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Abstract
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1 Introduction

In this paper, we study the following periodic Kolmogorov system

x′i = xifi(t, x1, . . . , xn, y1, . . . , ym) 1 ≤ i ≤ n

y′j = yjgj(t, x1, . . . , xn, y1, . . . , ym) 1 ≤ j ≤ m. (1.1)

where fi, gj : IR × IRn
+ × IRm

+ → IR are continuous functions, which are T -

periodic in t and locally lipschitz continuous in (x, y).

We shall assume that:

P1) fi(t, x, y) is decreasing in (x, y) ∈ IRn+m
+ and gj(t, x, y) is increasing

in x ∈ IRn
+ and decreasing in y ∈ IRm

+ .
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P2) There exist τi; θj ∈ IR such that fi(τi, x, y); gj(θj, x, y) are strictly

decreasing in xi, yj respectively.(i = 1, . . . , n; j = 1, . . . ,m).

Our assumptions say that system (1.1) is a model for a biological com-

munity consisting of n preys and m predators. In the case n = m = 1, our

system is the usual predator-prey system and has been extensively studied

by many authors. For instance, see [1] for optimal results.

Under some additional assumptions, we shall prove in section three, that

system (1.1) is permanent. Our result in this connection improves the main

results in section three of [2], in which it was assumed n = m = 1, and

the main results in section two of [3], in which it was assumed that (1.1) is

Lotka-Volterra.

Finally in section four, we use a result in [4] to show that, under some

restrictions on the partial derivatives of fi(t, x, y), gj(t, x, y), with respect to

(x, y), system (1.1) possesses a global attractor. Our result improves theorem

2 in [3].

2 Preliminaries

In this section we introduce some notations and we state, for reference pur-

pose, some interesting properties of the periodic logistic equation,

x′ = xF (t, x) , x ≥ 0. (2.1)

Given T > 0, we denote by CT the set of all continuous function F :

IR× [0,∞) → IR such that:

a) F (t, x) is T -periodic in t and locally lipschitz continuous in x.

b) F (t, x) is decreasing in x.

c) F (τ, x) is strictly decreasing in x for some τ = τ(F ) ∈ IR.

e) There exists R = R(F ) > 0 satisfying
∫ T
0 F (t, R)dt < 0.
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In [6] it were proved the following results.

Theorem 2.1 If F ∈ CT then equation (2.1) has a T -periodic solution UF ,

which is globally asymptotically stable. That is, if u is a solution of (2.1) and

u(0) > 0, then u is defined on [0,∞) and

u(t)− UF (t) → 0 as t → +∞.

Moreover, UF > 0 if
∫ T
0 F (t, 0)dt > 0, and UF ≡ 0 if

∫ T
0 F (T, 0)dt ≤ 0.

We say that UF is the ”global attractor” of (2.1).

Corollary 2.2 Let F, G ∈ CT and suppose F ≤ G. Then UF ≤ UG.

Theorem 2.3 Let {Fn} be a sequence in CT converging to F ∈ CT uniformly

on compact sets. Then UFn(t) → UF (t), uniformly on IR.

Theorem 2.3 will be used under a suitable form for us. To be precise, let

us fix the following notations. Let h : IR× IRp
+ × IRq

+ × IR+ → IR; p, q ≥ 0;

be a continuous function satisfying the following properties:

A1) h(t, ξ, η, x) is T -periodic in t.

A2) h(t, ξ, η, x) is locally lipschitz continuous in x.

A3) h(t, ξ, η, x) is increasing in ξ and decreasing in (η, x).

A4) h(τ, ξ, η, x) is strictly decreasing in x for some τ ∈ IR.

