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The paper is aimed at the methodological development of ecological monitoring in discrete-time dynamic
models. In earlier papers, in the framework of continuous-time models, we have shown how a systems-
theoretical methodology can be applied to the monitoring of the state process of a system of interacting
populations, also estimating certain abiotic environmental changes such as pollution, climatic or seasonal
changes.

In practice, however, there may be good reasons to use discrete-time models. (For instance, there may
be discrete cycles in the development of the populations, or observations can be made only at discrete
time steps.) Therefore the present paper is devoted to the development of the monitoring methodology
in the framework of discrete-time models of population ecology. By monitoring we mean that, observing
only certain component(s) of the system, we reconstruct the whole state process. This may be necessary,
e.g., when in a complex ecosystem the observation of the densities of certain species is impossible, or too
expensive. For the first presentation of the offered methodology, we have chosen a discrete-time version
of the classical Lotka-Volterra prey-predator model. This is a minimal but not trivial system where the
methodology can still be presented.

We also show how this methodology can be applied to estimate the effect of an abiotic environmen-
tal change, using a component of the population system as an environmental indicator. Although this
approach is illustrated in a simplest possible case, it can be easily extended to larger ecosystems with

several interacting populations and different types of abiotic environmental effects.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction. Monitoring problems: biological needs and
mathematical possibilities

The historical background of the present study is the basic dy-
namic Lotka-Volterra model of population ecology (Volterra, 1931;
Scudo and Ziegler, 1978). Since then a huge number of studies have
been devoted to this classical continuous-time model and its gen-
eralizations, the main research lines are summarized in Svirezhev
and Logofet (1983). For a survey on discrete-time versions of clas-
sical population dynamics models, we can refer e.g. to Grantham
and Athalye (1990). Below we set up a general approach to the
monitoring of such systems.

For a sound theoretical foundation of efficient applications of
biological knowledge in different fields of human activity, it is nec-
essary to extend the traditional approach of theoretical biology fo-
cusing only on a biological object, to the study of the system “bi-
ological object - man”. For instance, in a typical situation of con-
servation ecology, before any intervention on a population system
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(a set of several interacting populations), we may need the knowl-
edge of all state variables (i.e. the densities of all species) as func-
tions of time. However, in many cases we can observe (measure)
only the densities of certain species considered indicator species.
The question then arises whether from these observed densities
(components of the state vector) the whole state vector can be
uniquely recovered. Of course, in a static situation this is impos-
sible, but it is often possible, if the observation is dynamic. This is
one of the basic problems of mathematical systems theory, called
observability problem. Let us suppose that certain projection or
transform of the state vector is observed as function of time, and
to different state processes there correspond different observations.
Then the considered system is called observable, which actually
means that from the observed function, in principle, the original
state process can be uniquely determined. In fact, for the typically
non-linear models of population biology, the adequate observabil-
ity concept is local, defined near an equilibrium. From a practi-
cal point of view, in case of observability, an important question
is how to effectively calculate the unknown state process from the
observation.
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In order to understand the basic difficulty of the observation
problem, let us consider the classical Lotka-Volterra prey-predator
model. Let us suppose that we can observe only the density of
the prey as function of time. We cannot proceed as in the case
of a system of two algebraic equations, i.e. just substitute this
known function into the system, so we obtain a single differential
equation with a single unknown. The problem is that this equa-
tion cannot be uniquely solved since we do not know the ini-
tial value of the unknown function. Therefore, to recover the un-
known state process we need a special method. The answer is ob-
server design, a basic construction of mathematical systems theory.
In fact, from the original state dynamics and the known observa-
tion, the so-called observer system can be constructed, the solution
of which converges to the unknown state process at exponential
rate. For the continuous-time density-dependent population sys-
tem models, this observer design methodology of Sundarapandian
(Sundarapandian, 2002a; Sundarapandian, 2003; Sundarapandian,
2005; Sundarapandian, 2011) has been widely applied as summa-
rized below.

For further biological motivation of the present research, be-
low we recall some successful applications of the observer design
methodology to concrete state process estimation. First we men-
tion the application of this methodology to the monitoring of the
classical Lotka-Volterra prey-predator model (Lopez et al., 2007b)
and to open and closed trophic chains, in Varga et al. (2010), see
also Gamez et al. (2010a).

In Gamez et al. (2012) observer design was applied for stock
estimation in fisheries with reserve area, where from the catch in
the free fishing area the total fish stock as function of time was
estimated.

Unlike the above supra-individual examples, an infra-individual
monitoring model is considered in Gamez et al. (2009). In fact, in
the context of radiotherapy, under the condition of a constant irra-
diation we have shown that using observer design, from the total
number of cells of an organ, e.g. the number of healthy cells can be
estimated. Then, applying a control model the number of healthy
cells can be controlled to a desired level by irradiation as control.

