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Abstract: This paper is a contribution to the modeling–methodological development of the applica-
tion of mathematical systems theory in population biology. A discrete-time nonlinear Leslie-type 
model is considered, where both the reproduction and survival rates decrease as the total popula-
tion size increases. In this context, the monitoring problem means that, from the observation of the 
size of certain age classes as a function of time, we want to recover (estimate) the whole state process 
(i.e., the time-dependent size of the rest of the classes). First, for the linearization approach, condi-
tions for the existence and asymptotic stability of a positive equilibrium are obtained, then the dis-
crete-time observer design method is applied to estimate an unknown state trajectory near the equi-
librium, where we could observe a single age class. It is also shown how the observer design can be 
used to detect an unknown change in the environment that affects the population dynamics. The 
environmental change is supposed to be generated by additional dynamics (exosystem). Now, the 
Leslie-type model is extended with this exosystem, and the observer design is applied to this ex-
tended system. In this way, an estimation can be obtained for different (constant or periodic) envi-
ronmental changes as well. 
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1. Introduction 
The study of monitoring in population systems with tools of mathematical systems 

theory (MST) looks back to approximately three decades of history. A fundamental mon-
ograph on MST, dealing with basic concepts of controllability and observability, was au-
thored by Kalman et al. [1]. By population system, we mean either a) a single population 
structured in some way, or b) a set of interacting populations. To our knowledge, Varga 
[2] was the first to apply the concept of observation systems of MST in order to recover 
the population genetic process from phenotypic observation. A recent continuation of this 
line of research was shown by Gámez et al. [3]. Later on, this methodology was extended 
to the monitoring problem of a multispecies community, where, from the observation of 
certain species (indicators), we wanted to recover (estimate) the state process of the whole 
community. 

For the monitoring of different ecological systems using the observer design meth-
odology of Sundarapandian [4], observer systems have previously been constructed, e.g., 
in Gámez et al. [5,6]. In particular, in work by López et al. [7], the monitoring of Lotka–
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Volterra population systems was discussed. A review paper on the different applications 
of MST in population biology was authored by Varga [8], and somewhat more recent sur-
veys were published by Gámez [9] and Varga et al. [10]. In López et al.’s work [11], by 
applying a technique of signed digraphs, a new, general approach to the design of a robust 
observer in continuous-time Lotka–Volterra models was proposed. 

All the above references deal with classical continuous-time population models; 
however, for obvious reasons, in population biology, for practical purposes, discrete-time 
dynamics models should also be applied. First, in Gámez et al.’s work [12], a discrete-time 
observer was constructed using the method of Sundarapandian [13]. 

In the present paper, as a continuation of the above line of research, we adopt the 
latter observer design method to the monitoring of an age-structured population dynam-
ics model, further developing and extending the initiative commenced by Gődényné 
Hajdu and Varga [14]. 

In dynamic population models, both the state and the time may be either discrete or 
continuous. The classical matrix population models are discrete-state–discrete-time models, 
where, from the present state, the next state can be obtained by a linear transform. 

The use of matrix models to describe the dynamics of an age-structured population 
goes back to Bernadelli [15], who explained the periodic behavior observed in certain in-
sect populations with a three-dimensional linear dynamic model. The classical discrete-
time linear model of an age-specific population growth was introduced by Leslie [16] and 
further developed by Leslie [17]. 

We note that in matrix population models, both the state vector and the population 
projection matrix (PPM, Caswell [18]) describing the linear state transform are non-nega-
tive; the dynamics model leaves the non-negative orthant invariant. This property is also 
characteristic of the linear dynamics models used in economics (see, e.g., Farina and 
Rinaldi [19]). Therefore, for the study of the asymptotic behavior of such models (includ-
ing the mathematical demography of human populations; see, e.g., Pianese et al. [20]), the 
Perron– Frobenius theory of non-negative matrices was applied (see, e.g., Gantmacher 
[21]), even in the discrete-state—continuous-time case (see, e.g., Varga [22]). Stochastic 
variants of matrix population models (with environmental or life-cycle stochasticity), in-
volving Markov chains, are discussed in Caswell’s work [18], which is a comprehensive 
monograph on matrix population models. 

