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Abstract 
The classical game-theoretical models described the conflict in fisheries arising from 
harvesting a ’common pool resource’ which without an efficient regulation leads to an 
overexploitation of a renewable but not unlimited resource, known as the ’tragedy of the 
commons’. Unlike these studies, the present paper deals with a marketing cooperative of 
micro or small enterprises in fishing industry, formed to negotiate a contracted price with 
large buyers, sharing risk among members of the cooperative. In the paper a game-theoretical 
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model for the behaviour in this cooperative is set up. By the time of the actual 
commercialization of the product, the market price may be higher than what the cooperative 
can guarantee for members, negotiated on beforehand. Therefore some “unfaithful” members 
may be interested in selling at least a part of their product on the free market, the cooperative, 
however, can punish them for this. This conflict is modelled with a multi-person normal form 
game. An evolutionary dynamics is proposed for the continuous change of the applied 
strategies, which in the long term leads to a particular Nash equilibrium, considered the 
solution of the game. This strategy dynamics is continuously influenced by an ”exosystem” 
describing the dynamics of fishing, based on a classical fishing effort model. This approach 
focuses only on the conflict within the marketing cooperative, since it is supposed that the 
single enterprises fish from independent resources. 
Keywords: fishery management, marketing cooperative, oligopoly, evolutionary game 
dynamics. 
1. Introduction and preliminaries 
1.1. Introduction 
A cooperative in a given region may perform several activities, ranging from product 
processing to complex marketing, see e.g. Cobia (1989). In particular, concerning fisheries, 
Freeman (2010) gives a quick checklist of benefits and drawbacks of fishing cooperatives. 
Micro and small enterprises often have difficulties in the commercialization of their product. 
Varga et al. (2010) analyze a game-theoretical model for the behaviour in a marketing 
cooperative. The model studies a ’one-shot game’, where at the end of a given production 
cycle, each member of the cooperative may decide to sell a part of its production on the free 
market, if the market price is higher than the price set by the cooperative beforehand. In the 
present study we will deal with a similar conflict, but in the context of fisheries based on a 
dynamic fishing effort model.  
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An overview of different conflicts fishery management should face, is given e.g. in Caddy 
(1999), Cochrane et al. (1998), Castilla and Defeo (2001). From these papers and the 
references therein it is clear that the classical game-theoretical conflict of exploiting a 
common-pool resource has been widely studied over the last decades. Less attention has been 
payed to the marketing conflicts related to fisheries. As examples of dealing with conflicts in 
oligopoly market environment, we recall Szidarovszky and Okuguchi (1998) and Bischi et al. 
(2005). 
In the present paper a model of marketing cooperative in fisheries is set up and studied, where 
in a given time period a continuous production (harvested biomass) is being sold, under the 
condition that the actual offer is determined by the dynamics of the harvested fish population. 
We emphasize that in the considered situation the game-theoretical conflict arises on the 
marketing side, while the production in unit time )(tLi of each cooperative member i, comes 
from the solution of the corresponding classical logistic fishing effort model (see e.g.Clark, 
1990). 
First we set up a normal form game to describe the considered conflict and apply a solution 
concept called attractive solution, which is a special type of Nash equilibrium, introduced by 
Larbani (1997), see also Larbani and Lebbah H. (1999). Then this solution concept is also 
studied in dynamic context, applying an evolutionary dynamics introduced by Garay (2002). 
The reason for the application of this solution concept is that it takes into consideration that in 
the definition of an equilibrium there is a distinguished player which in our case will be the 
cooperative, and the rest of the players will be its members.  
The paper is organized as follows. In the rest of Section 1, a classical fishery model is 
recalled that will be a component of the model we will set up. In Section 2, following a 
general description of a marketing cooperative, the oligopoly market environment is 
formalized, where the price is determined by the total offer. In Section 3 a time-dependent 
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game-theoretical model of the cooperative is introduced, and the existence of an attractive 
solution is proved. In Section 4 a model of dynamic strategy choice is introduced and 
sufficient conditions are given under which the strategy choice of the players leads to the 
desired attractive solution of the game. In Section 5 the strategy dynamics with discrete-time 
delivery of the catch is shortly touched on. A  Discussion and outlook section closes the 
main body of the paper. In the Appendix, for the reader’s convenience some further details 
of the applied classical fishing effort model are recalled.  
Finally, we note that the simulations illustrating our theoretical study have been 
programmed in MatLab environment.  
1.2. A classical fishery model 
There are two basic types of classical fishery models. In both types the population dynamics 
of the considered fish population is described by the logistic model. In the quota model the 
per unit time catch is independent of the population biomass, with a constant 0h  we have  