As for the mathematical (methodological) context of the
present study we mention that in Gamez et al. (2010b), dealing
with an ecological interaction chain “resource - producer - pri-
mary user -secondary consumer” we have also shown how the
monitoring problem of a more complex system can be decomposed
into the observation of certain subsystems, see also Lopez et al.
(2007a) and Molnar et al. (2012).

In addition we note that the observer design methodology can
also be applied in environmental modelling. In fact, a change in
the abiotic environment of a population system such as pollution,
can be estimated using an appropriate observer system. For an ex-
ample in case of continuous-time models see Gamez et al. (2008).
In the present paper we will also apply a similar approach to our
discrete-time model.

Unlike the above density-dependent models of ecology, a spe-
cial methodological approach was necessary for the biologically
very natural monitoring problem of population genetics, where
from the observation of frequencies of certain phenotypes we want
to recover the underlying genetic process. To cope with this prob-
lem, it was necessary to develop the above observation methodol-
ogy and mathematical tools for systems with invariant manifold. In
the basic case of population genetics, this invariant manifold is the
simplex of allele frequencies, see Varga (1992), Gamez et al. (2003),
Lépez, (2003), Lépez et al. (2003), Lopez and Gamez (2004), Lopez
et al. (2005), Lopez et al. (2008).

We emphasize that all these biological applications deal with
continuous-time (i.e. differential equation) models. For overviews
of monitoring of such systems applied to different biological situa-
tions see Varga, (2008), Varga et al. (2013) and Gamez (2012).

The dynamics of populations with non-overlapping generations,
however, can be better described by discrete-time models, see e.g.
May (1974). In Grantham and Athalye (1990), different motives are
discussed why biologist may prefer discrete-time population mod-
els to continuous-time ones. The authors also consider different
ways of time-discretization, also including control problems. In the
present work, we shall deal with observation (or monitoring) prob-
lems of a prey-predator system, based on the Euler-type time dis-
cretization of the classical Lotka-Volterra model. We emphasize
that in general, the discrete-time versions of a continuous-time dy-
namic system can display quite complex behavior such as flip bi-
furcation, Hopf bifurcation and chaos, see e.g. Grantham and Atha-
lye (1990). However, as a matter of fact, we use the well-known
Euler discretization of the classical continuous-time L-V model, but
for our purpose we do not need the knowledge on its global be-
havior, only some local properties of this discrete dynamics are re-
quired, as discussed in details in the next two sections.

The paper is organized as follows: In Section 2, the Euler
discretization of a continuous-time Lotka-Volterra prey-predator
model is introduced, with the time step size as discretization pa-
rameter. Although the corresponding approximations for different
discretization parameters are illustrated, we emphasize that we
will study the local observability of the Euler discretization, there-
fore its local consistency is also addressed. Section 3 is devoted
to the local stability analysis of the equilibria of the discrete-time
dynamics, necessary for the study of observation. In Section 4, for
the solution of the considered monitoring problem, applying the
tools of Mathematical Systems Theory, the observability and the
state estimation are established, observing either the predator or
the prey density. For the observer design we adapt the discrete-
time methodology of Sundarapandian (2002b). In Section 5, we
show how this methodology can also be applied to estimate the ef-
fect of an abiotic environmental change, using a component of the
population system as an environmental indicator. (For the impor-
tance of indicator species in ecological informatics see e.g. Reck-
nagel (2013)). A Discussion section closes the main body of the
paper. Certain mathematical details are included in the Appendix.

2. A discrete-time Lotka-Volterra model. Consistency and
invariant sets

The simplest case of a Lotka-Volterra model describes the inter-
action between a prey population and a predator population, with
the following system differential equations:

Y1 =1y1—by1y>

Y2 =—dy: + cy1ya,

where y; andy, are the densities of the prey and the predator, re-
spectively. Let us suppose that there exists an intraspecific com-
petition in both species. Then the previous differential equations
system takes the form

V1 =1y —sy3 — by1y,
Yo = —dy; — 6‘}% + CY1Y2

However, there are different motives why biologist may pre-
fer discrete-time population models to continuous-time ones, see
Grantham and Athalye (1990). As pointed out by May (1974), the
dynamics of populations with non-overlapping generations, can be
better described by discrete-time models.

