constant δ-solution u  in the sense that 6 

  )()( 0 uJuJ .  7 

Proof. Since under the given conditions, the mean fitness attains a maximum at the equilibrium 8 

x , and control system (5.3) is locally controllable, there exists a neighborhood )( xG  such 9 

that, with 3
*0 )()0(



 xGxx , optimal control problem (5.1)-(5.4) has a solution 10 

],0[0 TUu  . From the proof of the sufficient condition for local controllability, Theorem 11 

A.12 of the Appendix (see Varga [10]), it can be seen that 0u can be also chosen from the class 12 

],0[ TC .  13 

For fixed positive integer N, let )/( NTiti    ),0( Ni  the uniform division of ],0[ T , and 14 

let us define the set of piecewise controls as  15 


N


N

N TSTS ],0[],0[ , , 16 

where  17 

)},0(  ),( intervaleach on constant  is    :],0[{],0[ 1, NittuTUuTS iiN   .  18 

It is easy to see that set ],0[ TS  is dense in ],0[ TU . Therefore, from the continuous 19 

dependence of the solution of system (5.3) on the control (Theorem A.9 of the Appendix), it 20 

follows that for every δ > 0 there exists ],0[ TSu 
   with   )()( 0 uJuJ . 21 

For the numerical illustration, consider system (5.3) with the fitness matrix of Example 4.2 22 
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


















)(15.125.1

5.115.1

25.15.11

tu

Wu . 1 

Since 2313 ww   is verified, we can apply Theorem 5.1, and therefore the considered optimal 2 

control problem has a numerical solution.  3 

We have a polymorphic (i.e. positive) asymptotically stable equilibrium 4 

0.2857)0.4286, 0.2857, (x  for the system without control.  5 

Our objective is to determine a control of system (5.3), that steers the system into equilibrium.  6 

Fix time duration 30T , and take initial condition )4.0,35.0,0.25(0 x  for system (5.3). 7 

For the calculation of the corresponding solution, we apply the MatLab toolbox of Banga et al. 8 

[15]. Figure 3 shows the corresponding solution x  ending up at equilibrium x , and in Figure 4 9 

we show the obtained optimal control. 10 

 11 

Fig. 3. Optimal solution of control system (5.3) with initial condition )4.0,35.0,0.25(0 x , 12 
plotted for ]15,0[  13 
 14 

 15 
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 1 

Fig. 4. Optimal control function of system (5.3), plotted for ]15,0[  2 

Remark 5.2. If the hereditary system considered in this section were maternal, then in order to 3 

intervene in the third phenotype we should control the fitness of all genotypes whose phenotype 4 

is 3A , that is, we should add a control to 3231 , ww  and 33w . 5 

 6 

6. Observation in a selection-mutation model 7 

 8 

In this section our systems-theoretical study will be extended to include mutation, as well. In 9 

López et al. [9] we have only shown that in certain selection-mutation systems, in principle, it 10 

may be possible to uniquely recover the underlying population-genetic process from the 11 

observation of phenotypes. In this section we present a method that makes it possible to 12 

effectively calculate the genetic process from observed phenotype frequencies in selection-13 

mutation systems.  14 

Starting from selection model (2.1), we suppose that there may be mutation from allele Aj to 15 

allele Ai  (symbolically AjAi) with mutation rate  mij,   for each i,j n,1  with  ij, and in 16 

addition we define 17 

mii = - ij jim . 18 
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Then, with the fitness matrix W of Section 2 and mutation matrix M = [mij]nn ., the selection-1 

mutation process, in terms of allele frequencies, can be described by the following system of 2 

differential equations: 3 

  iiii MxWxxWxxx )(,)(          (i n,1 ).         (6.1) 4 

It is known that system (6.1) leaves invariant both the allele frequency simplex n  and its 5 

