
2nd Reading

May 15, 2012 8:50 WSPC S1793-5245 242-IJB 1250054

International Journal of Biomathematics
Vol. 5, No. 6 (November 2012) 1250054 (15 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S1793524512500544

STATISTICAL DETECTION OF SPATIAL PLANT PATTERNS
UNDER THE EFFECT OF FOREST USE

I. LÓPEZ
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Páter K. u. 1., H-2103 Godollo, Hungary
Varga.Zoltan@gek.szie.hu

M. GÁMEZ
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The analysis of the consequences of land use (in particular forest use) may be considered
as a partial step towards an integrated modeling of a land system. In the paper a forest
territory is considered, where a gap-cut is made, and after a given time period the
eventual change in the spatial distribution of undergrowth plants and tree seedlings
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is to be detected. Floristic data are collected along a line transect. A method for the
detection of the change in the plant distributions along the transect is proposed to see

whether this occurs at the geometric frontier of the human intervention.
Since in the considered case the distribution of the change-point estimate is not

known, as a substitute of its confidence interval, the so-called change-interval is calcu-
lated, using an adaptation of the bootstrap method. As an illustration, for a concrete
plant species, the maximum likelihood estimation of the change-point and the calcu-
lation of the above mentioned change-interval is presented. Finally, the validation of
the proposed method against some typical ecological situations is also presented, which
provides a justification of the used algorithms.

Keywords: Forest use; forest gap; plant patches; edge detection; change-point; change-
interval; bootstrap.

1. Introduction

The analysis of the consequences of land use (in particular forest use) may be
considered as a partial step towards an integrated modeling of a land system. Let
us consider a forest territory, where a gap-cut is made, and after a given time
period the eventual change in the spatial distribution of undergrowth plants and
tree seedlings is to be detected (see [14, 9]). If floristic data are collected along a
line transect, we can try to detect the change in the plant distributions along the
transect, the so-called change-point, and see whether this occurs at the geometric
frontier of human intervention.

The problem, at a theoretical level, can be addressed using the methodology
of change-point analysis which is a technically involved branch of mathematical
statistics (see e.g. [2, 4]), widely used to explore the possible temporal or spatial
structure of local homogeneity from collected data. The main application fields
of change-point analysis include meteorology, hydrology, or environmental studies,
economy, quality control in industry, biology and medicine. In this paper we propose
a practical, operative approach, using only technique of classical statistics.

One approach of treating vegetation patchiness is classification, i.e. distinguish-
ing discrete entities based on resemblance. Early attempts classified vegetation
based on similarities in physiognomy (the gross appearance) caused by the rela-
tive importance of different growth forms [18]. Then classical phytosociology put
the emphasis on resemblance of species composition. Papers in [13] illustrate how
different schools of phytosociology developed their criteria by which the units of
classification (associations) were recognized. From the mid 20th century methods
of numerical classification have been used more and more widely (e.g. [15]).

Another approach is to study spatial patterns of individual plant species. Spatial
pattern means the arrangement of plants or of patches of plants in space with certain
amount of predictability [5]. In ecology the change-point problem is also known as
problem of “boundary or edge detection”, see [3, 8, 10]. In these papers further
references to a large variety of applications of edge detection can also be found.
The methodology of the change-point has already been applied with success to the
analysis of plant patterns, see [11].
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In our case, given a plant species, along a line transect quadrats have been
located and in each quadrat the individuals have been counted. We consider these
data as samples of two distributions of the same type but with different parameters,
separated by a change-point K. Based on the maximum likelihood approach, an
algorithm is given to estimate K.

Since the distribution of the change-point estimate is not known, as a substitute
of its confidence interval, the so-called change-interval will be calculated, using an
adaptation of the bootstrap method. For this widely applied simulation method
see e.g. [6], a justification of the use of bootstrap in this case can be found in [7].
The implementation of the above algorithms was realized with the application of
the statistical software “R” (version 2.7.2). As an illustration, for a concrete plant
species, the maximum likelihood estimation of the change-point and the calculation
of the above mentioned change-interval will be presented. Finally, for a justifica-
tion of the proposed method, our algorithms are also tested against some typical
ecological situations.

The paper is organized as follows. Section 2 recalls some general aspects of
statistical analysis of human effects on a forest. Section 3 describes the experimental
framework of our study. Section 4 is devoted to the set-up of the basic model,
and also contains the description of the used algorithms and the obtained results.
In Sec. 5 the proposed methodology is validated against some typical ecological
situations. Finally, in Sec. 6 some conclusions are drawn.