In this work, applying the Euler discretization process, we shall
consider the following system of difference equations describing
the interaction between the two species:

xi(t+1) = (F+ Dxi(6) = 532 () — bxa (D)2 (6)
Xo(t+1) = (1 —d)xa(t) — ex3(t) + Exq (H)x2(t),

(2.1)

(2.2)

where § is a time step size and F=8r;§=8s;b=6b;d=
8d; é=26e; C=dc.
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Table 1

MSD for different time steps.
8 MSD
1 0.1934
0.25 0.0268
0.025 0.0026

Remark 2.1. We note that model (2.2) is more general than that
considered for stability in Raj et al. (2013), since we admit in-
traspecific competition in both species. Therefore in our illustrative
examples, for the corresponding parameters we will use the same
numerical values as in the quoted paper.

In order to apply any continuous or discrete-time model to
describe the dynamics of a population, first of all a state space
consisting of nonnegative vectors should be specified. It is well-
known that the behavior of nonlinear discrete-time dynamic sys-
tems is rather complex. Concerning the Euler discretization of a
general continuous-time Lotka-Volterra system, under conditions
on the model parameters, a positively invariant subset of the posi-
tive orthant was given in Choo (2014). Nevertheless, the conditions
needed for the construction of the invariant set, are rather implicit.
Actually, for a "not too small" invariant set a very fine discretiza-
tion (or in other terms, very small coefficients in the dynamics)
may be necessary.

In the present paper we will consider the observation problem
of a discrete-time population system near an equilibrium. Since the
observer system we construct will be local, for our purpose it will
be enough that the solution starting near enough the equilibrium,
will not leave a neighborhood of the equilibrium, contained in the
positive orthant. The latter will be guaranteed since the equilib-
rium turns out to be locally asymptotically stable. (For mathemat-
ical details of this reasoning see Lemma Al of the Appendix). A
simple simulation shows that, although the continuous-time dy-
namics (2.1) leaves the positive orthant invariant, the solutions of
its discretization remain positive only near the equilibrium.

2.1. Comparison of the continuous and discrete models

For the analysis of the behavior of the discretization, let us fix
system parameters r=0.25, s=0.1, b=0.95, d=0.55, e=0.05 and
¢=0.5.

Using the mean squared deviation

1 T
MSD = [ "Iy (6) —x(t/8)[?
t=1

as measure of approximation, calculating over time interval [0,T]
with T=120, we get better and better approximation by setting
decreasing time steps, see Table 1 and Fig. 1.

3. Stability analysis of the equilibria of a discrete-time
Lotka-Volterra dynamics

Systems (2.1) and (2.2) have the same equilibria

Eq=1(0,0), E;=(0)

_ (re+bd rc—sd
andE; = (se+bc’ se+bc)'

(3.1)

Equilibrium Ey means the extinction of both species, E; the ex-
tinction of the predator and E, the coexistence of both species. In
fact, equilibrium E; is positive, if § > £.

In order to analyze the local stability of these equilibria using
linearization, we calculate the Jacobian of the right-hand side of

system (2.2) at equilibria (3.1). From
J(x1, %) = (

(F+1) —28x; — BXZ —EX1
EXZ (1 — Cl) + 6x1 — 2éX2 ’

the Jacobian at Ej is

J@»=C€1189,

having eigenvalues A{ =7+1 and A =1- d. Obviously Al > 1,
implying instability of the equilibrium point Ej.
The Jacobian at E; is

1-7 —br
Ey) = s 4,
JED ( 0 1+6g_d>
its eigenvalues are Ay =1—fand A, =1+¢L - d. Condition [A1, 2l
< 1 is satisfied, if 0 <7 <2 and d -2 < &< d, implying asymp-
totic stability. Hence, under the latter conditions, starting from

nearby states, the predator goes extinct.
At the positive equilibrium E, the Jacobian is

.re + bd ~bd +er
“Shetes _bbc+es
J(E2) = rc—sd _rc—sd (3:2)
c—— 1-6——
bc +es bc +es

Hence, for the characteristic polynomial of J(E,), we get p(A) =
A2+ p1A + py, where

_ b(=2c+dsd) +e(crd 4+ (=2 —dd +18)s)
p1= bc +es ’

_ —e(=1+718)(s — crd +dsd) + b(c + cdrs? — dss(1 + ds))
N bc +es ’

We shall use the following stability criterion (Elaydi, 2005):
A necessary and sufficient condition for asymptotic stability is

@ 14+pi+p2>0,
(i) 1-pi1+p2>0,
(iliy py <1.

(3.3)

Let us check these conditions:
(i) 14 py + py = LT 0, if cr > ds
(which is also required for the positivity of equilibrium E,).

.. -2 —(2+d, b(c(4+dré2)—ds§ (2+d5
(i) 1= py+py = (=2+r8)e(crd—(2+ 8)sb):+e(sc( +drd4)—ds§ (2+ ))>0Y

ifcrd <ds§+s5,0<8<1and0<r<1
(Here condition cr > ds is also used.)
(iii) 1 — py < 1 also holds under the conditions posed in (i) and

(ii).