hK
zrzz 


  1 , 

where r and K are the Malthus parameter and the carrying capacity of the habitat, 
respectively. 
We will use the more flexible fishing effort model, where the per unit time catch is a function 
of the actual biomass. From the different function types (see e.g. Marcos et al., 2015; Kar, 
2004), for our analytical study we will use the linear dependence (see Schaefer, 1954) 

zEK
zrzz 


  1 ,                                                         (1.1) 

where E is the fishing effort (number of vessels or gears applied) and   is the catchability 
constant (the biomass caught from unit stock by one vessel, in unit time). From Clark (1990), 
in the Appendix for the reader’s convenience we recall some basic properties of this model, 
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also giving the analytic solution to it. It can be shown that if rE  , dynamics (1.1) has an 

equilibrium Kz  0 , which is attractor in the sense that from both initial values 
 zz )0(0  and Kzz  )0( , the solution tends to z , monotonically increasing in the 

first case, monotonically decreasing in the second one (see Appendix, Figure A1.). In Figure 
1, the numerical solution is illustrated with parameters: r=0.2, K=1000, E=1.1, 01.0 . Now 
z =950, and with initial values  z=z 150)0( , z>1700)0( =z  we obtain the solutions shown 

in Figure 1. 

 
Figure 1. Solutions of fishing effort model (1.1) 

 
2. Description of a marketing cooperative of fishing enterprises 
2.1. General description of the considered marketing cooperative 
Let us assume that there are n micro or small enterprises fishing in different lakes of the same 
geographic area, with somewhat similar ecologic conditions. (For an example, one can think 
of the volcanic lakes of the Latium region in Central Italy, or the glacial lakes of Northern 
Italy). In fact, our modelling conditions will primarily correspond to freshwater fisheries. For 
the sake of simplicity only one fish species will be included in our model. For such 
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enterprises, because of the relatively small quantity they can offer for sale, it is reasonable to 
form a marketing cooperative and find a large buyer who would contract them, say for a time 
period ahead, at a negotiated price, for the total production of the cooperative. However, in 
the meanwhile on the free market there may appear a price higher than the contracted price. 
Then the member enterprises of the cooperative may be interested in selling a part of their 
production on the free market. If member i sells the xi -part of its production to the 
cooperative, and 1ix , then the cooperative may punish it for “unfaithfulness”. In the 
formalization of this conflict as a normal form game, ]1,0[ix  will be the strategy of member 
(player) i. With vector n

nxxxx ]1,0[),...,,( 21  , ]1,0[]1,0[),(  nyx  will be called a multi-
strategy. The cooperative as player n+1, can threaten the unfaithful with penalty proportional 
to its extra revenue, with rate ]1,0[y . The net revenue (payoff) of the players will depend on 
the actual free market price formed by the outputs on oligopoly basis, as described in the next 
subsection.  
 
2.2. Cournot type oligopoly market with time-dependent outputs 
Since the quantity offered on the market by the enterprises will be proportional to the time-
dependent catch obtained from a dynamic fishery model (1.1), below we will consider a time-
dependent market situation. A market where the price is defined by the total quantity of goods 
offered by several producers, is usually called Cournot type oligopoly market.  
With 0, ba , for all [,0[ t and multi-strategy ]1,0[]1,0[),(  nyx  we define the time-
dependent inverse demand function (or price function) as a decreasing linear function of the 
total output: 

  n

i
ii xtLbaxtq

1
)1)((:),( ,      (2.1) 
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where )(tLi  is the time-dependent total catch shared by enterprise i, between the cooperative 
and the local market. Since in lack of local product (when all )(tLi -s are zero) the price is a, 
the latter can be considered as import price. Suppose that the “import price” a  is greater than 
the contracted price p  (i.e. pa  ), functions )(tLi  are bounded, and the oligopoly effect is 
weak enough (i.e. b is small enough). Then the oligopoly model is considered consistent, i.e. 
for all nxt ]1,0[[,0[),(   we have  

.)1)((:),(
1

pxtLbaxtq n

i
ii        (2.2) 

In particular, the inverse demand function is always positive, and the market price is attractive 
for the members of the cooperative. 
 
