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State‑controlled epidemic 
in a game against a novel pathogen
József Garay  1,2, Ádám Kun  1,2*, Zoltán Varga  3, Manuel Gámez  4, 
Ana Belén Castaño‑Fernández  4 & Tamás F. Móri  5

The pandemic reminded us that the pathogen evolution still has a serious effect on human societies. 
States, however, can prepare themselves for the emergence of a novel pathogen with unknown 
characteristics by analysing potential scenarios. Game theory offers such an appropriate tool. 
In our game-theoretical framework, the state is playing against a pathogen by introducing non-
pharmaceutical interventions to fulfil its socio-political goals, such as guaranteeing hospital care to 
all needed patients, keeping the country functioning, while the applied social restrictions should be 
as soft as possible. With the inclusion of activity and economic sector dependent transmission rate, 
optimal control of lockdowns and health care capacity management is calculated. We identify the 
presence and length of a pre-symptomatic infectious stage of the disease to have the greatest effect 
on the probability to cause a pandemic. Here we show that contrary to intuition, the state should 
not strive for the great expansion of its health care capacities even if its goal is to provide care for all 
requiring it and minimize the cost of lockdowns.

The COVID-19 pandemic once again called the attention to the serious effect the evolution of pathogens can 
have on contemporary societies. Evolution is not predictable as the generation of variation has an element of 
chance to it, so it cannot be exactly predicted when a novel, pandemic causing pathogen will emerge and with 
what kind of properties it will have. In order to prepare for an emerging infectious disease, the parameter depend-
ence of a system involving both government measures and phenotypic parameters of the pathogen should be 
investigated. Furthermore, the socio-political objectives of the state also dictate the measures to take against the 
propagation of the pathogen.

Our aim is to introduce and study a conceptual, game-theoretical model that facilitates the preparedness of 
states to such emergencies. In this framework, first “Nature” (“Evolution”) moves (chooses strategy) in the sense 
that a so-far unknown pathogen, with properties allowing it to cause a pandemic emerges. Then it is a task of 
the state to work out an optimal strategy to handle the ensuing epidemic. The pathogen is such that (1) there is 
a non-ignorable presymptomatic period, when infected can transmit the pathogen to others1–5. This property 
combined with our current global travelling habits, make the quick outbreak of a pandemic possible6; (2) the 
death rate can be reduced by hospital care involving medical instruments, medicines and therapies already 
developed for other diseases7; (3) the death and hospitalization rate is not very high, thus the overwhelming 
majority of infected person does not need hospital care7; (4) the pathogen is transmitted mostly by person-to 
person contact, therefore the reduction of social contacts can slow down the propagation of the epidemic8,9. In the 
end, herd immunity will terminate the epidemic10, which can be reached through vaccination or by the majority 
recovering and becoming immune to the infection. If the propagation speed of the disease is high enough, the 
latter can dominate without the availability of sufficient amount of vaccine. Here we consider the worst-case 
scenario that vaccine is not developed before the epidemic runs its course.

The other player in case of a nation-wide epidemic is the state (government). We suppose that the state has two 
socio-political (shortly political) objectives: the first political objective is to guarantee hospital care for all citizens 
who require it11. We note that we will not consider the option that the state strive to save the maximum number 
of lives, since in that case it should maintain the most restrictive measures, until the sufficient amount of vaccine 
is at its disposal12. That solution would be economically13 and psychologically14,15 very costly. Second political 
objective is to minimize the restriction of liberty rights, i.e. minimize the extent and duration of lockdowns. The 
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state has two ways to achieve its goals: (1) restrict social contacts to slow down the spread of the pathogen16,17, 
avoiding in this way the overload of the existing hospital capacity; and (2) increase hospital capacity, by which 
the duration of the epidemic can be shortened. We assume that the state always requires symptomatic individuals 
to quarantine themselves18,19, and it otherwise controls access to certain places and services.

Taking into account the above two objectives, using a modified SEIR epidemiological model with state con-
trol (Fig. 1), we investigate what the optimal non-pharmaceutical intervention strategy should be. The state 
optimizes its policies so that the short-term financial cost due to increased cost of health care and decrease of 
revenues from closed/restricted economic sectors is minimized. The payoff of the state in our game-theoretical 
model is the cost deduced revenues it has during the epidemic. Here we restrict our investigation to four sectors 
(retail stores; arts, entertainment and recreation; manufacturing; and travel, restaurants, hotels) with venues of 
these economic activities differing significantly in pathogen transmission potential20,21. We are fully aware that 
the economic consequences of a pandemic are more complex22,23, but our approach captures an important, oft-
neglected characteristic, the time-dependent nature of the cost: longer lockdowns and more hospitalized patients 
result in higher cost for the entire country. The role of time constraints in evolutionary game theory24–26 and their 
inclusion in models of epidemic management27 is a new line of research.

Method
Conceptual model.  We are modelling a game-theoretical situation between a state and an epidemic caus-
ing pathogen. Nature is considered to act first, i.e. a new pathogen has evolved, which can produce pandemic. 
A state wants to be prepared to the eventuality of such pandemic. The objective of the state during a pandemic 
is to realize its own social and healthcare politics, namely take targeted measures to ensure, with minimal social 
restrictions, hospital care to all seriously ill patients and sufficient number of active (asymptomatic) persons to 
run basic services. The state choses a target hospital capacity and optimizes a set of non-pharmaceutical inter-
ventions to reach the above objectives with the chosen hospital capacity. Both the cost of increased hospital 
capacity and the cost of economic restrictions decrease the payoff of the state. By the right choice of the number 
of beds (hospital capacity), the state can maximize its income during the epidemic.