Summing up the above, we have the following theorem.
Theorem 3.1. If the model parameters satisfy conditions

cr>ds, cré <dsé+s,0<éd<1and0<r<1, (34)

then equilibrium E, is positive and asymptotically stable. (In bio-
logical terms, there is a stable coexistence of both species.)

Remark 3.1. We note that if condition (3.4) holds, but the suffi-
cient condition for the asymptotic stability of E; does not, then it
really happens that E, is asymptotically stable, but E; is not, see
Fig. 2(a). Fig. 2(b) shows that the opposite behavior can also oc-
cur, when (3.4) does not hold: there is no stable coexistence (even
there is no positive equilibrium), but asymptotic stability of E; is
observed.

In the rest of this work we suppose that condition (3.4) on the
parameters holds to guarantee the asymptotic stability of the pos-
itive equilibrium E; given by (3.1).
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Fig. 1. Discrete-time approximation of the solution of system (2.1), with different time steps §.
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Fig. 2. Different stability behavior of different equilibria in system (2.2). a) For r=0.25, s=0.1, b=0.95, d=0.55, e=0.05, c=0.5 and §=0.25, (3.4) holds, E, is a repulsor E,
is an attractor. b) Changing only parameter c to 0.2, (3.4) does not hold, and we get a different picture: E, is a repulsor E; is an attractor.

4. Observability analysis and observer design

In this section we summarize the methodology we will apply to
the monitoring problem of a prey-predator system described by a
discrete-time model. This problem consists in recovering the com-
plete state process from the observation of one of its components
(in our case either the prey or the predator density). In order to
apply the tools of Mathematical Systems Theory, let us consider a
general discrete-time dynamics

xt+1)=fx(@)), (t=0,1,..), (4.1)
and an observation equation
w(t) = h(x(t)), (t=0,1,...), (4.2)

where f: D — D (with an open set DcR") and h: D — RP are
smooth (continuously differentiable) functions, x* € D is an equi-
librium for dynamics (4.1): f(x*) = x*, furthermore h(x*) = 0. Se-
quence w(t) (t=0, 1,...),is called the observation, correspond-
ing to the state process x(t) (t=0, 1,...),

Remark 4.1. Observation Eq. (4.2) expresses the fact that instead
of the state sequence x(t) (t=0, 1,...),we can observe only a
transform of it. In the case of a system of several interacting pop-
ulations, when the components of the state vector x(t) are the
densities of the single populations, function h may be a projec-
tion that with every vector associates certain components of it, e.g.
h(x) = x,. More precisely, to satisfy the technical condition the de-
viation of the density of population 2 from its equilibrium value
should be considered: h(x) = x, — x3. (Then w(t) = x,(t) — x3.) An-

other example may be the undistinguished observation of popula-
tions 1 and 2: h(x) = X +x3 — (X} +X3).

Definition 4.1. Observation system (4.1)-(4.2) is said to be lo-
cally observable near equilibrium x* over the discrete time interval
{0, 1,..., n—1} if in a certain neighborhood of x* from the obser-
vation w(t) the state process x(t) (t=0, 1,...,n—1) (or equiva-
lently,x(0)) can be uniquely recovered. (A more formal definition of
local observability is given in the Appendix, see Definition Al.)

In the next section, we will find sufficient conditions for the lo-
cal observability of our system near the equilibrium of coexistence
x* = E,, in different monitoring situations, when we can only ob-
serve one species at a time, either the prey or the predator.

To this end, we will apply a linearization method analogous to
that proved for continuous-time observation systems in Lee and
Markus (1967), see Theorem A.1 of the Appendix. Local observabil-
ity, together with the stability results of the previous section will
be used for the effective estimation of the state process x(t), in the
knowledge of the observation w(t), applying the observer design
methodology we recall below from Sundarapandian (2004), in an
equivalent form, appropriate for our model analysis.

Definition 4.2. let G=h(D) and g: D x G — D be a smooth
function with g(x*, 0) = x*. The discrete-time nonlinear system de-
scribed by

z(t+1) = g(z(t), w(t)).

is called a local exponential observer for system (4.1)-(4.2), if the
composite system (4.1)-(4.3) satisfies the following two require-

t=01,...), (4.3)
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ments: There exists a neighborhood G(x*) of x*such that for all
x(0), z(0) € G(x*)

(A) x(0) =z(0) implies x(t) =z(t), (t=1, 2,...).
(B) z(t) — x(t) tends to zero exponentially, as t — oo.