The classical discrete-time linear Leslie model of an age-structured population 
growth, introduced by Leslie [16], would often lead to an unlimited growth, and such 
behavior is obviously impossible in nature. There are different nonlinearities introduced 
in the model, implying a more realistic, limited growth. For example, in fisheries, to this 
end, a (nonlinear) recruitment function was introduced to describe the limited survival of 
newborn individuals. One of the most popular recruitment functions was due to Beverton 
and Holt [23] (for further recruitment functions, see Getz and Haight [24] and the recent 
review by Sharma et al. [25]). We note that a variety of discrete-time density-dependent 
matrix population models can be obtained by substituting different state dependencies in 
the different entries of the PPM (see, e.g., Jensen [26]). Further density-dependent matrix 
population models based on discrete logistic dynamics have been introduced by Liu and 
Cohen [27]. For a recent overview of both density- and frequency-dependent matrix pop-
ulation models, we again refer to Caswell [18]. 

In addition to age-specific population models, stage-specific models have also been 
developed. Since we would like to dedicate another study to the monitoring in stage-
structured models (using observer design), in addition to the classical model of Lefkovitch 
[28], here we only refer to the very recent surveys by Logofet and Salguero-Gómez [29] 
and Logofet and Ulanova [30] (see also Logofet and Klochkova [31]). Stage-specific mod-
els, however, may display structural properties needing different constructions for ob-
server design. 
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In this study, we consider a nonlinear Leslie-type model, where both the reproduc-
tion and the survival rates decrease as the total population size increases (see, e.g., Svire-
zhev and Logofet [32] and Logofet [33]). In this context, the monitoring problem means 
that from the observation of the size of certain age class(es) as a function of time, the whole 
state process (i.e., the time-dependent size of the rest of the age classes) should be recov-
ered (estimated). 

The motivation for the present study is the following: In the biological context, it of-
ten occurs that only the individuals of certain age class(es) of a population can be observed 
(i.e., counted). For example, if in biological pest control in a greenhouse we wanted to esti-
mate a pest population of insects, the imagos may be easier to count than other develop-
mental stages  (see, e.g., a collection of papers by Schreiber [34] and a recent comprehen-
sive review by Lima et al. [35]). Another practical example occurs in fisheries, where the 
fish population is estimated from the catch of only individuals over a threshold size. The 
novelty of the present study is twofold: a) Although Guiro et al. [36] already applied an 
observer to estimate the fish stock in a stage-structured population model, their nonline-
arity is again based on the above-mentioned Beverton–Holt recruitment function. Our 
monitoring approach is based, instead, on the nonlinear matrix model of Svirezhev and 
Logofet [32] cited above, where all vital rates depend on the total population size. b) In 
addition to the unknown state process, we also estimate an unknown environmental 
change affecting the vital rates of the population, which is a new feature of our work with 
respect to Guiro et al. [36]. 

The paper is organized as follows: In Section 2, a consistent nonlinear Leslie-type 
model is defined, with an invariant set as the phase space and conditions for the existence 
of a unique positive equilibrium of the dynamics. Section 3 is dedicated to a stability anal-
ysis. In Section 4, the observer design is illustrated. In Section 5, it is shown how the ob-
server design applies to estimate different (constant and periodic) unknown changes in 
the environment that affect the population dynamics. A Discussion and Outlook Section 
closes the main body of the paper. 