Theorem 2.4 Let (ϕ,ψ) : IR+ → IRp
+× IRq

+ be a continuous function and let

(Φ, Ψ) : IR → IRp
+ × IRq

+ be a T -periodic continuous function such that,

(ϕ(t), ψ(t))− (Φ(t), Ψ(t)) → (0, 0) as t → +∞. (2.2)

Suppose also that there exists R > 0 such that,
∫ T

0
h(t, Φ(t), Ψ(t), R)dt < 0. (2.3)
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If u is solution of the equation x′ = xh(t, ϕ(t), ψ(t), x) and u(t0) > 0 for

some t0, then is defined on [t0, +∞) and

u(t)− U(t) → 0 as t → +∞ ,

where U is the global attractor of the logistic equation x′ = xh(t, Φ(t), Ψ(t), x).

Proof. Let us define, for each δ ≥ 0

Φδ
i (t) = max{Φi(t)− δ, 0} 1 ≤ i ≤ p

Ψδ
j(t) = max{Ψj(t)− δ, 0} 1 ≤ j ≤ q

and let Φδ = (Φδ
1, . . . , Φ

δ
p) ; Ψδ = (Ψδ

1, . . . , Ψ
δ
q). By (2.2) there exists t0 ≥ 0

such that,

Φδ
i (t) ≤ ϕi(t) ≤ Φi(t) + δ t ≥ t0,

Ψδ
j(t) ≤ ψj(t) ≤ Ψj(t) + δ t ≥ t0.

From this and A3) we have for t ≥ t0,

h(t, Φδ(t), Ψ(t) + δq, x) ≤ h(t, ϕ(t), ψ(t), x) ≤ h(t, Φ(t) + δp, Ψδ(t), x), (2.4)

where δp = (δ, . . . , δ); δq = (δ, . . . .δ) with p-times and q-times resp.

On the other hand, {Φδ(t)} , {Ψδ(t)} converge uniformly to Φ(t) and

Ψ(t) as δ → 0 respectively, from this and (2.3) there exists a δ1 > 0 such

that, ∫ T

0
h(t, Φδ(t), Ψ(t) + δq, R)dt < 0 for 0 < δ < δ1. (2.5)

Let (u∗)δ, (u∗)δ respectively the solutions of the following initial value

problems,

x′ = xh(t, Φδ(t), Ψ(t) + δq, x) x(t0) = u(t0) (2.6)

x′ = xh(t, Φ(t) + δp, Ψδ(t), x) x(t0) = u(t0). (2.7)
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By (2.5) and Theorem 2.1, (u∗)δ, (u∗)δ are defined on [t0, +∞) and by

(2.4),

(u∗)δ(t) ≤ u(t) ≤ (u∗)δ(t) ∀t ≥ t0. (2.8)

Analogously,

h(t, Φδ(t), Ψ(t) + δq, x) ≤ h(t, Φ(t), Ψ(t), x) ≤ h(t, Φ(t) + δp, Ψδ(t), x),

and by Corollary 2.2 , (U∗)δ ≤ U ≤ (U∗)δ, where (U∗)δ and (U∗)δ are the

global attractors of (2.6) and (2.7) respectively. Hence, by (2.8) we have,

u(t)−U(t) ≤ (u∗)δ(t)−U(t) = (u∗)δ(t)−(U∗)δ(t)+(U∗)δ(t)−U(t), ∀t ≥ t0.

Let us fix ε > 0. By Theorem 2.3 there exists 0 < δ2 ≤ δ1 such that,

(U∗)δ2(t)− U(t) ≤ ε

2
∀t ≥ 0.

On the other hand, by Theorem 2.1 there exist t1 ≥ t0 verify,

(u∗)δ2(t)− (U∗)δ2(t) ≤ ε

2
∀t ≥ t1

hence, u(t) − U(t) ≤ ε ∀t ≥ t1. Similarly, there exists t2 ∈ IR such that

u(t)− U(t) ≥ −ε ∀t ≥ t2, and the proof is complete.