3. Game-theoretical model of the conflict between the cooperative and its members 
3.1. A solution concept for N-person games 
Since in the considered conflict the cooperative has a distinguished role, we need a special 
solution concept for an N-player game, called attractive solution (see e.g. Larbani, 1997) of 
the game, in the sense of the following definition. Consider an N-player game where 

iX   is the strategy set of player i,  

 
N

i iXX
1

:  the set of multi-strategies, 

RXFi :  the payoff of player i, ),...,(: 1 NFFF  . 

Definition 1. Multi-strategy 0x  is said to be an attractive solution of the normal form game 
),( FX , if there exists a player  Ni ,1   such that  the following conditions are satisfied: 

 A)    ),...,,...,( 01 Nij xxxF   )( 0xF j ,  ( Nj ,1 \{i}, kk Xx  , Nk ,1 \ }{i );                               

 B) ),...,,...,( 001 Nii xxxF   )( 0xFi ,    ( ii Xx  ). 
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Remark 1. If in condition A), for each Nj ,1 \{i} we choose kkk Xxx  0:  for 
Nk ,1 \ },{ ji , and an arbitrary jj Xx  , we obtain that any attractive solution is a Nash 

equilibrium (NE), too. The interpretation of the distinguished player i is the following: if 
player i sticks to his equilibrium strategy, the rest of the players cannot increase their payoff 
even if they deviate together from their equilibrium strategies. In the context of our game, the 
distinguished player is the cooperative. 
 
3.2. Game model for the marketing cooperative  
Let c  be the production cost per unit biomass, and 1  a penalty parameter. For any 

[,0[ t  and multi-strategy ]1,0[]1,0[),(  nyx , the payoff  (profit = revenue – cost – 
penalty) of player i is    

)]()1)(),(()()1)(),(()()[(:),,( tLxpxtqytLxcxtqtLxcpyxtf iiiiiii        
)]}),((),()[1()){((                pxtqycxtqxxcptL iii   ,             ),1( ni          (3.1) 

and for player )1( n  the payoff is 

  n

j
jjn xtLpxtqyyxtf

1
1 )1)(()),((:),,(  .                                             (3.2) 

With notation ),...,,(: 121  nffff , for the description of the cooperative we have a time-
dependent normal form game  

)],1,0[]1,0([ fn  .                                                               (3.3) 
Solution of the game 
Let us fix a time moment [,0[ t , and denote nR1  )1,...,1,1(: . Then for any multi-
strategy ]1,0[]1,0[),(  nyx  we easily obtain that 

  0)),()(1)(1)(( )1,,()1,,(  pxtqxtLtfxtf iiii 1 ,    (3.4) 
and     

0)11)(()),(()11)(()),(()1,,(),,(
11

11   
n

j
j

n

j
jnn tLpxtqtLpxtqytfytf 11 .    (3.5) 
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Furthermore, it is easy to see that under the conditions of subsection 2.2, in case 1 , 
nx ]1,0[  with 1ix  for some ni ,1 , inequality (3.4) is strict.  

Hence we obtain the following theorem. 
Theorem 1. Multi-strategy )1,(1  is an attractive solution of game (3.3). 
 
4. Strategy dynamics and stabilization of the cooperative  
Different evolutionary models are often used to describe economic behaviour, see e.g. 
Cressman et al. (2004). For the time-invariant case, where the production of the members is 
constant and the game is played continuously with improving strategies, we have already 
applied the so-called partial adaptive dynamics of Garay (2002). Below we will develop this 
dynamics for our model of marketing cooperative in fisheries.   
 
4.1. Evolutionary strategy dynamics for the game of the cooperative 
The idea of the partial adaptive dynamics is that a player should continuously change his 
strategy in order to improve his payoff, provided the other players maintain their strategies. 
To this end the time derivative of the strategy should be proportional to the partial derivative 
of the player’s payoff with respect to his own strategy. 
With payoff functions of (3.1)-(3.2) the strategy dynamics for the time-dependent strategies 

)(txi  and )(ty  of member i and the cooperative, respectively, will be  

   ),,()1( yxtfxxxx i
i

iii 
  ( ni ,1 ),                 (4.1)

 ),,()1( 1 yxtfyyyy n
 .        (4.2) 

From (3.1) and (3.2) we obtain 

)]()1(),()[1)((),,( tbLxpxtqytLyxtfx iiii
i


      ),1( ni , 
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 n

j
jjn xtLpxtqyxtfy 1

1 )1)(()),((),,(  . 