2. Nonlinear Leslie-Type Model 
In this section, we recall some basics of the classical discrete-time, age-structured ma-

trix population model as a starting point of the nonlinear model, for which we propose a 
monitoring method based on the observer design of MST. Let  
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be a Leslie matrix with reproduction rates );,,1( 0 nii =≥α  survival rates 

)1,,1(10 −=<< nii ω  and state vector 

[ ] ).,2,1,0()(,),(),()( 21  == tTtxtxtxtx n  

Then, the classical Leslie model is 

),2,1,0()()1( 0 ==+ ttxLtx  

with a given non-negative initial state nx 0)0( +∈ R  (the set of all non-negative vectors of 
nR ).  
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In the following theorem, based on Svirezhev and Logofet [32], in II. §4 and II. §5, we 
collected statements from the classical theory of Leslie models, which we needed in the 
sequel.  

Theorem 1. Let the last age class be reproductive ( 0>nα ) and either let the first age class be 

reproductive ( )01 >α  or have two consecutive reproductive age classes ( 0, 1 >+jj αα  for some 

1,,2 −= nj  ). Then, 0L  has a unique positive and simple dominant eigenvalue ,01 >λ  and a 

unique associated eigenvector 0* >x  with 1
1

: ** =
=

= 
n

i
xx i . Furthermore, for any 0)0( >x , 

we have *

1

)(
lim axtx

tt
=

∞→ λ
 for some number 0>a . 

In what follows, the conditions of Theorem 1 will be supposed for matrix 0L .  

Remark 1. The first condition, 0>nα , implies 0L  to be irreducible (Section II.4 in Svirezhev 

and Logofet [32]), while the second one is sufficient but not necessary for 0L  to be primitive (see 
Theorem A2.2 in Logofet [33]).  

It is known that 1λ  is a kind of long-term growth rate of the population: for 1λ  < 1, 

the population dies out ( 0)(lim =
∞→

tx
t

), and for 1λ  > 1 the classical Leslie growth is of 

the Malthus type, ∞=
∞→

)(lim tx
t

; in both cases, for t >> 1 we have  )()1( 1 txtx λ≈+ . 

However, in order to avoid unlimited growth, the following modified, nonlinear model 
was introduced (see, e.g., Logofet [33]). 

2.1. Nonlinear Model 
For 0>c , we define 
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Obviously, in the modified, state-dependent Leslie matrix )(xLc , both the reproduc-
tion and the survival rates decrease as the total population size increases. The modified, 
nonlinear Leslie-type model then was  

),2,1,0()()1( )( ==+ tftx txc  (1)

with nx 0)0( +∈ R  given. 

2.2. Equilibrium of the Model 
Let us find a nontrivial equilibrium of this dynamics, i.e., a nonzero fixed point of 

function cf . First, we noted that, with a particular choice of c, the *x  from Theorem 1 

would be a fixed point of cf . Indeed, 

*
1

**
0

**** )()()()( xxxxxxx cccc LLf λϕϕ ===  

hence,  
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xxf cc x

Here, of course, for 1,0 1 >> λc  should have held. In a more general setting, we 
had the following: 

Theorem 2. Let the Theorem 1 conditions hold, 11 >λ , and 0>c  be arbitrary. Then,  

*1: 1* x
c

xc
−

=
λ

 (2)

is the unique positive equilibrium of dynamics (1).  

Proof of Theorem 2. Substituting *
cx , we have 
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Furthermore, let 0** >cx  be an equilibrium for dynamics (1), i.e., 

****
0

**** )()( cccccc xxLxxf == ϕ  

hence, 

******
**

**
0 )1(1

)( ccc
cc

c xxx
x

xL c+==
ϕ

 

implying that 
**1 cxc+  is a positive eigenvalue of 0L , associated with eigenvector **

cx . 

Now, using Theorem 1, 1λ  is the unique positive eigenvalue of 0L , thus, we have 

1
**1 λ=+ cxc , and, hence, 

ccx
11** −= λ

. Furthermore, due to the simplicity of eigen-

value 1λ , eigenvector **
cx  is a multiple of *x . Hence, we obtain *1***** 1

xxxx
ccc
−

== λ

, implying that ***
cc xx = . □ 

2.3. Invariant Set 
Now, we define a phase space (an invariant set) for dynamics (1). 
We define 𝑀: = 𝑚𝑎𝑥ሼ𝛼ଵ + 𝜔ଵ, 𝛼ଶ + 𝜔ଶ, … , 𝛼௡ିଵ + 𝜔௡ିଵ, 𝛼௡ሽ, 







 ≤∈= + c

MxxS n
c 0: R . 