interior n



 , see e.g. Akin [17].  6 

If in addition to the conditions of Theorem 2.1, assumption  7 

011 MW                                                                        (6.2) 8 

also holds then it is easy to see that  x  defined in (2.2) for the case of pure selection, is also a 9 

polymorphic equilibrium of the selection-mutation system (6.1).  10 

Remark 6.1. It is easy to see that, whenever in the pure selection model (M=0) by linearization 11 

asymptotic stability of equilibrium x  is obtained, in the case of weak selection (i.e. when all 12 

entries of M  are small enough), x  will be asymptotically stable for the selection-mutation 13 

system (2.1), too.  14 

 15 

Observability of the selection-mutation model with heterosis 16 

For the analysis of the observability of model (6.1), we start from fitness matrix (3.2) of the 17 

pure selection model: 18 

,

111

111

111



























W  19 

with parameters  , }0{)1,1( A  such that the  polymorphic equilibrium *x  exists and 20 

is asymptotically stable, that is, we suppose A ,  and 21 

 4,)2(2  , 0,02,04   ; 22 

or equivalently 23 
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A ,  and 02   . 1 

Now, similarly to the pure selection model, from the observation of a phenotype frequency we 2 

can try to reconstruct the underlying allele frequency process, when mutations also “perturb” the 3 

selection process. Let us suppose that, considering the dominance relations described at the 4 

beginning of Section 3, we observe the first phenotype 1A .Then the observation function is 5 

defined by 6 

))((:)( *
3

*
1

*
2

*
1

2*
13121

2
1 xxxxxxxxxxxhy  .                           (6.3) 7 

Theorem 6.2. Suppose that for the fitness parameters conditions (3.5) hold, and for the 8 

mutation parameters we have 9 

either 1213 mm    if     ,   or   1213 mm    if     .                                  (6.4) 10 

Then observation system (6.1)-(6.2) is locally observable at x  in 3



 . (We remind that 11 

condition (6.2) implies the equilibrium x  of the pure selection model is also an equilibrium of 12 

the selection-mutation dynamics (6.1). 13 

Proof.  In analogous way to the proof of Theorem 3.1, we will apply Theorem A.3 of Appendix 14 

with 3



H . The tangent space of 3



  at x  is  15 









 


3

1

3
* 0:

i
izzT R , 16 

and matrix )( *xhC   is 17 

 *
1

*
1

*
1 1 xxxC  . 18 

For a symmetric matrix 33)(  ijwW  , Jacobian 33
* )()(  ijlxfL   is given by 19 

ijijiij mxwwxl  ))(2( ** .                                                    (6.5) 20 

For our W  we have equilibrium x  in (3.3). In order to check condition (A.3) of the Appendix, 21 

suppose that QTz Ker*  . Then, 0Cz  implies 01 z . Hence we get 32 zz  . 22 

Furthermore, 0CLz  which gives 23 
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0)(
4

)(
31213

3 



zmm
z




. 1 

By condition (6.4), and applying Theorem A.3 of the Appendix, it is easy to obtain local 2 

observability of system (6.1)-(6.3). 3 

We note that the observation of other phenotypes can be also handled with this methodology.   4 

 5 

Observer design for the phenotypic observation in the selection-mutation model 6 

Now we show how our methodology used in Section 4 can be extended to the case when, in 7 

addition to selection, allele mutation is also present. The application of our Theorem 4.1 also 8 

makes it possible to effectively recover the genetic process from phenotypic observation, as it 9 

will be illustrated with the following example: 10 

Example 6.3. To illustrate the design of an observer, we consider the three-allele three-11 

phenotype model (6.1) with the same selection parameters as in Example 4.2, 5.0  and 12 

25.0 . In that example, for the case of pure selection, we have calculated the asymptotically 13 

stable polymorphic equilibrium 857)0.4286,0.2 0.2857, (x . Now let us consider model 14 