The solution concept for our game model, in the context of this “game against Nature”, for Player 2 (state) it is 
to adopt Wald’s paradigm of maximin or pessimistic solution (also called conservative solution), see e.g.54: Player 

Figure 1.   Schematic representation of the epidemiological model and the venue dependent transmission rate 
(probability). The modified SEIR epidemiological model has seven compartments. At the start, most individuals 
are susceptible. If infected, they become exposed, then proceed to infectious, but presymptomatic stage. 
Individuals can either recover at this stage or they can develop symptoms. Symptomatic infectious individuals 
either recover or their condition deteriorate, and they become hospitalized. Hospitalized individuals might be 
healed, or they pass away. Recovery from the corresponding state has a probability of θi , whereas ti denotes the 
mean time of staying in the starting stage. Infectious individuals with symptoms are quarantined, and thus only 
infectious individuals without symptoms can infect others. Transmission probability (β) depends on the location 
which are characterized by the time people spend there, the mean density of people, their interaction intensity 
and connectivity. People, on average, spend most of their time in their workplace, which is a low density, low 
intensity and intermediate connectivity place. Stores have low density of people, who interact infrequently 
and with low intensity. On the other hand, entertainment and tourism are high density venues with high 
connectivity and intensity of interaction. See actual parameters in Supplementary Table 2.
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2 counts with the “worst case”, supposing a strategy choice of Player 1 (pathogen) that minimizes the payoff of 
Player 2, and the latter maximizes this minimum. We emphasize that this maximin solution for Player 2 (state) 
is based on a unilateral approach. The actual strategy choice of the pathogen is not the focus of our study, we 
want to find the suitable strategy choice of the state. A pathogen does not need to take the worst strategy (from 
the point of view of the state) in a pandemic, but the state should be prepared for the worst case.

In order to set up our game-theoretical model, we have to take the following steps:
First, we introduce the dynamical model of the epidemic which is an extension of the SEIR epidemiological 

model. Here, transmission rates are derived for different types of venues which are places where different eco-
nomic activities are conducted. These venues not only vary in their contributions to the economy (see below), 
but they also vary in crowding, length of average stays and other factors influencing the probability of catching 
the disease. This sub-model is important since it can handle the different shutdowns and their effect on the 
propagation of the pathogen. The restrictions influence the infection rate.

Second, we calculate the probability of a pathogen to cause a pandemic, i.e. to spread to other countries from 
its country of origin. If the pathogen does that, then countries all over the world need to deal with its conse-
quences. Thus, the ability to cause a pandemic limits the strategy space of the pathogen. This sub-model will 
show us what kind of characteristics the focal pathogen in our game should have.

Third, we introduce the non-pharmaceutical interventions that are available to the state. These are the strategic 
options available to the state against the epidemic caused by a novel pathogen. The state implements optimized 
control on access to various services, economic activities, etc. in order to curb the spread of the infection so that 
the hospital capacities are never overextended but at the same time the least amount of restrictions are imple-
mented. The state control guarantees that it reaches its socio-political objectives.

Fourth, we formally introduce the game against Nature considering different possible novel pathogens. In our 
game, the novel pathogen is characterized by the time infected individuals stay on average in the presymptomatic, 
infectious stage. We will consider four types of pathogens and four increased hospital capacities, calculating the 
payoff of the state as the net income under the control implying that the socio-political objectives are reached. 
Under the constraint of its political goal, the state maximizes its net income during the epidemic, considering 
the worst-case strategy choice of the pathogen.

General epidemiological model.  We employ an extended version of the SEIR compartment model 
of epidemiology: apart from the standard Susceptible, Exposed and Recovered stages, we explicitly count the 
Deceased, and divide the Infectious phase into three subphases: presymptomatic infectious, symptomatic infec-
tious and seriously ill infectious. Susceptible individuals ( S ) can become infected if they meet infectious ( Ips , 
Is , Ih ) individuals. Infected individuals ( E ) enter the Exposed stage, and after the incubation period ( t0 ) they 
enter the Infectious (presymptomatic) stage. Infectious individuals either recover with transition probability 
θi (depending on the stage) or advance to the next Infectious stage (presymptomatic → symptomatic → seri-
ously ill/hospitalized) with characteristic times t1 , t2 and t3 , respectively. The rate of transitions from one stage 
to the next in these cases depend on the probability of recovery θi ( i ∈ {1, 2, 3} ) and the average time, ti time 
( i ∈ {1, 2, 3} ), spent in the given stage. Individuals either recover with rate θiti  or after spending, on average, ti time 
in the current stage before transitioning to the next stage. Consequently, the rate of transition is 1−θi

ti
 . Individuals 

who do not recover from the seriously ill condition die (enter the Deceased compartment). Seriously ill indi-
viduals can only recover if they get medical care, without medical care these individuals would die. We assume 
that such care is available, even though it is not guaranteed that there is a treatment that can help people with 
the complications arising from a novel pathogen. Recovered individuals ( R ) remain immune to the infection i.e. 
the acquired resistance is long lasting, at least till the calm down of the epidemic, in other words, the recovered 
patients do not get infected again. Table 1 lists all variables and parameters of the model.

With the above notations, the death rate of an infected individual without available treatment is 

δ0 =
2
∏

i=1
(1− θi) , and it is δ1 =

3
∏

i=1
(1− θi) if hospitalization is available.

The following differential equations govern the dynamics:

Table 1.   Variables and parameters of the model (times in days).

