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1 Introduction

It can be observed in many papers on periodic differential equations that a
lot of hypotheses are stated in terms of the fundamental concept of average.
Unfortunately , this concept has not been satisfactorily extended to the non-
periodic case. However, several authors have come up with ingenious ways
of establishing adequate hypotheses.

As an example we cite [7], where Vance and Coddington studied the
dissipativity of the logistic equation x′ = xF (t, x) ; x ≥ 0 ; assuming the
hypothesis:

H)There exist R, T > 0 such that

∫ t+T

t
F (s.R) ds ≤ 0 ∀t ∈ R . (1.1)

Inspired in the above hypothesis, we state the following definition of upper
average

AV C (f) = inf
T>0

sup
t∈R

1

T

∫ t+T

t
f (s) ds (1.2)
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for each bounded continuous function f : R → R. See [2]
A more flexible definition of upper average could be given by taking into

account the possibility that the intervals considered are not necessarily of the
some length T. This leads us to define

BV C (f) = inf
s∈S

sup
n∈Z

1

S(n + 1)− S(n)

∫ S(n+1)

S(n)
f (s) ds (1.3)

where S is the set of all sequences s : Z → Z suchthat s(n) → ±∞ as n →
±∞ and

sup {S(n + 1)− S(n) : n ∈ Z} < +∞ .

It is clear that

BV C (f) ≤ AV C (f) . (1.4)

Another interesting example can be found in Burton and Hustson [1],
where they use the following condition in order to study the permanence of
class in predator-prey systems :

C) There exist numbers δ > 0 , α0 ∈ R and a sequence tk → +∞ such
that

1

tk

∫ α+tk

α
µ(s)ds ≥ δ ∀ k ∈ N, ∀α ≥ α0

for a bounded continuous function µ : R → R.
As we will see in Proposition 3.1 below, it is equivalent to:
D) There exist number τ, δ > 0 and α0 ∈ R such that

1

τ

∫ α+τ

α
µ(s)ds ≥ δ ∀α ≥ α0 .

This suggests the following definition for lower average:

ABH(µ) = sup
{
inf

{
1

τ

∫ α+τ

α
µ(s)ds : α ≥ α0

}
: α0 ∈ R, τ > 0

}
(1.5)

and, by analogy, also suggests the following definition for upper average
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ABH(µ) = inf
{
sup

{
1

τ

∫ α+τ

α
µ(s)ds : α ≥ α0

}
: α0 ∈ R, τ > 0

}
(1.6)

Note that ABH(µ) = −ABH(−µ).
In Tineo [5] it is defined the upper average of a bounded continuous

function f : R → R as

AT = lim
r→+∞ sup

t−s≥r

1

t− s

∫ t

s
f(σ)dσ

and the lower average as AT (f) = −AT (−f). These definitions were used to
establish the existence of ” coexistence states ” for non-autonomous compe-
tition systems of Lotka-Volterra type. They also were used in Tineo [6] in
order togeneralize to the non-periodic case a well known work of Mottoni
andSchiaffino [3] concerning periodic systems for species in competition.

More recently, Ortega and Tineo [4] and Mawhin [8] have used the aver-
ages AT (f), AT (f) to generalize some results related with the Landesman-
Lazer condition. As a matter of fact, lemma 3 of [4] leads to the follow-
ing definition of upper average AOT (f) for a bounded continuous function
f : R → R. AOT (f) is the infimun of those λ ∈ R such that f(t) ≤ λ + B′(t)
for some bounded and continuously differentiable function B : R → R.

We believe that all these averages, apparently different, are equal, at least
for a class sufficiently large in C = {f : R → R : f is continuous and bounded}.

In fact, the second section of this article is devoted to prove the following
result.

Theorem 1.1 .- BV C = AV C = AT = AOT .