(6.1) with mutation matrix  15 




































aa

abab

bb

M

0
2

0
2







.            (6.6) 16 

It is easy to check that, for 0 ab , we have 011 MW , therefore  x* is also a polymorphic 17 

equilibrium for the selection-mutation dynamics (6.1). Furthermore, taking into account Remark 18 

6.1, mutation parameters ba, can be chosen small enough to guarantee that x is asymptotically 19 

stable for the selection-mutation dynamics, too.  20 

If the first phenotype is observed with observation function (6.3), then by conditions (6.4) 21 

Theorem 6.2 implies local observability of system (6.1)-(6.3) at x  in 3



 . 22 
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Now we obtain the following linearization matrices 1 

   0.28570.2857.285711 *
1

*
1

*
1  xxxC , 2 

and for 2.0;1.0  ba , 3 






















55.031.028.0

36.0803333.036.0

38.0176667.065.0

L . 4 

The eigenvalues of the linearization matrix of the pure selection system are -1.26, -0.21, -0.07, 5 

and mutation parameters 2.0;1.0  ba  turn out to be small enough to guarantee negative 6 

eigenvalues (-1.29, -0.44, -0.27) of the above matrix L, too (Cf. Remark 6.1). 7 

In order to apply Theorem 4.1, we can choose the following gain matrix satisfying the condition 8 

of this theorem: 9 




















2

0

2

K . 10 

It is easy to check that matrix KCL   has only eigenvalues with negative real parts. Therefore 11 

the observer system for (6.1)-(6.3) is 12 

 
i

zhyKiiii MzWzzWzzz )))((()(,)(         (i 3,1 ) .                               (6.7) 13 

At the same time, matrix K  satisfies the conditions of Theorem 4.1, therefore 3



  is locally 14 

long-term invariant for observer system (6.7). 15 

In order to show how the observer system approximately provides the solution of the original 16 

system from the phenotypic observation, suppose that the initial condition is 17 

)4.0,35.0,25.0()0( x for the original system (6.1), and )3.0,4.0,3.0()0( z  for the 18 

observer system (6.7). In Figure 5 we can see how quickly the solution of the observer system 19 

approximates the solution of the original system. 20 
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 1 

Fig. 5. Solution of the observer system, approximating the allele frequency process 2 

 3 

7. Artificial selection with controlled mutation  4 

In earlier papers Scarelli and Varga [12], and López et al. [9] we studied controllability by 5 

selection and mutation separately, and in both cases we only proved the existence of appropriate 6 

controls (artificial selection) that steer the population into a state of maximum mean fitness. 7 

Nevertheless, there was no method given, how to calculate such controls. In this section we fill 8 

this gap. Below we will show how the simultaneous artificial selection and induced mutation 9 

can be modelled with a joint control system.   10 

Let us suppose that, in principle, we can intervene to change the fitness of any genotype   11 

i,j n,1 . To describe this, define functions nxnnxn
ijR RR : , with all entries equal to zero, 12 

except that with indices i,j, which is 1, if genotype AiAj is artificially selected, and zero 13 

otherwise. Now, in terms of matrix-valued function 
ji

ij
W
ij

W Ruu
,

)( , the modified fitness 14 

matrix is )( WuW  . As for the control of mutation rates, we suppose that, for a given k, we 15 

can control mutation of allele Ak.  (For artificial mutation technologies we refer to McClean 16 

[13] and Zhang [18] ). Introducing controls )...,,,( 21
, M

n
MMkM uuuu  , we define 17 

nxnn RR  1: ,  18 



26 

 

















































nj jn
M
nnkn

knkj

M
jkj jkk

n
M

k

n
M

kj j

kM

mumm

mumm

mumm

mumm

u

.

...

.

..

.

...

.

..
..

..