2. Statistical Analysis of Human Effects a Forest

In forests, human management is aimed at only a few — though dominant —
components (trees, wild game species) of the whole ecosystem. However, nowa-
days increasing attention is paid to the loss of biodiversity. As a consequence there
is a need to assess the effects of different land use activities — in our case for-
est management — on original biodiversity. Experience shows that not all plant
species show a clear, easily detectable reaction to management activities, even if
they create steep gradients (like the opening of a small canopy gap in an old forest).
Often one can only find difference in the distribution of a species among patches
of different quality. Consequently, new methods — capable of detecting such minor
changes — could be used to detect minor, not readily detectable causes of human
management.

There is a very wide range of applications of statistical methods of change-
point analysis in ecology (see [1, 16, 17] and their references). Our method not
only provides an estimation for the location of a change-point and the different
distributions laying in different patches, but also provides a so-called change-interval
(C.I. for brevity) which localizes the distribution change with a high probability
level. This interval can be considered as an estimate of a transient zone between
patches. The latter has particular importance in plant ecology since the change
between patches usually is not point-like. In a transient zone there may be a mix
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of two patches, or a special plant composition. Our aim is to study case when the
transient zone is small and contains only a mix of the patches.

3. The Experiment

To test the applicability of our method, we used data that were collected in the
framework of a study aimed at investigating the effects of canopy gap size on the
resulting spatial distributions of key abiotic environmental variables (light and soil
moisture) in gaps, and at studying how light and soil moisture affect the abun-
dance and distribution of herb layer species. The study site is located in the Brzsny
Mountains, northern Hungary (47.9◦ N, 18.9◦ E). Mean annual temperature is
8◦C, mean monthly temperature is −3.5◦C and 18◦C in January and in July,
respectively. Annual precipitation is 700–800mm. Bedrock is andesite, on which
medium deep brown forest soil has developed. The study area is located at 540–
610m elevation, on a relatively steep east-northeast facing slope, that is covered
by an almost pure stand of European beech (Fagus sylvatica L.). Average tree
height is 25 m, mean diameter at breast height is 30 cm. Detailed site description is
given in [9].

The selected stand was a good representation of even-aged, mature (86 year old),
and dense forests — typical products of the common contemporary silvicultural
system (uniform shelter-wood), [12]. Because of the dense tree canopy, understorey
vegetation was extremely sparse before opening the experimental gaps. Three large
gaps, see Fig. 1, (the proportion of tree height of surrounding stand (H) to gap diam-
eter (D) was 1:1.5) and five small gaps (H:D was 1:0.5) were created in February

Fig. 1. Aerial photograph showing the 3 large artificial gaps.
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Fig. 2. The photograph taken at a large gap in late October 2007 ( c© László Gálhidy).

2001. We used a systematic sampling design with 5-meter grid resolution and 1×1m
quadrats. Each large gap contained 123 quadrats, whereas small gaps contained 64
quadrats each. Vegetation data were recorded on seven occasions (in September
2000 — before gap creation — May/September 2001, and May/September 2002,
August 2004 and 2006). On each occasion we determined the cover of each herba-
ceous species using visual estimation in each quadrat. Among other environmental
variables, light conditions were studied in each quadrat, so we could reliably decide
if a quadrat was in a gap or non-gap environment. In Fig. 2 we can see the image
of a large gap.

For the present study we used the data of one species, bramble (Rubus fruticosus
L.) collected in one of the large gaps in 2006, containing 25 quadrats, i.e. in the
seventh growing season after the artificial gaps had been opened.

4. Model Description, Algorithms and Results

4.1. Model description

We consider N quadrats and fix 0 � K � N . Suppose that the number of plants
in quadrats 1, 2, 3, . . . , K are independent random variables with the same discrete
probability distribution

ξ :

{
0 1 2 . . . r

p0 p1 p2 . . . pr,
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whereas the number of plants in quadrats K + 1, K + 2, K +3, . . . , N are indepen-
dent random variables with the same discrete probability distribution

η :

{
0 1 2 . . . l

q0 q1 q2 . . . ql

1 2 . . . K − 1 K K + 1 K + 2 . . . N

ξ ξ . . . ξ ξ η η . . . η.

First, from a given sample vector X := (x1, x2, . . . , xN ), for each possible K, we
estimate distributions of ξ and η, and the probability of “realization” of the given
sample. Then, from the possible values of K we obtain the required estimate for
K, applying the maximum likelihood approach.