In the third and last section, we will study the notion of upper average
from an axiomatic point of view. Basically, an upper average will be a sublin-
ear and monotone function A : C → R such that A(f) = f if f is constant
and A(f) = 0 if f has a bounded primitive.

2 The Proof of Theorem 1.1

The proof of this theorem requires several intermediate results.. We begin
the following proposition.
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Proposition 2.1 .- BCV (f) ≤ ACV (f) ≤ AT (f) ≤ AOT (f) for any
bounded and continuous function f : R → R.

Proof. By (1.4) we have BCV (f) ≤ ACV (f) and by definition of AT we
have

AT (f) = inf

{
sup

{
1

T

∫ s+T

s
f(t)dt : s ∈ R, T ≥ r

}
: r > 0

}

Thus, ACV (f) ≤ AT (f).
Finally, given ε > 0 there exist a bounded and continuously differentiable

function B : R → R such that f(t) ≤ ε + AOT (f) + B′(t), and hence,

1

t− s

∫ t

s
f(σ)dσ ≤ ε + AOT (f) +

B(t)−B(s)

t− s
∀t > s.

Since is bounded, there exists r > 0 such that

B(t)−B(s)

t− s
≤ ε if t− s ≥ r

and the proof follows easily.

Now, we shall show that AOT (f) ≤ BCV (f) and the proof of Theorem
1.1 will be complete. To this aim, we need five intermediate lemmas.

Lemma 2.2 .- Given a continuous functions α : [a, d] → (−∞, 0] and
a non negative real number ρ > α(d), there exists a continuous function
β : [a, d] → R such that α ≤ β ≤ ρ ; β(a) = α(a) and β(d) = ρ.

Proof.- Let L : [a, d] → R be the linear map determined by conditions
L(a) = α(a) and L(d) = ρ. Since L(d) > α(d), there exists c ∈ [a, d) such
that L(c) = α(c) and L > α on (c, d] . Now, it suffices to define β by β ≡ α
on [a, c] and β ≡ L on [c, d] .

Lemma 2.3 .- Let α : [a, c] → R be a continuous function such that α < 0
on [a, c) and α(c) = 0. Then, given a positive real number ε there exists a
continuous function β : [a, c] → (−∞, 0] such that β(a) = α(a), β(c) =
0, α ≤ β and

∫ c
a β(t)dt ≥ −ε.

Proof .- Let us fix δ ∈ (0, c− a) such that
∫ a+δ
a α(t)dt ≥ −ε. By Lemma

2.2 there exists a continuous function γ : [a, a + δ] → (−∞, 0] such that α ≤
γ on [a, a + δ] , γ(a) = α(a), and γ(a + δ) = 0. Now, we define β : [a, c] → R
by β ≡ γ on [a, a + δ] and β ≡ 0 on [a + δ, c] and the proof follows easily.
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Lemma 2.4 .- Let α : [a, b] → R be a continuous function such that∫ b
a α(t)dt ≤ 0. Then, given a positive number M ≥ max(α), there exists a con-

tinuous function β : [a, b] → R such that α ≤ β ≤ M, β(a) = α(a), β(b) =
α(b) and

∫ b
a β(t)dt = 0.

Proof .- If
∫ b
a α(t)dt = 0, it suffices to take β ≡ α. Thus, we can assume

that
∫ b
a α(t)dt < 0.

Let C0 be the space of all continuous functions β : [a, b] → R provided
with the usual sup norm and let F be the subset C0 consisting of all points
β such that α ≤ β ≤ M and

β ≡ α on {a, b} ∪ α−1 ([0,∞)) .

It is clear that F is convex and it contains α. On the other hand, the
function I : F →R ; I(β) =

∫ b
a β(t)dt ; is continuous and I(α) ≤ 0.Thus, it

suffices to find β∗ ∈ F such that I(β∗) ≥ 0.
Note that if α(a), α(b) ≥ 0, then α+ ∈ F and I(α+) ≥ 0, where α+(t) =

max{ 0 , α(t) }. So, we can assume that either α(a) < 0 or α(b) < 0. Now let
us consider the following cases and subcases.