:)(

1

1

22221

1111 1

, .            (7.1) 1 

Therefore, with the joint control ),( ,kMW uuu  , the selection-mutation dynamics is 2 

      ),()()(,))((,)( , uxFxuxuxxuxWxxWxxx ii
kMW

i
W

iiii   . (7.2) 3 

Now, if to   )0,0()(,)( *,**  kMW uuu , there corresponds an equilibrium *x , i.e. 4 

0),( ** uxF , and from our earlier result in Scarelli and Varga [12], we can conclude that 5 

control dynamics (7.2) leaves invariant both the allele frequency simplex n  and its interior  for 6 

small controls.  7 

For an illustration of the application of control model, we start from the three-allele Fisher 8 

model with fitness matrix (3.2): 9 

,
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
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





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





W  10 

with parameters )0,1(,   satisfying  2 . (We remind that the latter implies the 11 

existence of a polymorphic equilibrium  *x , where mean fitness attains a strict maximum.). 12 

Now on the one hand, as in Section 5, we will carry out an artificial selection intervening on the 13 

fitness of homozygote A3A3. In the present formalism, this means that all matrices ijR are zero, 14 

except 15 


















100

000

000

33R . 16 

On the other hand, unlike Section 5, allele mutation is also controlled. Let the mutation matrix 17 

be the same as in Section 6:  18 
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with 0 ab . As we have seen in the previous section, the latter condition implies that *x  is a 2 

polymorphic equilibrium for the zero-control selection-mutation dynamics. Let us assume that, 3 

in addition to fitness w33, we control the mutations  A1A2 and A1A3, i.e. in (7.1) we set k=1. 4 

Now the Jacobian  L  of the right-hand side of (7.2), with respect to x, is the same we calculated 5 

in (6.5): 6 

ijijiij mxwwxl  ))(2( ** .                                                    (7.3) 7 

Furthermore, as we easily calculate, the Jacobian of the right-hand side of (7.2) with respect to u 8 

is  9 
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In order to apply our Theorem A.12, we have to check if  11 

2]||[ 2 BLLBBrank . 12 

In fact, it is easy to see that matrix ]||[ 2BLLBB  has non-zero 2x2 minors. Furthermore, by a 13 

sufficient condition for local controllability of systems without invariant manifold (see Lee and 14 

Markus [2]),  15 

3]||[ 2 BLLBBrank  16 

would imply that system (7.2) is locally controllable at *x  in n



 , which contradicts to the 17 

invariance of n



 for small controls, under dynamics (7.2). Hence, applying Theorem A.12 of 18 

the Appendix, we obtain the following controllability result: 19 
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Theorem 7.1.  If )0,1(,  ,  2  and 0 ab , then with controlled fitness of 1 

homozygote genotype A3A3  and controlled mutations  A1A2 and A1A3, system (7.2)  is 2 

locally controllable into x  within n



 .  3 

Remark. 7.2. We note that the theoretical background of  Section 5 concerning optimization of 4 

mean fitness can also be applied to the numerical realization of the control of the general 5 

selection-mutation dynamics (7.2).   6 

Example 7.3. For a numerical illustration let us consider the selection-mutation model 7 

considered in Theorem 7.1, with the same parameters of Examples 4.2 and 6.3:  5.0 , 8 

25.0 ,  2.0,1.0  ba . These parameters satisfy the conditions of Theorem 7.1, and the 9 

equilibrium corresponding to the zero control  857)0.4286,0.2 0.2857, (x  is an 10 

asymptotically stable polymorphic equilibrium for the selection-mutation dynamics (7.2), with 11 

  )0,0()(,)( *1,**  MW uuu . Now in (7.2) we have 12 
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Then, from Theorem 7.1, we conclude that the population can be controlled into the equilibrium 14 

in given time, at least from nearby states. Now, applying the MatLab toolbox of Banga et al. 15 

[15], we will effectively calculate a control which, from a given initial state, steers the 16 

population into equilibrium, minimizing the distance of the end point  x(T) of the solution from 17 

the equilibrium. To this end fix time duration 10:T  and take initial condition 18 