4.2. Estimation of distribution ξ and η

For given 1 ≤ K ≤ N −1, a possibility to estimate ξ in terms of relative frequencies
may be the following: Let

r = max
j=1,...,K

xj

and for each i = 0, 1, . . . , r, we define the probability that the variable ξ takes each
of its possible values:

p̂K,i = P (ξ = i) =
number of indices j = 1, 2, . . . , K with xj = i

K
, (4.1)

providing an estimate for the distribution of ξ.
In analogous way we estimate the probability distribution of η: let

l = max
j=K+1,K+2,...,N

xj

and for each i = 0, 1, . . . , l, we define

q̂K,i = P (η = i) =
number of indices j = K + 1, . . . , N with xj = i

N − K
. (4.2)

Let PK be the probability of “realization” of the sample X := (x1, x2, . . . , xN ),
calculated with the above estimated probabilities:

pK :=

(
K∏

i=1

p̂K,xi

)(
N∏

s=K+1

q̂K,xs

)
,

considered the “goodness” of K. Based on the given sample X , our purpose is to
find a K which maximizes PK , providing the “best” (i.e. the “most probable”) value
of K. We shall deal with this in the next section.
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4.3. Algorithms

4.3.1. Algorithm 1 (Estimation of the change-point K):

1. Introduce sample X . N :=Size(X).
2. FOR K = 1 until N − 1:

(a) Calculate: p̂K,i and q̂K,i for each i, according to (4.1) and (4.2).
(b) Calculate: Log PK =

∑K
i=1 Log p̂K,xi +

∑N
s=K+1 Log q̂K,xs . (Logarithm is

introduced to avoid too small probability values.)

3. LogProbSample := (Log P1, . . . , Log PN−1).
4. EstimateK:= Position K with maximum value among the coordinates of

LogProbSample.
5. Return EstimateK.

To find a change-interval for K we elaborate a resampling method based on the
known Bootstrap, but with certain modifications in the choice of the elements of
each sample of the simulations, in order to fit the method to our problem. The
original sample is divided in two homogenous parts, such that the order of the
elements of the new samples is important, since, by the linear arrangement, we
must not mix all elements in a random way. The generated samples must keep the
particularity of having two homogenous parts. The process to follow is explained
below.

4.3.2. Algorithm 2 (Calculation of a 90% level Change-Interval):

1. Introduce the sample X := (x1, x2, . . . , xN ). N := Size(X).
2. FOR K = 1 until N − 1

(a) Calculate a weight for each K:

WK =

(
K∏

i=1

10p̂K,xi

)(
N∏

s=K+1

10q̂K,xs

)

(Probabilities are multiplied by 10 only for technical reason. By this rescaling
we avoid the use of too small values which would be zero in the computer
representation.)

(b) Normalize the weights (and denote them by WNK).
(c) FOR L = 1 until m (we generate m samples for each K):

(c1) Generate K random numbers {u1, . . . , uK} of a discrete uniform distri-
bution U [1, K], and N − K random numbers {uK+1, . . . , uN} of distri-
bution U [K + 1, N ].

(c2) We generate each sample with two homogenous zones, selecting the ele-
ments of the original sample according to the random positions obtained
in c1) for both zones: XL := (xu1 , . . . , xuK , xuK+1 , . . . , xuN ).

(c3) We apply Algorithm 1 to the sample XL, to obtain an estimate KL for
the change-point.
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(d) From the obtained values K1, . . . , Km, (m large enough) we calculate a dis-
tribution dK of the change-point, for each fixed K.

We combine all these new distributions to obtain a unique distribution∑
K WNKdK for K, for which we calculate the 90%-level change-interval, with

percentile 5 and percentile 95 as extremes.
If we have a small amount of data, we can increase the number of data in

the following way: we uniformly divide each quadrat of the linear transect into
100 small quadrats along a straight line. In each small quadrat the species will be
present (value 1) or not (value 0). Let W be the number of small quadrats where
the species is present. Then, using the statistical software “R” (version 2.7.2) we
generate randomly w values of a discrete uniform distribution between 1 and 100.
These w values will indicate the positions of the small quadrats with one plant, and
the remaining 100-w will be the small quadrats with no plant. Therefore, in these
100 small quadrats we represent a w% presence of the species. We denote this new
data vector by S. Now, however, we may have too many data for a reasonable run
time for the calculations. To reduce them, we sum the values of each 10 consecutive
quadrats, and denote this new data vector by Z. We carry out this in the following.

4.3.3. Algorithm 3:

1. Introduce the original sample X := (x1, x2, . . . , xN ). N := Size(X).
2. We increase its size to 100 N , then X changes to a vector S = (s1, s2, . . . , s100N )

of 1s and 0s, and the frequency of 1s, uniformly placed in a random way between
the positions (i − 1) · 100 + 1, i · 100 in S, will be xi.