For all  ]1,0[]1,0[[,0[),,(  nyxt , we get the strategy dynamics  
)]()1(),()[1)(()1( tbLxpxtqytLxxx iiiiii    ( ni ,1 ),    (4.3) 

   n

j
jj xtLpxtqyyy

1
)1)(()),(()1(  .                   (4.4) 

Remark 2. The attractive solution )1,(1 is obviously an equilibrium of dynamics (4.3)-(4.4), 
and the first two factors in the right-hand sides ensure that dynamics (4.3)-(4.4) leaves the 
multi-strategy set ]1,0[]1,0[ n  positively invariant, which is necessary for the consistency of 
the model. 
4.2. Asymptotic properties of the strategy dynamics 
For the following two theorems we suppose that the production in unit time )(tLi of each 
cooperative member i, comes from the solution of the corresponding fishing effort model,  

)()( tzEtL iiii   ( 0t )     (4.5) 
Case of limited penalty ( 1 ) 
Now we will see that by limited penalty for unfaithfulness of the members, the cooperative 
cannot be stabilized.  
Theorem 2. Suppose that 1 , and the oligopoly effect is weak enough (parameter b in the 
inverse demand function is small enough). Then attractive solution )1,(1  of the game 
described above is an unstable equilibrium of dynamics (4.3)-(4.4). 
Proof. Since now for [1,0][1,0][,0[),,(  nyxt  in equation (4.3) obviously 01y , from 
(4.5) we have 0)( tLi , and we need to check the sign of the term […] in (4.3). In addition, 
solutions )(tzi  of the fishing effort equations are bounded from above (see Appendix, (A.4)). 
Therefore, )()( tzEtL iiii   ( 0t ) is also bounded from above. Now since pa   is 
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supposed, similarly to the reasoning of subsection 2.2 for the consistence of the oligopoly 
market, we obtain that for  b  sufficiently small we have 

0)]1)(()1)(([)()1(),(
1

  pxtLxtLbatbLxpxtq ii
n

j
jjii  

for nxt ]1,0][,0[),(  . 
Since 01y , the right-hand side of equation (4.3) is negative, ))(),(( tytx  will diverge 
from dynamic equilibrium (and also NE) )1,(1 .  
 
Example 1. For an illustration let us consider a marketing cooperative of three small 
enterprises, fishing the same species in three different lakes, according to the fishing effort 
model (1.1),  

iii
i

iiii zEK
zzrz 


  1    )3,1( i ,                                               (4.6) 

where the parameters are K1=1100; K2=1000; K3=1050; r1=0.25; r2=0.21; 
r2=0.23; 01.01  ; 015.02  ; 013.03  ; E1=2; E2=1; E3=3. Furthermore, the parameters of 
the game model are 1 ; p=1.5; a=2.5; b=0.0087. In Figures 2 and 3 we illustrate Theorem 
2, with z*=(969, 952.38, 871.96). Set z(0)=(450, 450 , 450) for Figure 2, and x(0)=(0.5, 0.7, 
0.8); y(0)=0.9 for Figure 3. Then we obviously have  ii zz )0( . 
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Figure 2. Solutions of fish dynamics (4.6) for cooperative members,  

with 1  and *)0( zz   
 

The corresponding development of strategy dynamics is shown in Figure 3. 

 
Figure 3. Strategies dynamics, corresponding to fish dynamics of Figure 2. Members 

“escape” from the Nash strategies 1.        
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Next, with z(0)= (970, 970 , 970), we have *)0( zz  . Theorem 2 is illustrated in Figures 4 
and 5, with results analogous to Figures 2 and 3. 