Let us consider the linearization of observation system (4.1)-
(4.2) at equilibrium x*, defining

A= f'(x), C=hx. (4.4)

For the construction of the observer, we will use the following
theorem:

Theorem 4.1. (Sundarapandian, 2004) Suppose that system dy-
namics (4.1) is Lyapunov stable at equilibrium x*, and for some n
x p matrix H, all the eigenvalues of A — HC lie inside the open unit
disc of the complex plane. Then system

z(t+1) = f(z(t)) + Hw(t) — h(z(t))] (¢ =0, 1,...)
is a local exponential observer for system (4.1)-(4.2). If the follow-
ing rank condition holds:

C

CA
rank . =n,

(4.5)

(4.6)
car-!

then there always exists a local exponential observer of form (4.5)
for system (4.1)-(4.2).

4.1. Observation of the predator

In this subsection we consider the case when we observe the
density of the predator population, and we want to estimate the
prey population in function of time. We note that in the typical
situation of biological pest control, where the released agent is a
predator, it is normal to suppose that the density of the latter is
observed. (In fact, its initial value is exactly known.)

In order to analyze the observability of model (2.2), we shall
observe the density predator in function of time. Therefore, the ob-
servation equation corresponding to (4.2) is

w(t) =h(x;(£), x(t)) =x(t) —=x; (=0, 1,...), (4.7)

where x; is the second coordinate of the positive equilibrium point
E,, that is the predator density at the asymptotically stable equilib-
rium. (For technical reason the observed quantity is the deviation
of the number of the predator species at stage t from its equilib-
rium value.)

Linearizing observation system (2.2)-(4.7), we get

A =J(Ey) givenin (3.2),andC = h'(E;) = (0 1).

Now, for the linearized system we have rank[C|CA]T =2, if
chlﬁ # 0. Since all parameters are positive and 7 > £ has already
been supposed to guarantee the positivity of equilibrium E,, this
rank condition is verified. Therefore, the rank condition of Theorem
A1 of the Appendix is fulfilled, so we obtain that observation sys-
tem (2.2)-(4.6) is locally observable near the positive equilibrium.
This means that the whole system state can be uniquely recovered,

observing only the predator species. Summing up, we have

Theorem 4.2. Under parameter conditions (3.4), observation sys-
tem (2.2)-(4.7) is locally observable near the asymptotically stable
positive equilibrium E,.

To construct an observer system for observation system (2.2)-
(4.7), we shall suppose that condition (3.4) holds. In order to apply
Theorem 4.1, we have only to find a matrix H such that A— HC is
convergent. This is illustrated by the following example.

16 T T

I I L
0 10 2 30 40 50 60
Time

Fig. 3. Estimation of the state process from the observation of the predator density.

Example 4.1. We consider the prey-predator system (2.2) with
system parameters of Section 2.1: r=0.25, s=0.1, b=0.95, d=0.55,
e=0.05 and ¢=0.5, and time step size 6=0.25:

X1(t + 1) = (0.0625 + 1)x; (t) — 0.025x2(t) — 0.2375%; (), (t)
Xa(t +1) = (1= 0.1375)x,(t) — 0.0125x2(t) + 0.125x; (£)x, (t),

(4.8)

observing the predator species with observation equation given in
(4.7).

Now conditions (3.4) hold. Therefore this system has an asymp-
totically stable positive equilibriumE, = (1.115, 0.146), and it is
easy to check that e.g. for matrix

()

we have that A — HC is convergent. Therefore, by Theorem 4.1, we
can construct the following observer system:

z1(t + 1) = (0.0625 + 1)z; () — 0.02522 (t) — 0.2375z (£)z(t)
+3(w(t) — h(z(1)))
Z(t+1) = (1 - 0.1375)z,(t) — 0.012523(t) + 0.125z; (t)z(t)
+(w(t) — h(z(0))).
(4.9)

In order to see how a solution of the observer estimates the so-
lution of the original system, let us calculate the solution x(t) (t =
0, 1,...)of system (4.8) with initial condition x(0) = (0.8, 0.3)
near the positive equilibrium, to be considered “unknown”. In Fig.
3 we can see how the solution z(t) (t =0, 1,...) of the observer
system (4.9), calculated with the observation w(t) = h(x(t))(t =
0, 1,...) and with a nearby initial condition z(0) = (1, 0.5), ap-
proximates the “unknown” solution of the original system.

4.2. Observation of the prey

In the case when the prey is easier to observe, we can consider
an observation function defined by

w(t) = h(x1 (), x2(t)) = X1 (t) — X7, (4.10)

associated with the same dynamics (2.2), with the same parameter
values as in the previous subsection, where xj is the first coordi-
nate of the positive equilibrium E,, that is the prey density at the
asymptotically stable positive equilibrium.