3 Permanence.

In this section, we use iterative schemes as in [2], [5], [6], to show that system

(1.1) is permanent. In addition to P1)-P2) we also assume that:

P3) There exists R > 0 satisfying,

∫ T

0
fi(t, Rei, 0)dt < 0 1 ≤ i ≤ n
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∫ T

0
gj(t, U

1(t), Rνj)dt < 0 1 ≤ j ≤ m.

Here {e1, . . . , en}, {ν1, . . . , νm} denote the canonical vector basis of IRn and

IRm respectively and U1 = (U1
1 , . . . , U1

n) : IR → IRn
+, where U1

i ; 1 ≤ i ≤ n;

is the global attractor of the equation,

z′ = zfi(t, zei, 0) 1 ≤ i ≤ n, (3.1)

See Theorem 2.1.

Associated to system (1.1), we have two sequences of nonnegative T -

periodic functions {UN = (UN
1 , . . . , UN

n )} and {V N = (V N
1 , . . . , V N

m )}, N ∈
IN, defined inductively as follows: U0 = V 0 ≡ 0, and UN+1

i ; 1 ≤ i ≤ n; is

the global attractor of the logistic equation,

z′ = zfi(t, U
N
1 (t), . . . , UN

i−1(t), z, U
N
i+1(t), . . . , U

N
n (t), V N(t)), (3.2)

and V N
j 1 ≤ j ≤ m the global attractor of the equation

z′ = zgj(t, U
N+1(t), V N

1 (t), . . . , V N
j−1(t), z, V N

j+1(t), . . . , V
N
m (t)). (3.3)

Remark. The above scheme is obtained, using some ideas in Lopez-Gomez,

Ortega and Tineo in ([2], section 3). In fact, the scheme in that paper is

obtained from (3.2)-(3.3) when m = n = 1

We shall show that these sequences are well defined and satisfy:

0 ≤ U2 ≤ U4 ≤ . . . ≤ U2N ≤ U2N−1 ≤ . . . ≤ U3 ≤ U1

0 ≤ V 2 ≤ V 4 ≤ . . . ≤ V 2N ≤ V 2N−1 ≤ . . . ≤ V 3 ≤ V 1. (3.4)

We recall that U1 is the global attractor of (3.1). Hence, using P3) and

Theorem 2.1, we know that equation

w′ = wgj(t, U
1(t), wνj) 1 ≤ j ≤ m,
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has a global attractor V 1
j .

Let us fix 1 ≤ i ≤ n. By P1) we have,

fi(t, U
1
1 (t), . . . , U1

i−1(t), z, U1
i+1(t), . . . , U

1
n(t), V 1(t)) ≤ fi(t, zei, 0) (3.5)

and using P2), P3), we conclude that the logistic equation

z′ = zfi(t, U
1
1 (t), . . . , U1

i−1(t), z, U
1
i+1(t), . . . , U

1
n(t), V 1(t)) (3.6)

satisfies the assumptions in Theorem 2.1. We define U2
i as the global attractor

of (3.6), and U2 = (U2
1 , . . . , UN

n ). Note that by (3.5) and Corollary 2.2, we

have

U2 ≤ U1.

From this and P1) we have,

gj(t, U
2(t), V 1

1 (t), . . . , V 1
j−1(t), w, V 1

j+1(t), . . . , V
N
m (t)) ≤ gj(t, U

1(t), wνj)

(3.7)

and by the above arguments, the equation,

w′ = wgj(t, U
2(t), V 1

1 (t), . . . , V 1
j−1(t), w, V 1

j+1(t), . . . , V
N
m (t)),

has a global attractor V 2
j . We define V 2 = (V 2

1 , . . . , V 2
m). As above we have,

V 2 ≤ V 1.

The proof of (3.4) follows now by induction (see [2]).

By (3.4), {U2N−1} , {U2N} , {V 2N−1} , {V 2N}; N ∈ IN are monotone

and uniformly bounded sequences. So, we have well defined functions:

Ū(t) = limN→∞ U2N−1(t) ; U
¯
(t) = limN→∞ U2N(t);

V̄ (t) = limN→∞ V 2N−1(t) ; V
¯
(t) = limN→∞ V 2N(t).

