J. Math. Anal. Appl. 373 (2011) 512-520

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and

Applications

www.elsevier.com/locate/jmaa

Existence of a polycycle in non-Lipschitz Gause-type predator-prey models

José Luis Bravo^{a,*,1}, Manuel Fernández^{a,1}, Manuel Gámez^b, Bertha Granados^c, Antonio Tineo^c

^a Departamento de Matemáticas, Universidad de Extremadura, Spain

^b Departamento de Estadística y Matemática Aplicada, Universidad de Almería, 04120 Almería, Spain

^c Departamento de Matemáticas, Facultad de Ciencias, Universidad de los Andes, 5101 Mérida, Venezuela

ARTICLE INFO

Article history: Received 24 March 2009 Available online 5 August 2010 Submitted by Steven G. Krantz

Keywords: Predator-prey Heteroclinic Polycycle

1. Introduction

A Gause-type predator-prey system is a system of the form

$$x' = F(x) - y\phi(x), \qquad y' = y(\psi(x) - \mu), \tag{1.1}$$

where F(x) models the growth of the prey population in the absence of predators, $\phi(x)$ the kill rate in terms of the density of the prey, $\psi(x)$ the rate of reproduction of the predator in terms of the predation, and μ the death rate of predators. Detailed descriptions and biological explanations of the system may be found in [1,2,5,7,14,16].

For the growth of the prey population, it is usual to assume F(x) = rx(1 - kx) for certain parameters r, k > 0, with the prey thus following the logistic equation. But Rosenzweig [17], for instance, also considers $F(x) = rx(\ln k - \ln x)$. In the present work, we shall only require there to be exactly two non-negative roots, 0 and k > 0, such that F'(0) > 0 and F'(k) < 0.

The kill rate of the prey and the rate of reproduction of the predator in terms of the prey, $\phi(x)$, $\psi(x)$, are usually continuous functions in $x \ge 0$ and continuously differentiable functions with strictly positive derivative in x > 0. For instance, $\phi(x) = x$ in the Lotka–Volterra model [13,18], $\phi(x) = x^{\alpha}$ in the Gause model [6,17], and $\phi(x) = \frac{px}{1+pqx}$, with p, q > 0, in models with a Holling Type II response [8,9]. Recent studies [2,10] have pointed out that under certain conditions it is not possible to assume that ϕ and ψ are proportional, so that neither shall we make this assumption here.

atineo@ula.ve (A. Tineo).

0022-247X/\$ – see front matter @ 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2010.08.001

ABSTRACT

We study Gause-type predator-prey models when the interaction between predator and prey is not locally-Lipschitz continuous in the absence of one of them. We shall show that in this case there appears a polycycle, which affects the existence of limit cycles for the system. We apply the results to study the existence of limit cycles for a classical Gause system.

© 2010 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail addresses: trinidad@unex.es (J.L. Bravo), ghierro@unex.es (M. Fernández), mgamez@ual.es (M. Gámez), bgranado@ula.ve (B. Granados),

¹ The first and second authors are partially supported by grant FEDER(UE) MTM2008-05460.