Theorem 3. For any 0>c , set cS  is invariant under cf . 

Proof of Theorem 3. Let cSx∈ . Then,  
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Remark 2. Since cS  is convex and compact, and cf  is continuous, the Brouwer fixed-point theo-

rem would imply that cf  has a fixed point in cS . Nevertheless, cSx ∈= 0  is always a trivial fixed 
point. Of course, we are interested in a nontrivial equilibrium of dynamics (1). 

Now, in terms of the demographic parameters iα  and iω , we find a necessary and 
sufficient condition for equilibrium *

cx  to belong to the invariant set cS . It is known (Logo-

fet [33]) that the normed characteristic equation of 0L  is 

011
2

12
1

1 =−−−− −
−−

nn
nnn ωωαλωαλαλ  . 

Hence, it is easy to see that a 0>λ  is an eigenvalue of 0L  if, and only if, 

1:)( 11
2

121 =+++= −
n

nnq
λ

ωωα
λ
ωα

λ
αλ  . (3)

Furthermore, since function q  is strictly decreasing, with ∞=
+→

)(
0

lim λ
λ

q  and 

0lim )( =
∞→

λ
λ

q , condition 

cc Sx ∈*  (4)

holds if, and only if, 

c
M

c
≤

− 11λ ⇔ 11 +≤ Mλ ⇔ 1)1( ≤+Mq  

(see Figure 1). 
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Figure 1. Strictly decreasing function q with ∞=
+→

)(
0

lim λ
λ
q , 0lim )( =

∞→
λ

λ
q  and 11 +≤ Mλ

⇔ 1)1( ≤+Mq . 

Hence, we have the following 

Theorem 4. Under the conditions of Theorem 1, cc Sx ∈*  if, and only if, for function q defined in 
(3), we have 

1)1( ≤+Mq  (5)

Example 1. Let us consider the simplified case, when all demographic parameters are the same: 
ααα === n1 , ωωωω ==== −121 n . Then, 

{ } ωααωαωαωα +=+++= ,,,,max M . 

Therefore, 𝑞(𝑀 + 1) = 𝑞(𝛼 + 𝜔 + 1) = 𝛼𝛼 + 𝜔 + 1 + 𝛼𝜔(𝛼 + 𝜔 + 1)ଶ + ⋯ + 𝛼𝜔௡ିଵ(𝛼 + 𝜔 + 1)௡ 
= 𝛼𝛼 + 𝜔 + 1 ቆ1 + 𝜔𝛼 + 𝜔 + 1 +. . . + 𝜔௡ିଵ(𝛼 + 𝜔 + 1)௡ିଵቇ ≤ 𝛼𝛼 + 𝜔 + 1 ෍ ቀ 𝜔𝛼 + 𝜔 + 1ቁ௞∞

௞ୀ଴  
= 𝛼𝛼 + 𝜔 + 1 11 − 𝜔𝛼 + 𝜔 + 1 = 𝛼𝛼 + 1. 

Thus, inequality (5) was satisfied, implying that equilibrium *
cx  belongs to the interior of the 

phase space cS . This example also implies an infinite family of examples. Indeed, by the continuity 
of function q , the above strict inequality also holds for all models having different demographic 

parameters iα  and iω , sufficiently near the particular values α  and ω  of the above example. 

Remark 3. Since, in the above reasoning, inequality (5) is strictly satisfied, and 0* >x , we can 

also conclude that in Example 1, 
*
cx  also belongs to the interior of the invariant set cS . Through 

q(
)
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continuity reasoning, it also follows that for any parameter set for iα  and iω  close to that of Ex-
ample 1, *

cx  also belongs to the interior of cS . 