Now, for the linearization of observation system (2.2)-(4.10), we

obtain the Jacobian of the right-hand side of (2.2) at the positive
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equilibrium point:
A=](E)
described in (3.2), and the observation matrix
C=Hh(E)=(1 0).
Now, condition 7 >32 again implies rank condition

rank[C|CA]T = 2. Hence, by Theorem A1l of the Appendix, we
obtain

Theorem 4.2. Under parameter condition (3.4) for the asymptotic
stability of the positive equilibrium, the observation system (2.2)-
(4.10) is locally observable near the positive equilibrium Es.

Now, analogously to the previous subsection, with the same il-
lustrative system parameters as in Example 4.1, we show how to
asymptotically recover the state process from the observation of
the prey density, by constructing an observer system.

Example 4.2. We consider the same system of difference Eq.
(4.8) describing the interaction between one prey and one preda-
tor species, but now we observe the prey species as defined by the
observation Eq. (4.10). The numerical values of the system param-
eters and the time step size are the same as in Example 4.1.

As we have seen in Example 4.1, system has an asymptotically
stable positive equilibriumE; = (1.115, 0.146), and now condition
rank[C|CA]T = 2 also holds. Therefore the existence of a local expo-
nential observer is guaranteed by Theorem 4.1. Furthermore, for
the construction of a concrete observer system, it is enough to
check that e.g. with matrix

0.8
H= (-0.2)’

A —HC is a convergent matrix. Therefore, by Theorem 4.1 we
can construct the following observer system

z(t + 1) = (0.0625 + 1)z (t) — 0.02522(t) — 0.2375z (£)z(t)
+0.8(w(t) —h(z(t)))

Z(t+1) = (1 - 0.1375)z;(t) — 0.012523(t) + 0.125z (t)z(t)
—0.2(w(t) — h(z(1))).

(411)

Now we calculate the solution of system (4.8), with ini-
tial state x(0) = (0.8, 0.3), near the positive equilibrium E; =
(1.115, 0.146). This is the “unknown” solution to be estimated
from the observation of the prey density as given in (4.10). Fig.
4 shows how the solution of the observer system (4.11) with
the nearby initial condition z(0) = (1, 0.5) approximates the “un-
known” state process.

5. Monitoring of an environmental change in the
prey-predator system

5.1. The extended population system

In this section, based on the methodological background of the
previous section (see also (Sundarapandian, 2003)), we consider
the discrete-time prey-predator model (2.2) with the presence of
an unknown abiotic effect, which acts as an unknown small distur-
bance v € R, considered constant, affecting the Malthus parameter
of the prey species in the following way:

x(t+1)=(F+ 1A+ v(t))x;(t) — s‘x{(t) — 5x1 (t)x,(t)
X (t+1) = (1 - d)xa(t) — ex3(t) + Ex1 (£)xx(t)
v(t+1) =v(t).

It is clear that under conditions (3.4), for v small enough, not
only E, is a positive equilibrium of (2.2), but (E;,0) is an equilib-
rium of system (5.1), too.

(5.1)

0 10 20 30 40 50 80

Fig. 4. Estimation of the state process from the observation of the prey density.

For the application of the methodology of Section 2, some
mathematical considerations are necessary. First, to see the con-
sistency of model (5.1), under conditions (3.4) of Theorem 3.1, we
note that E, is asymptotically stable. Fixing a time step size 0
< 8§ <1and 0 < r < 1, asymptotic stability is robust against a
small additive change v in the Malthus parameter of the prey, and
hence the solution of the first two equations of system (5.1) for its
discretization remains positive near equilibrium E, for v(0) small
enough in module (see Appendix, Definition A1 and Lemma A1.)

For the construction of the observer, we will also need the Lya-
punov stability of equilibrium (E,,0). It is obviously the case, since
for v(0) small enough, under conditions (3.4), E; is asymptotically
stable for the x-part of system (5.1), in particular, it is also Lya-
punov stable. The zero equilibrium of the third component of sys-
tem (5.1) is obviously Lyapunov stable, implying the Lyapunov sta-
bility of equilibrium (E;,0) for the extended system (5.1).

Now, for the estimation of the unknown change v it will be
enough to construct an observer for system (5.1), observing one
of the species, say the predator. Then the third coordinate of the
solution of the observer will tend to the unknown value of v.