)4.0,35.0,25.0()0( x  for system (7.2) detailed in (7.4). Figure 6 shows the solution x  19 

corresponding to the optimal control, and in Figure 7 the optimal control is plotted. We remind 20 

that this control at the same time also maximizes the mean fitness of the population.  21 

 22 
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  1 

Fig. 6. Optimal solution of control system (7.2) with initial condition )4.0,35.0,25.0()0( x , 2 
plotted for [0,10] 3 

 4 

 5 

 6 

 7 

 8 

 9 

Fig 7. Optimal control function of system (7.2), plotted for [0,10] 10 

 11 

 12 

8. Discussion 13 

The tools of mathematical systems theory turn out to be appropriate for monitoring and control 14 

of genetic processes. In this context, the object of the study is not a given purely biological 15 

situation, but two aspects of systems “Biological object-Man”. Concerning monitoring (or 16 

observation) problem, there are two basic questions. In our context, the first one is whether a 17 
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population genetic process can be uniquely recovered from a corresponding phenotypic 1 

observation. If this, in principle, is possible, the second question is how to effectively calculate 2 

the allelic state process. In static situation, in Garay and Garay [5] biological conditions were 3 

given for the allele frequency vector - phenotype frequency vector correspondence to be one-to-4 

one. In case of a partial observation of the phenotypic state, however, this invertibility does not 5 

hold. In our paper, instead, the dynamic situation in many cases, biologically interpretable 6 

algebraic conditions are given that guarantee the construction of an observer system, the 7 

solution of which asymptotically estimates the genetic process from partial phenotypic 8 

observation.   9 

Both observation and control in the considered selection model needed a different theoretical 10 

background from the case of density-dependent population models (as studied in earlier papers 11 

of the authors, and also in some other publications, e.g. Guiro et al. [19] and Sundarapandian 12 

[20], for recent reviews see Varga [21], Gámez [22] and Varga et al. [23]). Indeed, 13 

mathematically, Fisher’s selection model is frequency-dependent, and the interior of the simplex 14 

allelic frequencies is invariant under Fisher’s selection dynamics with small controls (small 15 

changes in fitness parameters of certain genotypes), see López [8]. Therefore, instead of the 16 

classical linearization theorems concerning local controllability and local observability, 17 

corresponding theorems for systems with invariant manifold were necessary, which have been 18 

proved in Varga [7,10]. For the state estimation of selection processes in noisy environment, the 19 

method of Edelmayer et al. [24] might be adapted. Furthermore, for the controllability of 20 

discrete-time frequency-dependent models, probably Szigeti and Molnár [25] can be partly 21 

extended to the nonlinear case, see also Szigeti et al. [26]. 22 

We have shown that the application of the observation and control methodology of selection 23 

models can also be extended to selection-mutation models of population genetics. Of course, 24 

even simply allele mutation patterns between existing alleles may substantially modify the 25 

selection processes. Mutation however may also result in new alleles in the considered locus. 26 

Our observation and control models, in the future might also be extended to this case, but then 27 

the first arising population genetic issue would be whether the new allele will stably coexist 28 
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with the resident ones. We emphasize that for the study of the effects of GMO technologies at 1 

population genetic level, the introduced observation and control methodology may gain 2 

importance in the future. For already existing artificial mutation technologies as genetic 3 

engineering tools in breeding for resistance to the diseases of plants, see e.g. Zhang et al.[18].  4 

Finally, we also comment on further possible applications of our methodological development 5 

published in Varga [7,10], concerning observability and controllability of nonlinear systems 6 

with invariant manifold. In fact, apart from the above discussed biological context, this 7 

technique has already been successfully used for the study of chemical processes in Farkas [27-8 