3. Stability of the Positive Equilibrium 
For the sake of simplicity, we consider the case of 3=n . Now, with a given 0>c

, dynamics (1) is considered with 
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In order to satisfy the conditions of Theorem 1, we suppose that ,03 >α  and at least 

one of the inequalities 01 >α  or 02 >α , holds. Assuming that 10 >λ , with Theorem 2 
we obtain that 

00* 1: x
c

xc
−

=
λ

 

is the unique positive equilibrium of dynamics (1). Therefore, the Jacobian matrix at this 
positive equilibrium is  

( ) [ ]*
0

*
0

*
02*

*

1
)()(' ccc

c

ccc xLxLxL
xc

cxLxf ⋅
+

−= . 

The following example illustrates the stability of the population age structure. 

Example 2. Consider a population with the following demographic parameters: 

9,0  ,8.0 21321   ,10  ,6  ,0 ===== ωωααα , and set c = 0.05. 

Conditions of Theorem 1 were fulfilled, so matrix 0L  has a unique positive and sim-

ple dominant eigenvalue 173.21 >=λ  and the unique normed eigenvector associated 

with it is T* 0.07] 0.21, [0.72,=x  (with 1321
* =++= xxxx ). 

The unique positive equilibrium of dynamics (1) is T*
c 2.4] 7.3, [24.9,=x . Moreo-

ver, since 10}max{ 32211 ,, =++= ααα ωωM , we have 
c
Mxc =<= 2006.34* . 

Therefore, cc Sx ∈* . The eigenvalues of the Jacobian at equilibrium, )(': *
cc xfA = , are: 

i32.05.0 ± , 0.37. Therefore, A has a spectral radius of less than one (i.e., only has eigen-
values with modulus of less than one) and, hence, equilibrium *

cx  is asymptotically stable. 

In Figure 2, we can see how the solution of system (1) converge to *
cx  for different initial 

conditions. 
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Figure 2. Trajectories tending to the positive equilibrium. 

Remark 4. For the zero equilibrium, we have )0()0(' Lfc = , and since, in our case, 11 >λ , the 
zero equilibrium is unstable. For our Example 1, in Figure 3, it is shown how the solutions of 
system (1) initially near zero diverge from zero (In fact, the eigenvalues of )0('cf are 

.88i01.36- 2.73, ± ). 

 
Figure 3. Trajectories running away from zero. 

4. Construction of a Local Observer 
4.1. Observability of the System: Observing the Second Age Class 

Consider the observation system consisting of dynamics (1), 

),2,1,0()()1( )( ==+ tftx txc , (6)
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and the observed function 
*

22 )())(()( cxtxtxhty −== . (7)

Then, ))(()( *
cxtxCty −= , where ( )010)(': * == cxhC , and 0)( * =cxh . 

Now, an observation system is said to be locally observable near an equilibrium, if 
there exists a vicinity of this equilibrium where different state processes provide different 
observations. 

Theorem 5. If 32 αα ≤ , then observation system (6)–(7) is locally observable near the equilibrium 
*
cx . 

Proof of Theorem 5. According to the basic theorem on observability (see, e.g., 
Sundarapandian [12]) it is enough to see that with matrix )(: *

cc xfA ′= , we have

3rank
2

=
















CA
CA
C

. We easily obtain that 

( )( ) ( )( ) ( )( )[ ]
( ) .
1

det 5*

*
3

*
1

**
3

*
2

*
1

*
2

*
12

2
1

2

1111

c

cccccccc

xc

cc

CA
CA
C

xxxcxcxcxxcx

+
−=















 −−+−+++−−+ ααωω
 

Since 1* =x and 𝜆ଵ > 1 , we have 𝑥௖∗ = ఒభିଵ௖ 𝑥∗ ⇒ ‖𝑥௖∗‖ = ఒభିଵ௖ > 0 . Now, from

,,, *
3

**
3

*
2

**
2

*
1

**
1 xxxxxxxxx cccccc ===

 
we obtain that 

















2

det
CA
CA
C

 is equal to 

( )( )[ ] ( )( ) ( )( )[ ]
( ) .
1

5*

*
3

*
1

**
1

*
3

*
2

*
12

**
1

*
2

*2
1 111111

c

ccccc

xc

xxxcxc xxxcxxcxxc

+

+
−

++−+−+−+−++−+− αα ωω

 