Variable Meaning Employed values

t0 time for non-infectious non-symptomatic incubation period 5

t1 time for infectious, but non symptomatic incubation period 1.393; 2.3217; 3.2504; 4.1791

θ1 probability of going to the recovered state from the non-symptomatic infectious stage 0.3

t2 time for being a symptomatic, infectious individual 8

θ2
probability of going to the recovered state from the symptomatic infectious stage without 
requiring hospitalization 0.8

t3 the mean time seriously ill individuals are hospitalized 14

θ3 probability of surviving hospitalization 0.9

RE effective reproductive number 1.5; 2.5; 3.5 and 4.5
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Here the transmission rate is

where

•	 ki denotes the interaction intensity: A focal individual in venue i (place of economic activity) is supposed to 
interact with ki people during one time period (15 min in our case). In other words, ki is the maximal number 
of susceptible people to whom the disease can be transmitted by an infected individual in one time period 
(handshake, being in a distance of less than two meters, sneezing, etc.)

•	 αi denotes the probability of a susceptible person to get infected if exposed the infection, in venue i , during 
one time period (15 min in our case). This depends on the size of the indoor place, ventilation, air flows, etc. 
It does not depend on the number of infectious persons (provided it is not zero) among the ki people in the 
neighbourhood of the focal individual (e.g., if the disease is highly contagious, the exposure to infection is 
high even for a single infectious interaction).

•	 τi denotes the number of time periods a person spends on average in venue i during one day (the length of 
one period is 15 min in our case). Sometimes it is called the repetition number.

The derivation of Eq. (1) is detailed in the Supplementary Information, Section 3.
Another important epidemiological characteristic is the basic reproductive number R0 . As the viral load 

can be different at different stages of the infection, we calculate the basic reproductive number by the following 
equation:

where ri is the mean number of individuals infected by a stage i . The effective reproductive number ( RE ) is a 
similar quantity with the assumed quarantining of sick (symptomatic) individuals, but without any other non-
pharmaceutical intervention in place (see later),

Initially we assume that the whole population is susceptible to the new pathogen, thus everyone starts in the 
susceptible compartment. In each case of our investigation, the epidemic starts with 100 infected individuals.

We are aware of the fact the progress of a disease cannot be described as a Markov process as the probability 
of advancing to the next stage increases with the time spent in the current stage. The time spent in the stages 
can be approximated with lognormal, Weibull and gamma distributions28. If we model great many individuals, 
the fraction of people leaving the given stage can adequately be approximated with the inverse of the expected 
(mean) time spent in the given stage.

This extended SEIR compartment model is employed when determining the probability of a pathogen causing 
a pandemic. If a pandemic unfolds, the states implement non-pharmaceutical interventions which, as assumed 
here, preclude certain individuals to infect others as they are quarantined. When calculating optimal control, a 
slightly modified set of equation is used as described below.

Activity dependent basic reproduction number.  Our model makes it possible to introduce an activ-
ity dependent reproduction number R∗

i  for each venue type i . This is the average number of secondary infections 
caused by single infectious individual provided she/he stays in venue i during the whole infectious period t1 and 
everybody else is susceptible. Such index numbers are useful in modelling the initial phase of the outbreak when 
the epidemic is still not recognized, and also in studying of the effects of restrictions. This is what we applied 
when determining the transmission rate r1 for the model introduced above.

dS

dt
= −βS

dE

dt
= βS −

1

t0
E

dIps

dt
=

1

t0
E −

1− θ1

t1
Ips −

θ1

t1
Ips =

1

t0
E −

1

t1
Ips

dIs

dt
=

1− θ1

t1
Ips −

1− θ2

t2
Is −

θ2

t2
Is =

1− θ1

t1
Ips −

1

t2
Is

dIh

dt
=

1− θ2

t2
Is −

θ3

t3
Ih −

1− θ3

t3
Ih =

1− θ2

t2
Is −

1

t3
Ih

dR

dt
=

θ1

t1
Ips +

θ2

t2
Is +

θ3

t3
Ih

dD

dt
=

1− θ3

t3
Ih.

(1)β = 1−

4
∏

i=1

(

1− αi

(

1−

(

S + E + R

S + E + Ips + Is + R

)ki
))τi

,

R0 = r1t1 + (1− θ1)r2t2 + (1− θ1)(1− θ2)r3t3,

RE = r1t1.
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For the sake of simplicity, we now suppose that there are ni susceptible people in venue i at every moment (in 
addition to the single infectious individual). We suppose that there are ki people within the range of infection, 
and considering an otherwise well-mixed population, the probability of a given susceptible individual to be at 
risk is ki/ni . As the number of repetitions is τi , and the chance of acquiring infection is αi at each occasion, every 
susceptible individual has probability

of getting off. Hence, the probability of getting ill is β∗
i = 1− p∗i  . Note that these quantities are not equal to pi 

and βi computed above. The difference lies in the points of view: βi is the probability of a susceptible individual 
to get infected in venue i , while β∗

i  is the probability that a single infectious individual transmits the disease to 
a fixed susceptible person in venue i.

How many susceptible people does an infectious individual meet during the infectious period? Let c be the 
rate of conversion between time (measured by the day) and repetition periods, that is, one repetition period is 
equal to c times of a day. For example, if one repetition period is 15 min, then c = 1

4×24 . Then the time a suscep-
tible person spends in venue i is cτi (on average, measured in days). Thus, during the whole infectious period

susceptible persons get close to the source of infection. Again, for the sake of simplicity, we suppose that they 
are all different, though it is not necessarily true: think of the regulars in a pub. This simplification may lead to 
the overestimation of the number of secondary infections.

All in all, the average number of secondary infections in venue i is

For the approximation in the right-hand side a small value of αi kini  should be assumed. E.g., the radius of 
infection is small, and/or the probability αi of transmitting the disease by a single encounter is small.

Note that all these considerations only apply to venues different from one’s home: there k0 = n0 , the aver-
age number of relatives the infectious individual shares her/his residence, and the venue specific reproduction 
number would be n0

[

1− (1− α0)
t1/c

]

 . This is misleading, however, because relatives infected at home cannot 
infect further relatives at the same rate, only each other, consequently not spreading the disease.