Case 1. α+ 6 ≡0.
Subcase 1.1. α(a) < 0 ≤ α(b). In this case, there exists c ∈ (a, b]

such that α < 0 on [a, c] and α(c) = 0, and by Lemma 2.3, there exists a
continuous function γ : [a, c] → (−∞, 0] such that γ(a) = α(a), γ(c) = 0
and

∫ c
a γ(t)dt ≥ − ∫ b

a α+(t)dt = − ∫ b
0 α+(t)dt. Now, it suffices to define β∗ ≡ γ

on [a, c] and β∗ ≡ α+ on [c, b] .
Subcase 1.2. α(a) ≥ 0 > α(b). The proof of this case is similar to

Subcase 1.1.
Subcase 1.3. α(a) < 0 and α(b) < 0. Since α+ 6≡ 0,there exists c < d in

(a, b) such α < 0 on [a, c) ∪ (d, b] and α(c) = α(d) = 0. By Lemma 2.3 there
exists continuous functions γ0 : [a, c] → (−∞, 0] , γ1 : (d, b] → (−∞, 0] such
that γ0(a) = α(a), γ0(c) = γ1(d) = 0, γ1(d) = α(d),

2
∫ c

a
γ0(t)dt ≥ −

∫ b

a
α+(t)dt and 2

∫ b

d
γ1(t)dt ≥ −

∫ b

a
α+(t)dt.

To end the proof of this case, it suffices to define β∗ ≡ γ0 on [a, c] , β∗ ≡ α+

on [c, d] and β∗ ≡ γ1 on [d, b].
Case 2. α ≤ 0. Let us fix δ > 0 such that 2δ < b− a and
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2δ [M −min(α)] ≤ M(b− a).

By Lemma 2.2, there exists continuous functions γ0 : [a, a + δ] → R and
γ0 : [b − δ, b] → R such that γ0(a) = α(a), γ0(a + δ) = γ1(b − δ) = M,
γ1(b) = α(b), α ≤ γ0 ≤ M on [a, a + δ] and α ≤ γ1 ≤ M on [b− δ, b]. To end
the proof it suffices to define β∗ ≡ γ0 on [a, a + δ] , β∗ ≡ M on [a + δ, b− δ]
and β∗ ≡ γ1 on [b− δ, b] .

Lemma 2.5 .- Let φ : R → R be a bounded above continuous function
and suppose that there exists S∈ S such that

∫ S(n+1)

S(n)
φ (t) dt ≤ 0 ∀n ∈ Z.

Then, there exists a bounded and continuously differentiable function B :
R → R such that φ (t) ≤ B′(t) for all t ∈ R.

Proof . If M := max(φ) ≤ 0, it suffices to take B ≡ 0. So, we can assume
M > 0.

Let us fix n ∈ Z. By Lemma 2.4, there exists a continuous function
βn : [S(n), S(n + 1)] → R such that βn(S(n)) = φ(S(n)), βn(S(n + 1)) =
φ(S(n + 1)), φ ≤ βn ≤ M on [S(n), S(n + 1)] and

∫ S(n+1)

S(n)
βn(t)dt = 0. (2.1)

Now, it is easy to show that the function β : R → R defined by β ≡ βn on
[S(n), S(n + 1)] , is continuous and φ ≤ β ≤ M.