Regrouping terms, we have that 
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Since 32 αα ≤ , ,0* >cx  and 1* =x , we have that 01 *
1 <+− x and
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2
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11 xxx −=++− , implying 0det
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. Therefore, observation system (6)-(7) is lo-

cally observable near the positive equilibrium. □ 
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4.2. Construction of a Local Observer: Observing the Second Age Class 
We illustrate the observer design with the following: 

Example 3. We use the same parameters as in Example 2. Observing )(2 tx , as 32 αα ≤ , and 
applying Theorem 5, we obtain that observation system (6)–(7) is locally observable near equilib-
rium T

cx 2.4] 7.3, 24.9,[* = . Now, we shortly quote some basics of observers from Sundarapan-
dian [13]. 

Consider a general discrete-time observation system 

),2,1,0()()1( )( ==+ tftx tx  (8)

))(()( txhty =  (9)

with an equilibrium *x , where h vanishes. Denoted by A and C the Jacobian of f and h at 
*x , respectively, suppose that K is a matrix of appropriate size, such that KCA −  has a 

spectral radius of less than one. Then, 

)))(()(())(()1( tzhtyKtzftz −+=+  (10)

is a local exponential observer for system (8)-(9) in the following sense: 
(a) 𝑥(0) = 𝑧(0)  implies  𝑥(𝑡) = 𝑧(𝑡)   (𝑡 = 1,2,3,...). 
(b) For (0) and  (0) zx  close enough to *x , for some M > 0 and 0 < a < 1, we have 

3,...)2,1,(   )()( =≤− tMatxtz t . 

Remark 5. The intuitive interpretation of the constructed observer system (10) is the following: 
Instead of the unknown initial value )0(x , we start the original recursion (8) with an arbitrary 

initial value )0(z  near the equilibrium, but with an additional correction term 
)))(()(( tzhtyK − . The fact that, for the auxiliary matrix K , all the eigenvalues of KCA −  

are less than one in modulus implies that the known solution )(tz  of the observer system (10) 

approaches the unknown state process )(tx  at an exponential rate. 

Back to our Example 3, in fact, for =[(1,0,0)]TK , matrix KCA −  had the following 
eigenvalues: 0.45i0.46 ±− , 0.45. Hence, KCA − has a spectral radius of less than one, 
and Equation (10) provides the following observer system for system (8)–(9): 

( )( )
















+
=+

+
=+

−++
+

=+

  

 

).(9.0
)(05.01

1)1(

),(8.0
)(05.01

1)1(

,)()()(10)(6
)(05.01

1)1(

23

12

22321

tz
tz

tz

tz
tz

tz

tztxtztz
tz

tz

(11)

In Figure 4, it is shown how the solution of observer (11) with an initial value 
Tz 9] 15, [(18,=)0(  approaches the solution of the original system, with an initial value 

x(0)=[10, 6, 5]T, considered as the “unknown solution” of (6). 
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Figure 4. The solution of the observer system approached the unknown solution of the original sys-
tem. 

5. Construction of an Observer System with Environmental Change 
Now, we show how the above observer design methodology could be used to esti-

mate certain changes in population parameters due to abiotic environmental effects. In 
general, this time-dependent change could be described as an additive term u(t), gener-
ated by its own dynamics, called the exosystem. Here, additivity means that a model pa-
rameter changed from α  to )(tu+α . 

5.1. Constant Environmental Change Affecting a Reproduction Rate 

Example 4. For an illustration of this idea, let us consider our Leslie-type model with parameter 
values of Example 2: 9,0  ,8.0 21321   ,10  ,6  ,0 ===== ωωααα , c = 0.05, and suppose 
that there is an additive change u(t) in the reproduction rate of the third age class. 