Let r1 denote the expected number of cases directly generated by one case being infectious without symptoms, 
in a population where all individuals are susceptible to infection, during one day. What is the connection between 
the transmission rate r1 and the i-venue reproduction numbers R∗

i  introduced above? Let’s assume, there are H 
different venues. Family members living together can acquire each other’s infection more easily, but, especially 
during social distancing measures, not every member, typically just one, of the family leaves home for shopping 
etc. Thus, households can be considered as single units/individuals regarding the spread of the epidemic, hence 
transmitting infection at one’s home may be left out of consideration. Consequently, the overall transmission 
rate in the non-symptomatic infectious stage is

thus

Note that c
(

τ0 +
H
∑

i=1

τi

)

= 1 , because the total time an individual spends on the different venues per day is 

just the whole day. Thus, wi = cτi ; this is the proportion of time an infectious individual spends in venue i , and

Estimation of the chance of a pandemic outbreak by taking into account of time constraints 
and recovery rates.  A pandemic emerges almost certainly if the mutant pathogen can spread into other 
countries before the new epidemic is identified. Countries need to be prepared for such pathogens. Thus, the 
characteristics of such pathogens guide us in the parameters to use as the strategy option for the pathogen.

Ample travel connections between countries allow the escalation of the pandemic6. Let UC stands for the 
traveler pool going out of a country with population size N. In a well-mixed model, the probability that an indi-
vidual will travel to a foreign land is UC/N . In a case of a novel pathogen, when the symptoms of the disease it 
causes has not yet been determined, there could be no quarantine, thus both pre-symptomatic infectious (Ips) and 
symptomatic infectious individuals (Is) can infect others, but we can assume that the seriously ill (Ih) do not travel.

p∗i =

(

1− αi
ki

ni

)τi

nit1

cτi

R∗
i =

nit1

cτi
β∗
i =

nit1

cτi

[

1−

(

1− αi
ki

ni

)τi
]

≈ c−1kit1αi .

(2)r1 =

H
∑

i=1

niβ
∗
i =

H
∑

i=1

ni

[

1−

(

1− αi
ki

ni

)τi
]

,

t1r1 =

H
∑

i=1

wiR
∗
i , where wi =

τi

τ0 +
∑

H

i=1 τi
.

t1r1 = c

H
∑

i=1

τiR
∗
i .
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Now we examine this problem from the aspect of time constraints. The following two time periods play 
important roles in the pandemic outbreak.

Detection time: It takes time to realize that a newly emerged pathogen is causing disease. This detection time 
can depend on several factors (e.g. the developmental state of the health care system, the openness of commu-
nication, etc.). This is one of the parameters of our investigation denoted by TC , which can vary between 0 and 
2 months ( TC ∈ (0, 2)).

Incubation time: A necessary condition for a pandemic is that during time Tc an infected individual (E, Ips, 
Is) travels aboard, i.e. enters the traveller pool ( UC).

Branching processes can be used to investigate the emergence of epidemics6. As the probability of recovery 
( θi ) and the mean time ( ti ) spent in given stage is different at different stages of the infection, we employ a gen-
eral, time-dependent branching process (Crump–Mode–Jagers process) (cf.29,30) to investigate the risk of new 
pathogen outbreaks in countries outside of the country of origin.

We emphasize here again, that at the start of the epidemic, the pathogen is not yet identified and consequently, 
infectious symptomatic individuals are allowed to travel. We also assume that presymptomatic stage is consider-
ably shorter than the time considered for the identification of the new pathogen. Pathogens with extremely long 
incubation periods are not considered here as in nowadays society, almost everybody would get infected before 
any preventive measure could be initiated.

The spread of an epidemic in the early stage can be modelled with a general time-dependent branching process 
(Crump–Mode–Jagers process, see 31 or 32 for the exact but still not too technical definition and basic proper-
ties). In the terminology of such processes, the individuals of the process are the infected people, production of 
offspring is the transmission of the disease, and lifetime means the length of the infectious period, ending with 
recovery or getting quarantined or hospitalized.

The in-depth formalization and solution of the time-dependent branching process is detailed in the Supple-
mentary Information, section 2. In this way we can compute the spreading probability in our model. On Fig. 2 
this probability is plotted against t1 and TC , with the following parameters: TC ∈ [0, 60] , t1 ∈ [0, 5] , t0 = 5 , t2 = 8 
(days), UC/N = 0.00015 , r1 = 1.07681 (computed according to Supplementary Table 2, based on Eq. (2)), and 
r2 = 2r1 . Two values of θ1 are considered: θ1 = 0.3 (Fig. 2a) and θ1 = 0.6 (Fig. 2b).

State‑optimally controlled epidemic model.  We construe the fight against an epidemic by the state as 
a game-theoretical situation between a novel pathogen (Player 1) and a state (Player 2). Player 1’s strategy is the 
characteristic of the pathogen. As we have seen above t1 , the time period of pre- or non-symptomatic infectious 
period is key to cause a pandemic, consequently strategy of Player 1 is t1 . Once a pathogen reaches a country, 
and the extent of the infection cannot be controlled by contact tracing, then other measures need to be taken, 
otherwise the number of hospitalized ( Ih ) patients will exceed the hospital capacity. Consequently, the state can 
mandate certain non-pharmaceutical interventions to curb the epidemic.