 
Figure 4. Solutions of fish dynamics (4.6), for 1  and *)0( zz   

 
Figure 5. Strategy dynamics (4.3)-(4.4), corresponding to fish dynamics of Figure 4,  
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for *)0( zz   
 
Case of effective penalty )1(   
Now we will see that the effective penalty for unfaithfulness can stabilize the cooperative, 
since the multi-strategy will then tend to a limit where, under the effective threat by the 
cooperative, all members are to complete faithful.    
Theorem 3. If the penalty is effective ( 1 ), and the oligopoly effect is weak enough, then 
any solution of the strategy dynamics starting from ))0(),0(( yx  in [1,/1][1,0] n , will tend to 
the attractive solution )1,(1  of the game (i.e. dynamic equilibrium )1,(1  is an attractor for 
dynamics (4.3)-(4.4).) 
Proof.  Now in [1,/1][1,0] n , by the sign reasoning of the proof of the previous theorem, 
for b small enough we obtain that the right-hand side of equation (4.3) will be positive, 
because now /1y . Hence ix  is strictly increasing, and so is y  because of the positivity 
of the right-hand side of equation (4.4). Thus there exists 

]1,/1]]1,0]),())(),((lim  


n
t yxtytx .  

It is clear that if to equations (4.3) and (4.4) we join the population dynamic equations  

iii
i

iiii zEK
zzrz 


  1

  
),1( ni  

to system (4.3)-(4.4) by the substitution )()( tzEtL iiii   )0( t , we obtain an autonomous 
system for ),,( zyx  of the form  









),,(
),,(
),,(

zyxwz
zyxvy
zyxux







                                                              (4.7) 
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 with ),...,,(: 21 nzzzz  . As it is known (see Appendix, (A.4)), from every initial population 
density [,0])0( Kzi   iz  tends to the equilibrium: 

  iit ztz )(lim . Thus we 

have [,0]]1,/1]]1,0]),,())(),(),((lim Kzyxtztytx n
t  

  . We will show that ),,(  zyx is 

an equilibrium of system (4.7). Indeed, ),,())(),(),((lim)(lim 
  zyxutztytxutx tt  . Hence 

we get  

0),,()]0()([1lim)(1lim
0

 
  zyxuxtxtdssxt t

t

t  , 

where boundedness of 0)(     )( ttx  was applied. We similarly obtain 0),,(  zyxv  and 
0),,(  zyxw . It is easy to see that )1,(),( 1 yx . Indeed, suppose that for some i, 

inequality 1
ix  holds. Then 

0)]1()1([                       
)1()1(),,(0

1










 iiii
n

j
jjjj

iiiiii

xzbEpxzEba
yzExxzyxu




, 

which is a contradiction. Similar reasoning leads to 1
iy . 

 
Example 2. For an illustration of Theorem 3, we consider the parameter system of Example 
1, except 15.1 . In Figures 6-9 we show how the effective penalty stabilizes the 
cooperative: now the strategy dynamics leads to the attractive solution )1,(1  of game (3.3), 
which, as we have seen in Section 3, is a particular NE.  
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Figure 6. Solution of fish dynamics (4.6), for 1  and *)0( zz   

 
Figure 7. Strategy dynamics corresponding to fish dynamics of Figure 6,  

tending to the attractive solution )1,(1  



 17

 
Figure 8. Solution of fish dynamics (4.6), for 1  and *)0( zz  . 

 
Figure 9. Strategy dynamics corresponding to fish dynamics of Figure 8,  

tending to the attractive solution )1,(1  
 
5. Strategy dynamics with discrete-time delivery 
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In this section we suppose that instead of selling the captured fish immediately, the enterprises 
process and accumulate and sell them deep frozen. We want to see how much this change 
may also influence the cooperative and its members in their behaviour (strategy choice) 
according to strategy dynamics (4.3)-(4.4). To this end, counting with half month 
accumulation periods of length  , we consider M periods in the time interval [0,T], with 

 MT . Let us calculate the total catch of cooperative member i, during the time period 
])1(,[  mm :  

 
 )1( )(m

m iii
m
i dttzEL    (m=0,1,...,M-1), 

corresponding to the fishing effort model, see Appendix, (A.5) and (A.6). 
By the substitution of m

iL , from the strategy dynamics and the fishing effort models, we obtain 
an autonomous system for ),,( mmm zyx  of the form  









),,(
),,(
),,(

mmmm
mmmm
mmmm

zyxwz
zyxvy
zyxux







        (5.1) 