(3.8)
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On the other hand, for 1 ≤ i ≤ n ; 1 ≤ j ≤ m ; we have

(UN+1
i )′ = UN+1

i fi(t, U
N
1 (t), . . . , UN

i−1(t), U
N+1
i , UN

i+1(t), . . . , U
N
n (t), V N(t))

(V N+1
j )′ = V N+1

j gj(t, U
N+1(t), V N

1 (t), . . . , V N
j−1(t), V

N+1
j , V N

j+1, . . . , V
N
m (t))

and hence, {(UN)′} {(V N)′} are uniformly bounded.

By Ascoli’s Theorem, there exist subsequence of {U2N−1}; {U2N}; {V 2N−1}
and {V 2N} respectively, which converge uniformly on IR. From this, the lim-

its in (3.8) are uniform on t ∈ IR.

Finally, by an elementary result about limits and derivatives, we conclude

that

Ū ′
i = Ūifi(t, U

¯ 1(t), . . . , U¯ i−1(t), Ūi, U
¯ i+1(t), . . . , U¯n(t), V

¯
(t))

U
¯
′
i = U

¯ ifi(t, Ū1(t), . . . , Ūi−1(t), U
¯ i, Ūi+1(t), . . . , Ūn(t), V̄ (t))

V̄ ′
j = V̄jgj(t, Ū(t), V

¯ 1(t), . . . , V¯ j−1(t), V̄j, V
¯ j+1(t), . . . , V¯m(t))

V
¯
′
j = V

¯ jgj(t, U
¯
(t), V̄1(t), . . . , V̄j−1(t), V

¯ j, V̄j+1(t), . . . , V̄m(t)).

(3.9)

Let (u(t), v(t)) be a solution of (1.1) such that u(0) > 0 ; v(0) > 0 and let

u1
i ; 1 ≤ i ≤ n; be the solution of (3.1) determined by the initial condition

u1
i (0) = ui(0). By Theorem 2.1, u1

i is defined on [0,∞) and by P1),

u′i ≤ uifi(t, uiei, 0) 1 ≤ i ≤ n.

That is, ui is a subsolution of (3.1) and hence,

u(t) ≤ u1(t) ∀t ≥ 0, t ∈ domain(u). (3.10)

In particular, u is defined on [0,∞).

Let us define v1
j ; 1 ≤ j ≤ m; as the solution of the IVP

w′ = wgj(t, u
1(t), wνj) w(0) = vj(0). (3.11)
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Since, u1 is bounded on [0,∞), there exists M > 0 such that u1
i ≤ M for all

i = 1, . . . , n; ∀t ≤ 0 and hence,

gj(t, u
1(t), wνj) ≤ gj(t, ~M, wνj) ≤ gj(t, ~M, 0) ≤ K,

for some constant K, where ~M :=
∑n

i=1 Mei.

From this, v1
j is defined on [0,∞). Moreover, by P1) and (3.10), v′j ≤

vjgj(t, u
1(t), vjνj); 1 ≤ j ≤ m. That is, vj is a subsolution of (3.11) and

hence, v(t) ≤ v1(t); ∀t ≥ 0 and t ∈ domain(v). In particular v is defined

on [0,∞).

Note that by Theorem 2.1 v1
j (t) − V 1

j (t) → 0 as t → +∞ (1 ≤ j ≤ m)

and thus, v is bounded on [0,∞).

Let u2
i ; 1 ≤ i ≤ n; be the solution of the IVP

z′ = zfi(t, u
1
1(t), . . . , u

1
i−1(t), z, u1

i+1(t), . . . , u
1
n(t), v1(t)), z(0) = ui(0).