Figure 2.   Probability of a pandemic as function of time to detect the new pathogen (Y axes) and the mean 
duration of the presymptomatic stage (X axes). We illustrate our analytical result on the probability of an 
epidemic outflowing to other countries, thus causing a pandemic. Probabilities are calculated according to the 
formula given in Supplementary Equation (SI.2). The recovery rate from the presymptomatic infectious stage is 
(a) θ1 = 0.3 ; and (b) θ1 = 0.6 . Other parameters are t0 = 5 , t2 = 8 (days), UC/N = 0.00015 , r1 = 1.07678.
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•	 Quarantining of symptomatic individuals. Individuals showing symptoms are immediately quarantined at 
home (with mild symptoms) or in hospitals if seriously or critically ill. Consequently, symptomatic ( Is ) and 
seriously ill ( Ih ) infectious individuals cannot infect others. The time lag between the onset of symptoms 
and actual quarantining is an important factor in containing a pandemic33. The quarantine is assumed to be 
perfect, citizens obey it for the greater good or the state has the means to enforce it. While without quarantine, 
symptomatic infectious individuals can be more infectious than asymptomatic infectious individuals38–40 
(there is a modelling study assuming that they are twice as infectious41,42), if they cannot meet susceptible 
individuals, then they cannot transmit the infection. These measures are in effect throughout the epidemic 
irrespective of the actual extent of the infection. Taking the above together, the infection can only spread via 
those in the pre-symptomatic infectious state (Ips).

•	 No nosocomial infection. We assume that individuals in the hospitals cannot infect new individuals, as they 
are sealed off from the outside world. Doctors, nurses and others working with COVID-19 patient are also 
separated from the rest of the populace to minimize the effect of nosocomial infections. Early in a pandemic, 
hospital acquired infection and infection among the medical staff could be high34,35. However, with precau-
tions, such as universal mask wearing, widespread testing, no visitor policy, negative pressure rooms and 
adequate personal protective equipment, hospital acquired infection can be prevented36,37.

•	 Members of a household are quarantined together. We also assume there is no further separation of infected 
and non-infected within a household. We assume that t0 is greater than t1 , so household members infected 
will show symptoms before the quarantined is lifted, so they won’t be spreading the disease in the greater 
population. This assumption is valid for COVID-19, but not for influenza. Consequently, household trans-
mission does not affect the spread of the disease.

•	 Installation of increased hospital capacity. The state can increase its initial hospital capacity ( Y0 ) to a higher 
value ( Y3 ) ( Y3 ≥ Y0 ) which is enough to care for all seriously ill during the epidemic. The choice of higher 
hospital capacity means that the state (Player 2) has to establish Y3 − Y0 new hospital bed capacity, at cost h0 
each, and cover the daily cost h1 of a hospital bed in service.

•	 Venue based access restrictions. The state can further mitigate the spread of the epidemic by selectively allowing 
or forbidding certain economic activities. Forbidding these activities, for example closing shops, cinemas, 
hotels or prohibiting gatherings, like concerts, decrease contacts among citizens and thus lowers the prob-
ability of transmission. We have chosen four board categories of venues, ones that were chosen to be closed 
in some European countries during the COVID-19 pandemic in the spring of 2020. These venues represent1 
arts, entertainment and recreation;2 tourism;3 retails shops, excluding those selling food, hygiene products 
and pharmacies; and4 manufacturing excluding those producing essential products. As the transmission 
rate can be different in these places and the economic cost of their lockdown can be different, the state 
could implement a mix of restrictions that would satisfy its societal and economic goals. The state updates 
the mix of restrictions on a weekly basis. While technically any discrete time-interval could be used, a week 
is a compromise between fine-scaled control and still allowing the actors of the economy to respond. Let u 
describe the restrictions (with ui = 1 meaning no restriction, and ui = 0 full ban). Suppose that normally, 
the total yearly contribution of the activity, sector or venue i to the GDP is gi , which is then lowered when 
restrictions apply to them. This is another cost for Player 2. Consequently Player 2 solves the optimal control 
problem (see below) given Player 1’s strategy t1 and its number of hospital beds, Y3 . Let u∗ be the correspond-
ing optimal control.

With the above non-pharmaceutical interventions, the general epidemiological model is modified to that 
shown in Fig. 1.

Here the transmission rate is

(3)
dS

dt
= −βS

(4)
dE

dt
= βS −

1

t0
E

(5)
dIps

dt
=

1

t0
E −

1

t1
Ips

(6)
dIs

dt
=

1− θ1

t1
Ips −

1

t2
Is

(7)
dIh

dt
=

1− θ2

t2
Is −

1

t3
Ih

(8)
dR

dt
=

θ1

t1
Ips +

θ2

t2
Is +

θ3

t3
Ih
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This can be computed in the same way as we did for the general epidemiological model. The only difference 
is that infected people with symptoms are now prevented from transmitting the disease, hence their number Is 
is missing from the denominator.

The formal description of the optimal control model.  It is intuitively obvious that by appropriate 
restrictions ui it can be achieved that all involved citizens receive the necessary medical care. To this end, the 
following optimal control problem is solved.

The controlling measures can be described by a vector u = (u1, . . . , uH ) , where ui ∈ [0, 1] . Here ui shows 
how small a proportion the time spent in or access to venue i is reduced to, due non-pharmaceutical interven-
tions implemented by the state. For example, if u1 = . . . = uH = 1 , then there are no restrictions at all. On the 
other hand, ui = 0 means the total prohibition of the given activity. We suppose that the plus time saved by the 
controlling measures is spent at home. In this way

Particularly, in our case this is

The risk of infection is obviously minimal in the case of total prohibition. Then everybody is in quarantine 
and only basic needs are provided. (There is a special intervention for basic services, corresponding to i = 1 
(supermarkets, pharmacies etc.) where the activity cannot be reduced to zero.) If u01 denotes the admissible 
minimal level of essential services for providing basic needs, then

However, such a strict control might prolong the epidemic and destroy the economy. In fact, the control vector 
u varies with time, thus it is a function u(t) rather than a constant vector. Introducing constraints and a suitable 
objective function, we arrive at a dynamic control problem.