At the end of each period, the endpoint of the solution of (5.1) is taken as initial value for the 
next period. The following example illustrates the behaviour of the above model.  
Example 3. Starting from basic parameter system of Example 2, with 15.1 . For the case 
of “real-time delivery” we obtain strategy dynamics as shown in Figure 10. For the illustration 
of the above construction, let us set 5.0  (say half a month), M=10, hence T=5. Figure 11 
suggests that in case of “discrete-time delivery” the strategy dynamics also tends to the 
original attractive solution (1,1) of the game, however the convergence is slower than in the 
case of “real-time delivery”. 
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Figure 10. Strategy dynamics for the case of “real-time delivery”, with *)0( zz   

 in the fish dynamics  
 

 
Figure 11. Strategy dynamics for the case of “discrete-time” delivery, with *)0( zz   

 in the fish dynamics  
 
6. Discussion and outlook  
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It has been shown that an earlier approach of the authors concerning the conflict between a 
marketing cooperative and its unfaithful members, can be extended to the case when the offer 
in the oligopoly market where the unfaithful members sell a part of their production, is 
determined by an “exosystem” describing a time-varying production, in our case it is the 
dynamic model of fishing.  
An important point is that, unlike the previous model, where the parameters of the resulting 
multi-person game were constant, in the present case, due to the time-varying oligopoly 
market, they change with time, according to a fishing effort model. Another specificity of the 
considered situation is, that the harvested fish preferably should be commercialized “in real 
time”, that is immediately. In the case of continuous time-dependent delivery, we have also 
proved that the corresponding time-varying partial adaptive dynamics is also appropriate for 
the description of the development of the strategy choice. In case of an effective punishment 
for unfaithfulness, the appropriate time-dependent strategy choice also tends to the solution of 
the game. 
In addition to the “real-time delivery”, we have also adapted our model to the case when deep 
frozen fish is commercialized, operating with discrete-time sale, accumulating the product for 
given time periods. All this also means that our model may also be valid for certain 
production and commercialization of certain long season vegetables, sold either fresh, i.e. in 
“real time”, or deep frozen, i.e. in discrete-time moments.  
As a further development of the presented model, the conflict between a marketing 
cooperative and its members could be combined with the conflict of several enterprises 
fishing in the same water. 
Finally, we note that the methods of mathematical systems theory and optimal control models 
(see e.g. Guiro et al., 2009; Gámez et al., 2012) can be also applied in the fishery 
management context of the present paper. 
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Appendix 
 
For the reader convenience below we summarize some basics of the classical fishing effort 
model by Schaefer (1954), see also Clark (1990), adding some results of analytical 
calculations used in our simulations.  
Starting from the logistic model, suppose that the fishing is proportional to the present 
biomass (stock) of a given species. Then the fishing effort model considered in subsection 1.2 
is  

zEK
zrzz 


  1 .                                                          (A.1) 

We have two equilibrium points, the trivial equilibrium 0 and with the condition 
rE  , the 

non trivial equilibrium  

01 


 
r

EKz  , with Kz  0 .                                             (A.2) 

 
To each effort E , there corresponds a sustainable catch: 




  
r

EKEzEEH  1)( .  0)( EH  is a quadratic equation, with roots 0 and 
r , and 

the function H  attains a maximum at 2
rE  , that is, MrKrH 




42  is the maximum 

production of biomass (or maximum sustainable yield, MSY) of the population described with 

the logistic dynamics. Therefore, if we start fishing in the equilibrium, the effort 2
r  is an 

optimal and sustainable strategy. A routine calculation shows that, in correspondence with 
Figure 1 of subsection 1.2,  
if *)0(0 zz  , the solution of (A.1) is 



 24

tErezz
z

zz
zz

tz
)(

*

*
*

)0(
)0(

)0(
)0(

)( 



  )0( t ,                                            (A.2) 

and if Kzz  )0(* , the solution of (A.1) is 
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    )0( t .                                          (A.3) 

Obviously, in both cases we have  


  ztzt )(lim .                                                                 (A.4) 

 As Figure A1 shows, the convergence is monotonically increasing in the first case, and 
monotonically decreasing in the second one. Hence the solutions in both cases are also 
bounded. 
 

 
Figure A1. Convergence of biomass to equilibrium in the fishing effort model 
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For Section 5, concerning the case of discrete-time delivery, from (A.2) and (A.3), we easily 
calculate the total biomass caught in time interval ])1(,[  mm : 
For *0 zz  , 
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 ,                      (A.5) 

and for Kzz * ,  
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