3. We sum every 10 values of S obtaining a sample vector Z = (z1, z2, . . . , z10N ),
to which we apply Algorithms 1 and 2 (with m = 100), obtaining the estimate
for K and the 90%−level change-interval.

4.4. The linea

Consider the species Rubus fruticosus with data of 2006, taken from the following
area, and described by Cartesian coordinates “X − Y ”, as shown in the table of
Fig. 3.

Fig. 3. Table of cartesian coordinates of quadrats.
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Fig. 4. Table of data set distributed along a straight line.

In table (see Fig. 4), in the first three columns we present the data for the species
at each location with coordinates X and Y . We know that the distribution at the
centre of this area is different from those observed at the extremes. The change of
distribution is observed around X = 20 on the left, and around X = 50 on the
right. Now, by symmetrically “folding” a diameter of the gap, we practically get a
radius of the gap. Let us consider the data originally obtained for the 25 quadrats
along a diameter of the gap, and redistribute them along the corresponding radius,
as shown in the 5th and 6th columns of table in Fig. 4. The new data set is given
in the last column. In this way, on the one hand, instead of finding two change-
points, we will estimate a single change-point (for which our statistical method
was proposed), on the other hand, by the folding, the number of quadrats along
the new line is virtually doubled. This approach can be justified by the geometric
symmetry of the sampling arrangement, and by the homogeneity of the surrounding
forest, as described in Sec. 3. Having estimated the single change-point (and the
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change-interval) for the “folded” arrangement, just by “unfolding” we will be able
to estimate both change-points and their respective change-intervals, too.

Now, from the data of the last column, we want to detect the change of distri-
bution. i.e. the X-coordinate of the change-point. To this end we apply Algorithm 3
to the last data column as “original sample”, obtaining a vector Z of the following
250 data:

[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[39] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[77] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[115] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
[153] 1 0 3 0 0 0 0 0 3 1 2 3 3 1 4 2 2 4 3 3 2 3 2 2 4 3 1 2 1 4 3 3 0 0 1 1 1 1
[191] 0 0 0 0 0 0 1 1 1 2 1 3 2 3 6 2 3 2 0 3 0 0 0 0 0 0 0 0 0 0 6 3 3 3 5 5 4 3
[229] 3 5 3 4 3 3 3 5 2 5 2 5 5 3 7 5 4 4 4 4 5 4

4.5. Results

With these 250 data, Algorithms 3, 1 and 2 (with m = 100) provide an estimated
K equal to 150, and 90% level change-interval [149, 160]. These results would cor-
respond in the large data (S) to 1500 for K and [1490, 1600] for the C.I., which
in terms of the original quadrats (in the sense of the reordering given in table of
Fig. 4) would be 15 for K, and [15, 16] for the C.I., as shown in Fig. 5. As it can be
read from table in Fig. 4, to the value K = 15, in the unfolded data system there
correspond X = 55, and symmetrically, X = 20; and to the C.I. [15, 16], there
correspond a left C.I. [20, 25], and a right C.I. [50, 55].

5. Validation of the Proposed Method Against
Some Basic Ecological Situations

In this section the proposed method is validated against some basic ecological sit-
uations, providing at the same time a verification of the applied algorithms.

Fig. 5. Estimated K and C. I., in terms of the original data.
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We shall consider some simple distribution changes which typically occur in
plant ecology, dealing with the change from one discrete distribution to another,
called for brevity left and right distributions and denoted by ξ and η, respectively.

In all illustrative situations, both the left and the right distributions will have
five possible values (0, 1, 2, 3, 4) and we set N = 80 and K = 30. With these
parameters we will generate h = 100 random samples, testing our method on these
samples, as explained below.

First, having fixed the above parameters, we generate h = 100 random samples
of size N , such that for each sample, the first K elements are taken from the given
left distribution ξ and the rest of them from the given right distribution η. Then,
we apply Algorithms 1 and 2 to every single randomly generated sample (taking
m = 100 in Algorithm 2). In this way, for each sample, Algorithm 1 will return an
estimate for K, and Algorithm 2 will provide a change-interval for K. Finally, we
shall have 100 estimated K values and 100 change-intervals with level 90%. In fact,
we can check whether in 90 cases out of 100, the final change-interval includes the
real, previously fixed value of K.