Class of admissible controls: Fix a time interval [0,T], and define the set U[0,T] of admissible controls 
u(t) = (u1(t), u2(t), u3(t), u4(t)), where ui are step functions defined on time interval [0,T], with base intervals of 
length 7 days (a week), and ui(t) ∈ [0, 1] (t ∈ [0,T]) . The measures taken by the state influence the probability 
that an infection will happen in the i-th venue category, in the form ui(t)τi . Furthermore, there is a special 
intervention for basic services, corresponding to i = 1 (including basic food supply and pharmacies), where the 
activity cannot be reduced to zero, so u1(t) ∈

[

u01, 1
]

 with some u01 > 0 . The dynamics of the control problem is 
given by the epidemiological model (3)-(8), with control-dependent transmission rate (9).

Now the optimal control problem that would express certain political aims of the government, is

1.	 Keep the necessary hospital care under a given capacity Y3:

	   and
2.	 Keep the number of active citizens above a threshold M, to keep society working:

We note that the larger the integral (Eq. 5) is, the lighter the restrictions are.
Observe that the maximization of objective functional (Eq. 10) corresponds to the socio- political objective 

that the social restrictions should be as soft as possible (i.e. the controls ui(t) should be as large as possible). 
Constraint (Eq. 11) ensures that there are enough hospital beds for all Ih-stage patients. Constraint (Eq. 12) guar-
antees that there are sufficient asymptomatic persons to maintain all basic functions of the state. In the definition 
of the payoff of the game model, the solution 

(

u∗1(t), u
∗
2(t), u

∗
3(t), u

∗
4(t)

)

 of this optimal control problem is used, 
see (Eq. 13) of the next section, where economic issues are also involved.

The solution of the optimal control problem was programmed in MATLAB environment, see 43,44. We 
employed the standard solver found in MATLAB.

The formal description of the game‑theoretical model.  The strategy of the pathogen is t1 the mean 
time of the presymptomatic infectious state and the strategy of the state is level of extra hospital capacity it 

β = 1−

4
∏

i=1

(

1− αi

(

1−

(

S + E + R

S + E + Ips + R

)ki
))τi

.

β(u) = 1−

H
∏

i=1

(

1− αi
(

1− pi
))uiτi .

(9)β(u) = 1−

4
∏

i=1

(

1− αi

(

1−

(

S + E + R

S + E + Ips + R

)ki
))uiτi

.

min
u

β(u) = 1−
(

1− α1
(

1− p1
))u01τ1 = 1− (1− β1)

u01 .

(10)
4

∑

i=1

T
∫
0
ui(t)dt → max, (u ∈ U[0,T]),

(11)Ih(t) ≤ Y3 (t ∈ [0,T]),

(12)S(t)+ E(t)+ Ips(t)+ R(t) ≥ M (t ∈ [0,T]).
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installs ( Y3 ). The payoff to Player 2 is defined as the difference between the total income and total costs, for the 
whole duration of the epidemic, corresponding to strategy pair (t1,Y3):

Here gi is the gross value added for venue (sector) i. The first term thus measures the income of the state modified 
by the control, i.e. if there are extensive lockdowns and restriction then there is less income from those economic 
activities. To calculate the payoff, for every fixed pair (t1,Y3) , we need the optimal controls obtained from the 
numerical investigation (see examples in Figs. 4 and 5 of the next section).

From the economic point of view, the epidemic lasts for the duration T1, (Supplementary Table 5) after which 
all controls ui equal 1, i.e. there are no restrictions. On the other hand, from a public health perspective, the 
epidemic ends at time T3 (Supplementary Table 6), when the number of hospitalized patients decreases below 
Y3/1000. During this time ( T3 − T1 ) the economy is fully functional, but there could still be extra cost as patients 
are hospitalized. This is the second term in the equation. The first two terms are the income for the state.

The third term is the cost of new hospital beds ( Y3 − Y0 ), and the fourth term is the cost of hospitalizations. 
Ih(t) is the number of patients in hospital at time t; and C =

T3
∫
0
Ih(t)dt is the total number of hospital days during 

time T3 (Supplementary Table 7).
The solution for the game is as follows. Considering the values f (t1,Y3) as entries of a corresponding 4 × 4 

payoff matrix M =
[

mjk

]

, formally, k0 is a maximin solution for Player 2, if

Results
A pandemic will unfold if it takes too long to identify the pathogen or if infectious individuals are unaware of 
their condition for a long time because they are not symptomatic. Pathogens having characteristics that allow 
them to cause pandemics are the ones states need to be prepared for. If we parametrize the SEIR model so that 
it resembles the parameters of the COVID-19 epidemic (see Supplementary Methods), then we predict that the 
epidemic will spread into other countries with high probability, and thus causing a pandemic, if the identifica-
tion needs more than two months (Fig. 2). In such case, the probability of the pandemic does not depend on 
the duration of the presymptomatic stage. On the other hand, if the pathogen gets identified in about 30 days, 
then the average duration of the presymptomatic stage plays an important role: a higher value can significantly 
increase the chance of a pandemic. Consequently, the duration of the presymptomatic stage is considered to be 
the strategy of the pathogen. We assume that the pandemic has developed, and states need to face this challenge.

Transmission rate depends on the local setting (venue) (Fig. 1 and see details in the “Method” section), con-
sequently we calculated overall transmission rate and reproduction number based on venue specific transmission 
probabilities dependent on the density of people present, the location specific secondary attack rate and the mean 
time people spend in such setting. By closing certain (controlled) portion of such venues, the transmission rate 
can be considerably reduced (Fig. 3), and thus the spread of the epidemic managed.