5.2. Parameter estimation from the observation of an indicator
species

Suppose that the density of the predator is observed, i.e. the
observation equation is
w=hxv)=x,—x5. (5.2)

For the Jacobian of the right-hand side of (5.1) at equilibrium
(E;,0) we get

1-38x; —Bx’l‘ 0
A= & 1-éx 0], (53)
0 0 1
and from the linearization of the observation (5.2) we obtain
C=Hh(E;,0)=(0,1,0). (5.4)

Thus we obtain

C
del(CA) =&xixs > 0,

CA?

and hence the rank condition (4.6) is satisfied, which by Theorem
A1 of the Appendix implies local observability near the equilib-
rium. Thus, if this system is not far from the equilibrium, it is
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Fig. 5. Solution of system (5.5) to be estimated by the observer.

enough to observe the density of predator over a time interval, and
the prey density, in principle, can be uniquely recovered, and it is
therefore possible to estimate the value of the unknown parameter.
Furthermore, the same rank condition, together with the Lyapunov
stability of the equilibrium will guarantee the existence of a local
exponential observer for system (5.1)-(5.2), to be illustrated below:

Example 5.1. Setting the same model parameters as in the above
Section 2, we consider the following discrete-time prey-predator
model with the presence of an unknown abiotic effect v:

x1(t+1) =(0.258 + 1+ v(t))x;(t) — 0.18x3(t) — 0.958x1 (£)x,(t)
X(t+1) = (1-0.558)x,(t) — 0.058x3(t) + 0.58%1 (t)x(t)
v(t+1) =v(t),

(5.5)

where § is a time step size. For §=0.25 we have a positive equilib-
rium E; system (2.2) (see Remark 3.1), and (E,,0) is an equilibrium
of system (5.5). Suppose now that we observe the density of the
predator species, i.e. the observation equation is (5.2), and its lin-
earization is (5.4).

The general reasoning of the previous subsection also applies
to this illustrative example. In particular, observation system (5.5)-
(5.2) is not only locally observable near equilibrium (E,,0)=(1.114,
0.14, 0), but it also admits the construction of an appropriate ob-
server system near this equilibrium. For instance, let us suppose
that the disturbance parameter is v=0.1, considered “unknown”
. Let us suppose that the initial condition for the “unknown” so-
lution of the system near the equilibrium is (x;(0), x5(0), v(0)) =
(1.8,0.5,0.1). The corresponding solution of system (5.5) is shown
in Fig. 5.

Linearizing system (5.5) at equilibrium (E,, 0), for the Jacobian
of the right-hand side we get

0972 -0.265 1.114
A=0.018 0.998 0
0 0 1

For matrix K € R3*! with entries k; =2, ky = 0.9, k3 = 0.05, we
can easily check that matrix A-KC has only eigenvalues with mod-
ule less than one. Therefore, by Theorem 4.1, we can construct an
observer system:

Zi(t +1) = (0.0625 + 1+ v(t))x; (t) — 0.0258x2 (t)
—0.2375%; ()x2(t) + 2(w(t) — h(z(t)))

2y(t + 1) = (1 = 0.1375)x,(t) — 0.0125x3(t) + 0.125x; (), (t)
+0.9(w(t) — h(z(t)))

z3(t + 1) = v(t) + 0.05(w(t) — h(z(t))).

(5.6)

0 1
0 10 20 30 40 50 B0 70 80 90 100
Time

Fig. 6. Simultaneous estimation of the state process and the unknown parameter
change.

Now we take an initial value near to the above initial condi-
tion, for example, (z1(0),2,(0),2z3(0)) = (1.5,0.9,0.2). We can see
in Fig. 6, how the solution of the observer system tends to the so-
lution of the original system.

6. Conclusions and discussion
6.1. Some methodological conclusions

As it is discussed e.g. in Grantham and Athalye (1990), discrete-
time versions of classical population dynamics models can dis-
play behaviors quite different from those of the corresponding
continuous-time models. From the modelling point of view, nei-
ther the invariance of the non-negative orthant of the solutions can
be guaranteed. On the example of a discrete-time Lotka-Volterra
prey-predator model, we have shown that locally, near an equi-
librium, under simple conditions on the system parameters, local
positivity near the positive equilibrium holds.

On illustrative numerical examples we have demonstrated that
the observer design methodology developed in engineering context
for continuous-time systems, may be efficiently applied to discrete-
time models of population ecology, providing a good estimation of
the whole state process, based on its partial observation. (Some
necessary mathematical details have been also worked out.)

We can also conclude that the same methodology can be also
appropriate to the estimation of abiotic environmental changes.

6.2. Discussion of possible extensions

For the sake of simplicity, we have presented the offered
methodology in the framework of a minimal but not trivial
discrete-time population system, namely the Euler discretization of
the classical Lotka-Volterra prey-predator model with intraspecific
interaction in both populations. The proposed methodology, how-
ever, can be extended in several directions.