Using the above arguments we can prove that, u2
i is defined on [0,∞) and

ui(t) ≥ u2
i (t) ∀t ≥ 0 and t ∈ domain(u). Analogously, it is easy to verify

that vj(t) ≥ v2
j (t) ∀t ≥ 0 and t ∈ domain(v), where v2

j is the solution of the

IVP

w′ = wgj(t, u
2(t), v1

1(t), . . . , v
1
j−1(t), w, v1

j+1(t), . . . , v
1
m(t)) w(0) = vj(0).

Inductively we can construct two sequences {uN = (uN
1 , . . . , uN

n )} and

{vN = (vN
1 , . . . , vN

m)}, defined on [0,∞), as follows: u0 = v0 ≡ 0,

(uN
i )′ = uN

i fi(t, u
N−1
1 (t), . . . , uN−1

i−1 (t), uN
i , uN−1

i+1 (t), . . . , uN−1
n (t), vN−1(t))

(vN
j )′ = vN

j gj(t, u
N(t), vN−1

1 (t), . . . , vN−1
j−1 (t), vN

i , vN−1
j+1 (t), . . . , vN−1

m (t))

uN
i (0) = ui(0); vN

j (0) = vj(0); (i = 1, . . . , n; j = 1, . . . , m; N ∈ IN)
(3.12)
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It is not hard to show that,

0 ≤ u2 ≤ u4 ≤ . . . ≤ u2N ≤ u ≤ u2N−1 ≤ . . . ≤ u3 ≤ u1

0 ≤ v2 ≤ v4 ≤ . . . ≤ v2N ≤ v ≤ v2N−1 ≤ . . . ≤ v3 ≤ v1. (3.13)

Using induction and Theorem 2.4 it is easy to show the following result.

Corollary 3.1 For all N ∈ IN, we have

uN(t)− UN(t) → 0 as t → +∞,

vN(t)− V N(t) → 0 as t → +∞,

where uN ; vN ; UN ; V N are defined in (3.12),(3.2) and (3.3).

Theorem 3.2 Let (u(t), v(t)) be a positive solution of (1.1).Then, (u, v) is

defined on a terminal interval of IR and,

lim sup
t→∞

[ui(t)− Ūi(t)] ≤ 0 ≤ lim inf
t→∞ [ui(t)− U

¯ i(t)], 1 ≤ i ≤ n; t ≥ t0,

lim sup
t→∞

[vj(t)− V̄j(t)] ≤ 0 ≤ lim inf
t→∞ [vj(t)− V

¯ j(t)], 1 ≤ j ≤ m; t ≥ t0.

Proof. We know that, (u, v) is defined on [0,∞).

Let us fix ε > 0. By (3.13),

ui(t)− Ūi(t) ≤ u2N−1
i (t)− Ūi(t); 1 ≤ i ≤ n,

which we can write in the following form:

ui(t)− Ūi(t) ≤ u2N−1
i (t)− U2N−1

i (t) + U2N−1
i (t)− Ūi(t).

Since {U2N−1} converges uniformly to Ū (see (3.8)), there exists N1 ≥ 0 such

that,

U2N−1
i (t)− Ūi(t) ≤ ε

2
∀t ∈ IR. (3.14)
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On the other hand, by Corollary 3.1, there exists t1 ∈ IR such that,

u2N1−1(t)− U2N1−1(t) ≤ ε

2
∀t ≥ t1.

From this and (3.14), we obtain

ui(t)− Ūi(t) ≤ ε ∀t ≥ t1,

and so lim supt→+∞[ui(t)− Ūi(t)] ≤ 0. The rest of the proof is similar.

Corollary 3.3 Let (u, v) be a positive T -periodic solution of (1.1). Then,

U
¯ i ≤ ui ≤ Ūi; i = 1, . . . , n

V
¯ j ≤ vj ≤ V̄j j = 1, . . . , m.