28]. Observers for systems without invariant manifold can also be applied in different fields of 9 

engineering. For instance, concerning solar heating systems, see Kicsiny and Varga [29-30]. For 10 

observer design in a technically different state-space model, we can refer to quite recent issues 11 

of the present journal: WeiYin Leong et al. [31] and Le Van Hien [32]. As a matter of fact, the 12 

state estimation (i.e. observer design) technique, we used in the present paper, is very similar to 13 

the so-called full-order state estimation of [32], but the underlying dynamic models are 14 

different. Unlike our models, [31] and [32] use equations with time delay and probabilistic 15 

system parameters. Both aspects would also be important for more realistic modelling of 16 

biological interactions. In [32] discrete-time model is considered, while our present study is 17 

based on a continuous-time dynamics. We note that the issue of discrete-time monitoring (i.e. 18 

observation) in ecology has already been addressed in our recently appeared paper Gámez et al. 19 

[33]. Since the models of [31] and [32] are linear, for their adaptation to population biology, a 20 

substantial development would be necessary. In fact, most dynamic models of population 21 

biology (in particular, models of population genetics considered in the present paper) are not 22 

linear.  23 
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 20 

Appendix 21 

 22 

A.1. Local observability and observer of nonlinear observation systems with invariant manifold  23 

Definition A.1. For given }1,,2,1{  nk  , a set nH R  is called a regular k -dimensional 24 

sub-manifold if there exist an open set nG R  and a function ),(1 knGC  R  such that, for 25 

all Gx  and for the range of the derivative )(x , we have kn
xR 

  R)(  and )0(1H . 26 

For a continuously differentiable function nnf RR : , we consider the differential equation 27 
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xfx    ,                                                                    (A.1) 1 

where   denotes the composition of functions (in traditional form )(xfx  ). 2 

Given a regular k -dimensional sub-manifold nM R , let Mx *  be such that 0)( * xf  3 

(in other words, an equilibrium of system (A.1)), then there exists a neighborhood of *x  and 4 

RT such that any solution of (A.1) beginning at a point of this neighborhood is defined in 5 

[0, T]. 6 

For this appendix we suppose that M  is locally positively invariant for system (A.1) at *x , that 7 

is, any solution of (A.1) beginning at a point of a neighborhood of Mx * , remains in M. 8 

For a given Nm , let mnh RR :  be a continuously differentiable function with 9 

0)( * xh , we define an observation system as 10 








,xhy

xfx




                                                                (A.2) 11 

where y is called the observed function corresponding to the solution x . 12 

Definition A.2. We shall say that observation system (A.2) is locally observable (in H) at *x ;  13 

if there exists R  satisfying the following conditions: 14 

 Given Hz i  , with    2,1*  ixz i  ,  and 15 

 
  
 ,],0[))(())((

2,1)0(

],0[))(()(

21 Tttxhtxh

izx

Tttxftx
ii

ii






 16 

 then 21 zz   (consequently  ],0[)()( 21 Tttxtx  ). 17 

The local observability in H at *x  means that if, instead of the solution, we can observe a 18 

transformation of it then, from this observed function, we can recover the solution in a unique 19 

way, provided the solution begins at a point of H near the given equilibrium *x . 20 

To formulate a sufficient condition which guarantees the local observability of system (A.2), we 21 

linearize system (A.2) at the equilibrium, 22 
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Now we recall a basic theorem proved by Varga [10], in which a sufficient condition is given 4 

for local observability in "geometric" terms. 5 

 6 

Theorem A.3. Suppose that 7 

}0{*  QKerT ,                                                      (A.3) 8 

where *T  is the tangent space to H at *x . Then system (A.2) is locally observable. 9 

Next, we recall the construction of an observer system that will be based on Sundarapandian 10 

[34]. We present the standard definition of an observer adapted to the case of an observation 11 

system (A.2) with invariant manifold. 12 

Definition A.4.  Given a continuously differentiable function nmnG RRR : , system  13 

                                                      ),( yzGz                                          (A.4) 14 

is called a local asymptotic (respectively, exponential) observer for observation system (A.2) if 15 

the composite system (A.2), (A.4) satisfies the following two requirements:  16 

i)    If ,)0( Mx   and )0()0( zx  , then )()( tztx  , for all 0t .  17 

ii) There exists a neighbourhood V  of the equilibrium *x  of nR  such that for all 18 