( )

















=+
+

=+

+
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+
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                        );()1(
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321

tutu
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txc

tx

tx
txc

tx

txtutx
txc

tx

 (12)

*
22 )()),(()( cxtxutxhty −== . (13)

Here, the last equation of system (12) models the exosystem, which, in the present 
case, describes that the reproduction rate 3α  changes to an unknown constant. Observa-
tion (13) is the same as in Example 3. The construction of an observer system will be based 
on Sundarapandian’s work [13], applying the observer design to the extended system (12)-
(13), denoted by ),( uxF  the right-hand side of system (12). Since *

cx  is an asymptotically 
stable equilibrium for the original system, and 0 is a stable equilibrium for the exosystem, 
with the discrete-time adaptation of a result by Isidori [37], we obtain that )0,( *

cx  is a 
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stable equilibrium of system (12). Following Sundarapandian [13], for the linearization, 
we calculated the Jacobian )0,(: *

cxFA ′=  and [ ]0   010:=C , and with an auxiliary 

matrix [ ]TK 0.14   001:= , we obtain that KCA −  has a spectral radius of less than 
one. Hence, we obtain the following observer system for system (12)–(13): 

( )


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2244
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(14)

The interpretation of observer system (14) is shown in Figure 5. 

 

Figure 5. The solution of observer (14) with initial value [ ]Tz 3   91518)0( =  approaches the 

“unknown” state process with initial value [ ]T
u
x

1.5   51610
)0(
)0(

=






 . In particular, z4(t) approaches 

the “unknown” environmental change of the reproduction rate of the third age class. 

5.2. Periodic Environmental Change in a Survival Rate 

Suppose that survival rate 1ω  changes periodically due to an environmental (e.g., 
seasonal) change. 

Therefore, we fix 

}1,min{0 11 ωωδ −<< . (15)

Then, [1 ,0])(11 ∈+ tuδω , whenever ]1 ,1[)(1 −∈tu  (t = 0, 1, 2,…). Therefore, the 
following is a consistent population model with a periodically changing survival rate of 
the second age class: 
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                           𝑥ଵ(𝑡 + 1) = 11 + 𝑐‖𝑥(𝑡)‖ ൫𝛼ଵ𝑥ଵ(𝑡) + 𝛼ଶ𝑥ଶ(𝑡) + 𝛼ଷ𝑥ଷ(𝑡)൯,𝑥ଶ(𝑡 + 1) = 11 + 𝑐‖𝑥(𝑡)‖ ൫𝜔ଵ + 𝛿𝑢ଵ(𝑡)൯𝑥ଵ(𝑡),𝑥ଷ(𝑡 + 1) = 11 + 𝑐‖𝑥(𝑡)‖ 𝜔ଶ𝑥ଶ(𝑡),                     
  

⎭⎪⎪⎬
⎪⎪⎫

 (16)

𝑢ଵ(𝑡 + 2) = 𝑢ଵ(𝑡).     (17)

In order to handle the observer design in the standard form, we needed to transform 
the second-order discrete-time dynamics to the equivalent first-order two-dimensional 

system. With notation )1(:)( 12 += tt uu , 



=

)(
)(

:)(
2

1

tu
tu

tu  and 






=
01
10

:B , the exosys-

tem corresponding to (17) is  

)()1( tButu =+  (t=0, 1, 2,...)  (18)

Since, for any [1,0]∈ε , the solution of system (18) with initial conditions 






−

=
ε

ε
:)0(u  is  

)0()1()( uu tt −=    (t=0, 1, 2,...), 





=∗

0
0

:u  is a stable equilibrium of system (18). 

Example 5. Continuing with parameters of the previous Example 4, we know that 
T

cx 



= 4.23.79.24* is an asymptotically stable equilibrium of system (16) with 0=δ . 