Proof. Let us fix ε > 0. By Theorem 3.2, there exists tε ≥ 0 such that

U
¯ i(t)− ε ≤ ui(t) ≤ Ūi(t) + ε ∀t ≥ tε

V
¯ j(t)− ε ≤ vj(t) ≤ V̄j(t) + ε ∀t ≥ tε

(3.15)

since u, v, U
¯
, Ū , V

¯
, V̄ are T -periodic, (3.15) hold for all t ∈ IR, and the

proof follows easily.

Remark. Let us define,

q̂j :=
∫ T
0 qj(t, U

1(t), 0)dt

α̂i :=
∫ T
0 fi(t, U

1
1 (t), . . . , U1

i−1(t), 0, U
1
i+1(t), . . . , U

1
n(t), V 1(t))dt

β̂j :=
∫ T
0 gj(t, U

2(t), V 1
1 (t), . . . , V 1

j−1(t), 0, V
1
j+1(t), . . . , V

1
m(t))dt

(i = 1, . . . , n ; j = 1, . . . , m)

If q̂j > 0; α̂i > 0; β̂j > 0 then, by Theorem 2.1, U2, V 2 > 0.

Corollary 3.4 If U2 > 0 and V 2 > 0, then (1.1) has at least one strictly

positive T -periodic solution.

11



Proof. If U2 and V 2 > 0, the system (1.1) is permanent and the proof follows

from lemma 1 in [7].

This result generalizes theorem 1 in [3]. To show this, let us consider the

following predator-prey Lotka-Volterra system,

x′i = xi

[
bi(t)−

n∑

k=1

aik(t)xk(t)−
m∑

k=1

cik(t)yk(t)

]
, 1 ≤ i ≤ n,

y′j = yj

[
−rj(t) +

n∑

k=1

djk(t)xk(t)−
m∑

k=1

ejk(t)yk(t)

]
, 1 ≤ j ≤ m,

where bi, ri, aij, cij, dij, eij : IR → IR+ are T -periodic continuous function such

that aii > 0, ejj > 0 ∀i, j. By theorem 4.1 d) in [5] we have, U2
i ≥ αi and

V 2
j ≥ βj for 1 ≤ i ≤ n and 1 ≤ j ≤ m, where αi, βj are the constants defined

in [3]. Thus, the proof of our claim is complete.

4 Global Stability.

In this section we obtain sufficient conditions about the global attractivity

of a periodic solution of (1.1). In addition to P1)− P3), we also assume that

fi, gj have partial derivatives with respect to (x, y) which are defined and

continuous in IR× IRn+m
+ .

Theorem 4.1 Assume that, there are positive constants p, c1, . . . , cn, d1, . . . , dm

such that, for 1 ≤ i ≤ n and 1 ≤ j ≤ m,

ci
∂fi

∂xi

(t, x, y) +
n∑

k=1k 6=i

ck

∣∣∣∣∣
∂fk

∂xi

(t, x, y)

∣∣∣∣∣ +
m∑

j=1

dj

∣∣∣∣∣
∂gj

∂xi

(t, x, y)

∣∣∣∣∣ ≤ −p,

dj
∂gj

∂yj

(t, x, y) +
m∑

k=1k 6=j

dk

∣∣∣∣∣
∂gk

∂yj

(t, x, y)

∣∣∣∣∣ +
n∑

i=1

ci

∣∣∣∣∣
∂fi

∂yj

(t, x, y)

∣∣∣∣∣ ≤ −p,

Then, there exists a T -periodic solution (U, V ) of (1.1) such that

(u(t), v(t))− (U(t), V (t)) → (0, 0) as t → +∞,

12



for any positive solution (u, v) of (1.1).

Proof. By Theorem 3.2 we know that (u, v) is defined and bounded on a ter-

minal interval of IR. On the other hand by assumption, we know that, system

(1.1) satisfy condition (0.2) in [5]. The proof follows now from theorem 1.5

in [5].

The above result generalizes theorem 2 in [3], in which it was assumed

that (1.1) is Lotka-Volterra and that ci = dj = 1 for all i, j.
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