With weekly management of the portion of the four illustrative economic sectors under (partial) lockdown 
(Fig. 3f), the state can keep the number of patients requiring hospitalization under its maximal capacity (Fig. 3d), 
thus fulfilling its political goal. The optimal control involves a different mix and degrees of closures, indicating 
that “one size fits all” type of interventions is not optimal, they have to be tailored to the situation. Please note, 
for example, that stores are not required to close, thus the political goal of having key stores open is automati-
cally fulfilled. Moreover, while we have included a boundary condition requiring a large enough workforce to be 
available, the number of sick people was never risking continuous operation of the key facilities when the spread 
of the disease was controlled. On the other hand, without control, the epidemic would run its course faster, but 
the hospital capacity would be quickly overwhelmed (compare Fig. 3c with d). Increasing hospital capacity allow 
for shorter controlled period (the period after which lockdowns are lifted entirely) (Supplementary Table 5 and 
Fig. 4). Longer presymptomatic stage of the infected translates to higher effective reproduction number (RE), 
which requires longer closures of controlled venues (Fig. 5).

The state control decreases economic production. Fewer hospital beds necessitate stricter control, which 
may have serious economic consequences. With the end of the non-pharmaceutical interventions affecting 
whole sectors, the epidemic is far from over as there are still infected individuals in quarantine and there are 
still patients in the hospitals. It could take months before hospitalization rates drop to significantly low levels 
(Supplementary Table 6). Higher number of available hospital beds and a shorter presymptomatic stage shorten 
the length of the epidemic (Figs. 4 and 5).

The total number of hospital days increases with the length of the presymptomatic period. Contrary to the 
monotone effects so far, the number of hospital days does not always change monotonically with increasing 
hospital bed capacity (Supplementary Table 7). Consequently, the final cost to the state, calculated with the loss 
of Gross Value Added due to lockdowns, the cost of increasing hospital bed capacity and the increased burden 
on the health care system, is not monotonic with hospital bed capacity. An intermediate number of hospital 
beds minimizes costs.

The state should be prepared to face an unknown pathogen. While its characteristics are mostly unknown, the 
pathogen is such that it would cause a pandemic; and at the same time the disease it causes is not too fatal so that 
hospitalization helps patient to recover. Furthermore, while the state cannot foretell the exact characteristic of a 

(13)f (t1,Y3) =

4
∑

i=1

gi

365

T1
∫
0
u∗i (t)dt + (T3 − T1)

4
∑

i=1

gi

365
− h0(Y3 − Y0)− h1

T3
∫
0
Ih(t)dt.

max
k

min
j

mjk = min
j

mjk0 .
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Figure 3.   Comparison of the course of the epidemic without control (a, c, e) and with control (b, d, f). 
Transmission probability (a, b) can be controlled by the selective (partial) closing or opening of certain 
venues (economic sectors) (e, f), which leads to a longer (compare c and d) epidemic, but the number of 
people requiring hospital care is considerably fewer at any time. Patients in the Ips stage infect on average 4.5 
individuals; hospital capacity is Y3 = 70, 000 . t0 = 5 , t2 = 8 (days) The initial values for the dynamics are 
S(0) = 107 , E(0) = 100 , Ips(0) = Is(0) = Ih(0) = R(0) = 0 . All other parameters of the dynamics are listed in 
Table 1 and in Supplementary Table 2 and 3.
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novel pathogen, it can have some educated guesses based on other known pathogens (see section 1.1 in the SI). 
In such case, the state should adopt Wald’s paradigm of maximin or pessimistic solution (also called conservative 
solution)45: it counts with the “worst case”, supposing a strategy choice of the pathogen that minimizes the payoff 
(revenues) of the state, and the latter maximizes this minimum. In other words, prepare for the most damaging 
strategy choice of the pathogen that can be evolved, and choose the optimal hospital capacity accordingly. The 
revenues of the state are minimized with a more severe disease (here longer duration of the pre-symptomatic 
stage), but then among these minimum outcomes, the maximum is obtained for an intermediate number of 
beds. Our numerical investigation thus reveals that, in general, not the maximum hospital capacity is the optimal 
solution for the game conflict (Fig. 6). The state should not try to increase hospital bed capacity recklessly, as its 
cost could be minimized with fewer beds and still being able to provide hospitalization to all needing citizens.

As transmission rates depends on the venues and the costs (decrease in revenues) depend on the economic 
structure of a given country, even if two countries have the same political objective, namely provide hospital 
care to all needing patients and keeping the extent of the lockdown as low as possible, they may have different 
hospital extension strategies, according to their different economic structures. But our results have proved to be 
robust to changes in the revenues and costs: a tenfold increase or decrease in the weight of any one sector and 
a fourfold increase or decrease in the cost associated with health care does not change the solution of the game 
against Nature.

Discussion
We introduced a game-theoretical framework to analyse how a state can prepare itself to the emergence of a 
new pathogen. With an extended SEIR epidemiological model incorporating location specific transmission 
probabilities we calculated optimal control of the pathogen transmission for various combinations of pathogen 
characteristic and state preparedness (number of hospital beds). We showed that even if the state prepares for 
the worst case, it should not opt for the largest possible extension of hospital capacities.

Our model is unique in combining game theory and optimal control in an epidemiological study. It is obvi-
ous that when a new pathogen emerges, there is no corresponding vaccination available, therefore the state 
is not able to control the pandemic by allocating vaccination or antidotes46,47. Previously, optimal control of 

Figure 4.   The effect of the number of available hospital beds on the course of the controlled epidemic. 
Transmission probability (first row) can be controlled by the selective (partial) closing or opening of certain 
venues (economic sectors) (last row). With more available hospital beds (columns, increasing from left to right), 
the epidemic lasts for a shorter time (middle row). Patients in the Ips stage infect on average 4.5 individuals; 
hospital capacity is Y3 = 70, 000; 80, 000; 90, 000 and 100, 000 in the columns, respectively. Results with shaded 
backgrounds correspond to the solution of the game, which is also depicted in Fig. 3. Parameters are otherwise 
as in Fig. 3.
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pathogen transmission has been investigated with a flat transmission rate12,48–50. In our model, different loca-
tions have different, site-specific transmission rates. As local circumstances critically affect secondary attack 
rates51, the transmission model is mechanism based since the study of the transmission rate is not based on a 
given dynamics52,53. With this finer structure, economic sectors can be controlled differently in a meaningful 
way from an epidemiological point of view. There could be various political goals for the optimal control, such as 
the combined minimization of the weighted combination of death due to the pathogen, and the strength or cost 
of the control of the transmission coefficient49,54; or the minimization of the maximum fraction infected during 
the epidemic48. In comparison, our more complex modelling approach takes the optimal control (minimization) 
of the restriction as a first step, describing a possible public health policy of the state. Our evolutionary game 
model is built upon the solution of this optimal control model, and the strategy of the state in the game against 
the pathogen is hospital capacity.