Similarly to Example 4, we obtain that 







∗u
cx
*

 is a stable equilibrium of the extended 

system given by (16) and (18). According to condition (15), we can choose, for example, 
15.0:=δ . 

For an illustration, let us assume again that the second age class is observed: 
*

22 )())(),(()( cxtxtutxhty −== , (19)

and we want to recover )(tx  and )(tu , considered to be unknown. 
According to Sundarapandian [13], we linearize calculating the Jacobians 

),
*(: ∗′= ucxFA  and [ ]0   010:=C . It is easily checked with matrix 

[ ]TK 0.14   001:=  that the resulting matrix KCA −  has a spectral radius of less than 
one. Now, the observer design provides the following observer system for system (16), 
(17)–(19): 
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In Figures 6 and 7, we can see how the solution of observer (20) with the initial value 
Tz ] 1  2  9  15  18[)0( = approached the “unknown” state process and the periodic envi-

ronmental change, with an initial value of T

u
x

0.5]-   0.5   5   6   10[
)0(
)0(

=







. 

 
Figure 6. Estimation of the state process, under the effect of an unknown periodic environmental 
change, using an observer corresponding to the system extended with the exosystem. 
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Figure 7. Estimation of the “unknown” environmental change, using the same observer as in Figure 
6. 

6. Discussion and Outlook 
First of all, we note that Gámez et al. [6] already proposed the observer approach to 

the deterministic stock estimation of a single fish population with reserve area, which 
obeyed the continuous-time logistic dynamics. The discrete-time observer approach to 
monitoring, proposed in the present paper (also including the case of a changing environ-
ment), is different from that considered by Ngom et al. [38]. Indeed, in the latter, the first 
age class was governed by a Beverton–Holt recruitment function and the time-dependent 
survival rates (including a time-dependent fishing effort) were supposed, while there is a 
feedback of the total population size, both in the reproduction and the survival rates in 
our model. 

Instead of an age-classified population, it is also natural to divide the individuals of 
the considered population into groups, according to their developmental stages. For such 
stage-specific population models applied in biological pest control, see, e.g., Garay et al. 
[39]. Therefore, for both the theory and the possible applications, it is a further promising 
challenge to extend the monitoring methodology developed in the present paper, to stage-
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structured population models. While in the age-specific model all surviving individuals pass 
to the next age class in unite time, a part of the surviving individuals may have remained 
in the same stage in the stage-specific model, resulting in a different dynamic model. 
Guiro et al. [36] already applied an observer to estimate fish stock in a stage-structured 
population model, but the nonlinearity was again based on the Beverton–Holt recruitment 
function. 

We showed examples of when an unknown change in the environment can be esti-
mated together with the state process of an age-structured population. These examples 
could be starting points of a new line of research concerning a general monitoring system 
for environmental contamination based on the observation of easily observable age classes 
of a given indicator species. Another line of research that would go beyond the framework 
of the present paper might be an extension of the monitoring problem to the case of several 
interacting, age-structured populations. In this model, we would have to cope with two 
types of nonlinearity: one leading to the saturation according to the carrying capacity of 
the environment, and another one describing interspecific interactions such as predation. 

Finally, for an outlook, we also mention that, while in the observer design, the system 
dynamics were known, and from the observation, an unknown state process was esti-
mated. In the case of a structural identification problem, the structure of the system dy-
namics is known, and we want to recover its unknown parameters. On the structural iden-
tifiability of continuous-time nonlinear biological systems, a recent review was written by 
Villaverde [40]. In the case of discrete-time systems, Anstett et al. [41] may be a useful 
reference. Since model parameters can be considered as constant state variables, the struc-
tural identification problem can be considered as a particular case of the observation prob-
lem. In fact, in Section 5 of the present paper, observer design methodology was used to 
numerically estimate certain changes in population parameters due to abiotic environ-
mental effects. This can be considered a particular case of structural identification. The 
generalization of this approach to different ecological situations, including several inter-
acting species, could open a new line of research. 
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