Finally, the mean of the 100 estimated K values will be accepted as change-
point. Similarly, the final change-interval will be obtained from the means of the
corresponding 100 estimated endpoints. We will also calculate the corresponding
standard deviations.

It is intuitively clear that, the larger the Euclidean distance |p − q| between
the left and the right distributions p = (p0, p1, p2, p3, p4) and q = (q0, q1, q2, q3, q4)
respectively, the smaller the obtained change-interval should be.

Now, in order to test our approach we will perform the above calculations with
illustrative data, and with an a priori fixed change-point, dealing with distribution
changes which typically occur in plant ecology.

5.1. The left distribution is symmetric

and the right one is not

By considering the left and right distribution p = (0.075, 0.125, 0.6, 0.125, 0.075)
and q = (0.1, 0.8, 0.05, 0.03, 0.02), respectively, (see Fig. 6), our method gives the
following results:

Results K Lower end of Upper end of
change-interval change-interval

Estimation 30.02 26.17 33.85
Standard Deviations 2.093665 2.835757 2.793842

5.2. The abundance of a plant species changes in space

By considering the left and right distribution p = (0.02, 0.03, 0.1, 0.6, 0.25) and
q = (0.1, 0.8, 0.05, 0.03, 0.02), respectively, (see Fig. 7), our method provides the
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Fig. 6. Distributions ξ and η with p = (0.075, 0.125, 0.6, 0.125, 0.075), q = (0.1, 0.8, 0.05,
0.03, 0.02), |p − q| = 0.8779522.

Fig. 7. Distributions ξ and η with p = (0.02, 0.03, 0.1, 0.6, 0.25), q = (0.1, 0.8, 0.05, 0.03, 0.02),
|p − q| = 0.9897474.

following results:

Results K Lower end of Upper end of
change-interval change-interval

Estimation 30.08 28.7 31.61
Standard Deviations 0.9393744 1.184922 1.340096

5.3. A non-uniform symmetric distribution if changed

to a uniform one

By considering the left and right distribution p =(0.05, 0.1, 0.7, 0.1, 0.05) and q =
(0.2, 0.2, 0.2, 0.2, 0.2), respectively, (see Fig. 8), which biologically means
that an aggregation disappears, the proposed method gives the following

1250054-12
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Fig. 8. Distributions ξ and η with p = (0.05, 0.1, 0.7, 0.1, 0.05), q = (0.2, 0.2, 0.2, 0.2, 0.2),
|p − q| = 0.5612486.

results:

Results K Lower end of Upper end of
change-interval change-interval

Estimation 31.3 22.33 46.78
Standard Deviations 6.857128 4.653781 10.30208

Summing up, we emphasize that in all considered cases (which occur very often
in ecology) our method gives appropriate results in the sense the estimation of K

is very close to its theoretical value 30. Moreover, the calculated change-interval
always contains this theoretical value in its interior. These results not only validate
our model, but at the same time verify the appropriateness of our algorithms, too.

6. Conclusion

Based on the data of a plant species, bramble (Rubus fruticosus L.) collected in an
experimental forest gap, we have shown how a bootstrap method can be applied for
the estimation of the changes in plant densities implied by human intervention. At
this initial stage of our study we investigated a relatively small data set concerning a
single species, in a real situation there may be about 100 plant species, and different
species usually to respond differently to environmental changes.

We emphasize that our method is not only another approach for the estimation
of a change-point; the estimate of the change-interval we offer can be applied not
only based on the maximum likelihood principle we used in this paper, but any
point estimation method known for edge detection can be developed in this way to
get an estimate of the change interval.

Once we have estimated where the densities of different plant species change,
we will be able to investigate whether these plant species change in the same zone,
or as a response to a changed environment, a special “plant community” has been
formed. However, this may be the topic of further studies.
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[4] M. Csörgö and L. Horváth, Limit Theorems in Change-Point Analysis (Wiley, Chich-
ester, 1997).

[5] M. R. T. Dale, Spatial Pattern Analysis in Plant Ecology (Cambridge University
Press, Cambridge, 1999).

[6] B. Efron and R. Tibshirani, An Introduction to the Bootstrap (Chapman & Hall, New
York, 1993, pp. 184–188).

[7] D. Ferger, Asymptotic distribution theory of change-point estimators and confidence
intervals based on bootstrap approximation, Math. Methods Statist. 3(4) (1993)
362–378.

[8] M. J. Fortin, R. J. Olson, S. Ferson, I. Iverson, C. Hunsaker, G. Edwards, D. Levine,
K. Butera, V. Klemas, Issues related to the detection of boundaries, Landscape Ecol.
15 (2000) 453–466.
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