First of all, we note that for the generalization to multi-species
Lotka-Volterra type population systems, formally it is enough
to discretize the continuous-time systems-theoretical population-
ecological model of Varga et al. (2003). In fact, it is expected that
the reasoning of the present paper concerning local positivity, Lya-
punov stability and local observability can be adapted to the dis-
cretization of this continuous-time multi-species model, at least if
the Lotka-Volterra system is either conservative or dissipative.

A further extension of our results concerns the interspecific in-
teraction. In the Lotka-Volterra model, for the sake of simplicity,
the number of prey consumed by a predator in unit time (i.e. the
functional response) is proportional to the prey density, and the
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conversion of prey into predator is proportional to the consumed
prey (providing the numerical response), for these concepts see
e.g. Holling (1959) and Solomon (1949). Our approach can also be
applied to the case of more general functional and numerical re-
sponses.

Finally, an extension is also possible concerning the estimation
of environmental effects on the biological parameters of the pop-
ulation system. Abiotic changes like pollution may affect not only
Malthus parameters, but also interaction coefficients, see e.g. Grag-
nani (2002). Our approach also applies to the latter situation. Fur-
thermore, suppose that in the abiotic environment there is a con-
tinuous change obeying a known dynamic law (exosystem), which
affects certain parameters of the population system model. This
abiotic effect may be e.g. pollution produced by an industrial plant,
a periodical (seasonal) change of temperature, or a monotonous in-
crease of the mean temperature due to global warming, etc. To the
corresponding discrete-time population model extended with the
dynamics of the exosystem, our monitoring approach may also be
applied. For the mathematical background of the observer design
for discrete-time systems with exosystem we refer to Sundarapan-
dian (2004).

Appendix

Let n be a positive integer, n> 1, f: R" — R" an arbitrary func-
tion, and consider the discrete-time system

x(t+1)=fx@®) (t=0,1,...). (A.0)

Definition A.1. System (A.O) is said to be locally positive at x*
R", x* > 0, if there exists § > 0 such that

x(0) € Gs(x*) = x(t) > 0(t = 1,2,...).

Suppose that x* ¢ R" x* > 0 is an equilibrium for dynamics
(A.0): f(x*) =x*, which is asymptotically stable. This means that

(a) for every ¢ > 0 there exists a § > 0 with § < ¢, such that for
the corresponding neighborhoods G.(x*) and Gg(x*) we have

x(0) € Gg(x*) = x(t) € Ge(x*)(t =1,2,...);

(b) there exists a §; > Osuch that for every x(0) € Gz1(x*) we
have [ILTC x(t) = x*.

Using only part a), and setting the above ¢ > 0 such that
Gg(x*) c intR", with the corresponding § > 0 we obtain that

x(0) € Gs(x*) = x(t) > 0(t = 1,2,...).

Hence we obtain the following

Lemma Al. If x* > 0 is an asymptotically stable equilibrium of
system (A.0), then system (A.O) is locally positive at x*.

Let DCR" be an open set, f: D — D and h: D — RP continuously
differentiable (smooth) functions, and consider

x(t+1) = f(x(t)),(A1)

w(t) = h(x(t)), (t=0,1,...).(A2)

Suppose that x* € D is an equilibrium for dynamics (A.1),
f(x*) = x*, and h(x*) = 0.

Definition A.2. System (A.1) — (A.2) is called locally observable
(on the discrete time interval {0, 1,..., n—1}), if there exists a
neighborhood G(x*) of x* such that

x(0) e G(x*), x(t+1)=f(x(t)) (t=0,...,n—-1)
v(0) e G(x*), v(t+1)=f(w®t)) (t=0,....n-1)
hx(t)) =h@®)) (=0,...,n—1)

= x(0)

= v(0).

For the linearization of system (A.1) — (A.2), let us introduce
the Jacobians

A=f(x), C=R(x).

Now we can easily obtain a sufficient condition for local observ-
ability, which is a discrete-time analog of a similar theorem of Lee
and Markus (1967).

Theorem. Al If

C

CA

rank . =n, (A.3)

CA;1—1

then system (A.1) — (A.2) is locally observable at x*.
Proof. Introducing the (n — 1)-iteration of f,

frrl=fofo. . of,
R
(n—1) times

we have to prove that mapping

h
hof
H= .
ho fin-
is locally injective. We have
h (x*)
W (f(x)) f' (x*)

HFFE))) - fFE))f(x)
H'(x*) = .

RGN FFEC FE@D))
— —

(n—1) times (n—2) times
h (x*) C
W (x) f'(x*) CA

_|reorranser | | o

ey ) \oa

Since by condition (A.3), H'(x*) has full rank, mapping H is lo-
cally injective, implying local observability of system (A.1) — (A.2).
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