MVzx )0(),0( , the estimation error )()( txtz   decays asymptotically (respectively, 19 

exponentially) to zero. 20 

Theorem A.5. (Sundarapandian [35]). Suppose that system (A.1) is Lyapounov stable. Then, a 21 

necessary and sufficient condition for observation system (A.2) to have a local exponential 22 

observer is that the system is locally observable at x . 23 

Remark A.6. Below we will use only the "sufficient part" of this theorem. 24 
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Theorem A.7. (Sundarapandian [34]). Suppose that the observation system (A.2) is Lyapunov 1 

stable at equilibrium, and that there exists a matrix K  such that matrix KCL   is Hurwitz (i.e. 2 

its eigenvalues have negative real parts), where )( *xfL   and )( *xhC  . Then the 3 

dynamic system defined by 4 

)]([)( zhyKzfz      5 

is a local exponential observer for observation system (A.2). 6 

 7 

A.2. Controllability of nonlinear control systems with invariant manifold  8 

Given ,, Nrn  let nrnF RRR :  be a continuously differentiable function. For a 9 

reference control value ru R , let  nx R  be such that  0),(  uxF . For technical 10 

reason we shall need a rather general class of controls. Let us fix a time interval ],0[ T , and for 11 

each R  define the class of essentially bounded  -small controls 12 

 ],0[)(|],0[],0[ TteveryalmostfortuTLuTU r 
  . 13 

 14 

From Lee and Markus [2] we recall the following two theorems 15 

Theorem A.8. There exists R0  such that for all ],0[
0

TUu   and nx R0  with 16 

0
0  xx , the initial value problem 17 

]),0[..())(,)(()( TteafortuutxFtx     (A.5) 18 

0)0( xx         (A.6) 19 

has a unique solution. We notice that x  is an equilibrium state for the zero-control system. 20 

 21 

Theorem A.9. Let rR be a compact set, and fix a 0T . For any measurable function 22 

(control) ],0[: Tu  consider the system  23 

))(),(()( * tuutxFtx    for almost all ].,0[ Tt                                             (A.7) 24 
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a) Suppose that for a measurable control ],0[: Tu , a solution x  of (A.7) is defined on 1 

the interval ].,0[ T  Then there exists an 00   with the following property: For all ),0( 0   2 

and measurable control ],0[: Tu  satisfying   )()( tutu  except a set of measure 3 

 , we have that any solution x  corresponding of system (A.7) with   )0()0( xx  is 4 

defined on ],0[ T , moreover ]),0[()()( Tttxtx    holds. 5 

b) With the conditions and notation of a), we have that xx   uniformly on ],0[ T , when 6 

0 . 7 

Definition A.10. A regular k -dimensional sub-manifold nH R  is said to be locally 8 

invariant for small controls, with respect to system (A.5)-(A.6) at x , if there exists ],0] 0   9 

such that ],0[,,)0( 0
0 TUuxxHx     imply that for solution x  of system (A.5)-10 

(A.6), we have ]).,0[()( TtHtx   11 

Definition A.11. Suppose that H  is as required in Definition A.10. System (A.5)-(A.6) is 12 

called locally controllable into x  within H , if there exists a 0  and a ],0[ TUu   such 13 

that from any initial state Hx )0(  with  xx )0( , for solution x  of (A.5)-(A.6) we 14 

have  xTx )( .  15 

Let us linearize system (A.5)-(A.6) around ),(  ux , introducing the corresponding Jacobians 16 

),( 




 uxF
x

L ,   ),( 




 uxF
u

B . 17 

Then we have the following sufficient condition for local controllability:  18 

Theorem A.12. (Varga [10])  19 

If  20 

)8.(,]...[ 1 AkBAABBrank n   21 

then system (A.5)-(A.6) is locally controllable into x  within H . 22 

. 23 