Game theory has been employed in epidemiology55, these models deal with individual choices, for example 
whether or not to follow an intervention policy (like vaccination), and the studies estimate the effects of these 
individual decisions on the overall epidemic spread46,55. Unlike these studies, our investigation is aimed at the 
introduction of a game played between the pathogen and the state, where the state can efficiently enforce restric-
tions, thus we did not consider individual differences in rule-abiding behaviours. In our model, the state is a 
player55–59. A large number of payoff functions have already been studied, where the payoff usually is the com-
bination of two objectives: Minimize the number of infections (and hence the number of deaths), and minimize 
the economic loss58,60–65. A state, however, may have purely socio-political objectives besides or instead of the 
above ones. The requirement of minimizing social restriction, but at the same time guaranteeing hospital care 
to all needed patients in our model is such socio-political objective.

The state can increase hospital capacity, for example, by using mothballed military stockpiles. The hospital 
capacity coupled with controlled transmission affects both the duration of the epidemic and the number of 
infected persons, also influencing in this way the economic effect of the epidemic66,67. The other participant in 
the game is a new pathogen, which is not a rational player. (From evolutionary aspect, the objective of the patho-
gen is its long-term survival, realized by mutations. This may be subject of further study.) The pathogen is not 
necessarily looking to minimize the objective of the government. In other words, there is no biological reason to 

Figure 5.   The effect of the duration of the presymptomatic stage on the course of the controlled epidemic. 
Transmission probability (first row) can be controlled by the selective (partial) closing or opening of certain 
venues (economic sectors) (last row). With a longer presymptomatic stage (columns, increasing from left to 
right), the epidemic lasts for a shorter time (middle row), and a higher portion of the economic activities need 
to be restricted (last row) to avoid the overflowing of the hospital capacities. Patients in the Ips stage infect on 
average 1.5; 2.5; 3.5 and 4.5 individuals corresponding to t1 = 1.393; 2.3217; 3.2504 and 4.1791 days in the 
columns, respectively (see Supplementary Table 3). Results with shaded backgrounds correspond to the solution 
of the game, which is also depicted in Fig. 3. Parameters are otherwise as in Fig. 3.
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Figure 6.   Characteristics of the economic effects of epidemic and the payoff as function of the strategies. (a) 
The payoff of the state (Supplementary Table 9). Colors are visual aids to assess height of the bars. The optimal 
solution is at 800,000 beds for the worst case of a pathogen having RE = 4.5 . The bar corresponding to this 
case is marked with red crossed lines. In the calculations, the payoff depended on the following “background 
variables”: (b) Duration of the control (Supplementary Table 5); (c) duration of the whole epidemic 
(Supplementary Table 6); (d) total number of hospital days during the epidemic (Supplementary Table 7); (e) 
total number of patients in hospital during the epidemic (Supplementary Table 8). Clearly, these background 
variables depend on the characteristic of the pathogen and the available hospital capacity, and thus affect the 
economic effect of the epidemic.
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consider a zero-sum game. In our setting, the government is a distinguished player, finding the best policy when 
the worst scenario is realized. The properties (strategies) of the emerging pathogen have been chosen on the basis 
of the parameters of known pathogens. As a matter of fact, our game model is a particular one, a “game against 
Nature”. In such games the behaviour (strategy choice) of the pathogen (Player 1, symbolically called “Nature”) 
cannot be influenced, the “solution” is considered only from the viewpoint of Player 2. To our knowledge, our 
model is the first in the game-theoretical modelling of epidemic processes where the socio-political objectives 
of the state are taken into account.

Time is a key parameter in dealing with an epidemic. The time constraints of the epidemiological dynamics, 
such as the mean duration of the presymptomatic stage, directly affect the transmission rate of the pathogen. Time 
also has an indirect role, namely the choice of hospital capacity, through the control of the epidemic influences the 
duration of the economic restrictions, the number of infected persons and the duration of the epidemic as well.

A realistic long-term scenario would be a sequence of mutations of the pathogen, with subsequent strategy 
choices of the state, which could be modelled with a dynamic Stackelberg leader–follower game68, where the 
leader is the evolution, producing a new pathogen and then the state as follower moves sequentially. Never-
theless, as a first step in developing this framework, we analysed the corresponding one-shot game (“game 
against Nature”). We presented a multidisciplinary game-theoretical models that can simultaneously handle the 
knowledge on evolutionary epidemiology (concerning the possible properties of a recently evolved pathogen), 
the political objectives of a state and the economic effect of the non-pharmaceutical interventions against the 
epidemic to reach these goals. Since COVID-19 demonstrated that epidemiological models can play an impor-
tant role in the planning of anti-epidemic measures of a state16, models like ours can help the preparation to 
the defence against future epidemics, namely by in silico simulation of the economic effect of an anti-epidemic 
defence against a new mutant pathogen.

Data availability
The optimal control data generated and analysed in this study are included in this published article (and its 
Supplementary Information files).
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