To end the proof it suffices to show that the function B(t) =
∫ t
S(0) β(s)ds

is bounded. To this aim, let us first remark that for each t ∈ R there exists a
unique n ∈ Z such that S(n) ≤ t < S(n+1). In this case, we write [t] = S(n)
and by (2.1) ,

B(t) =
∫ t

[t]
β(s)ds. (2.2)

Assume now that there exists a sequence {tn} in R such that |B(tk)| → ∞
as k → ∞, then |tk| → ∞, since B is continuous. On the other hand, by
(2.2) , there exists σk ∈ [[tk] , tk] such that
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B(tk) = (tk − [tk])β (σk) , (2.3)

and hence, |β(σk)| → ∞ as k → ∞, since {tk − [tk]} is bounded and non
negative sequence. But β ≤ M and so, β(σk) → −∞. From this,

B(tk) → −∞. (2.4)

Given t ∈ R, we write (t) = S(n + 1) if [t] = S(n). Since
∫ (t)
[t] β(s)ds = 0

and (2.2) holds, we have

B(t) = −
∫ [t]

t
β(s)ds

and hence, B(tk) = −([tk]−tk)β(sk) for some sk ∈ [tk, [tk]] . By (2.4) , β(sk) →
+∞ since {[tk]− tk} is bounded sequence. This contradicts the fact that β
is bounded above and the proof is complete.

Using Lemma 2.5, it is easy to show that AOT (f) ≤ BV C(f) and the
proof of Theorem 1.1 is complete.

3 Axiomatic

In this section, C denotes the space of all bounded continuous functions
f : R → R provided with the usual sup norm ‖f‖∞ = sup {|f(t)| : t ∈ R} .

We identify R with the subset of C consisting of all constant functions.
We say that a function A : C →R is an upper average if:
A1) A(f + g) ≤ A(f) +A(g).
A2) A(λf) = λA(f) for all λ ∈ (0,∞).
A3) A(f) ≤ A(g) if f ≤ g.
A4)A(f) = 0 if f has a bounded primitive.
A5) A(λ) = λ if λ ∈ R.
It is easy to show that AT is upper average and by the results in [2], the

same holds for AV C . We shall see that ABH is also upper average.

Proposition 3.1 .- Suppose that there exists τ > 0, µ ∈ R, s0 ≥ −∞
such that

1

τ

∫ s+τ

s
f(σ)dσ ≤ µ ∀ s ≥ s0.
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Then

1

kτ

∫ s+kτ

s
f(σ)dσ ≤ µ ∀ s ≥ s0, ∀ k ∈ N.

Proof. For all integers k ≥ 1 we have,

∫ s+kτ

s
f(σ)dσ =

∫ s+τ

s
f(σ)dσ +

∫ s+2τ

s+τ
f(σ)dσ + ... +

∫ s+kτ

s+kτ−τ
f(σ)dσ

and the proof follows easily.

Proposition 3.2 .- ABH(f + g) ≤ ABH(f) + ABH(g).

Proof. Given ε > 0 there exists τ > 0 and s0 ≥ −∞ such that

1

τ

∫ s+τ

s
f(σ)dσ ≤ ε

2
+ ABH(f) ∀s > s0.

On the other hand

1

τ + s

∫ s+τ+δ

s
f(σ)dσ −→ 1

τ

∫ s+τ

s
f(σ)dσ as δ → 0

uniformly on s ∈ R, and hence, there exists a positive rational number T
such that

1

T

∫ s+T

s
f(σ)dσ ≤ ε + ABH(f) ∀ s > s0.

From this and Proposition 3.1, then exists on integer N ≥ 1such that

1

N

∫ s+N

s
f(σ)dσ ≤ ε + ABH(f) ∀ s > s0.

Analogously, there exists s1 ≥ −∞ and an integer P ≥ 1 such that

1

P

∫ s+P

s
g(σ)dσ ≤ ε + ABH(g) ∀ s > s1,

and by Proposition 7.1 once again,

1

NP

∫ s+PN

s
f(σ)dσ ≤ ε + ABH(f) and

1

NP

∫ s+PN

s
g(σ)dσ ≤ ε + ABH(g)
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if s > max {s0, s1} . Therefore:

1

NP

∫ s+PN

s
[f(σ) + g(σ)] dσ ≤ 2ε + ABH(f) + ABH(g)

for all s > max {s0, s1} , and the proof is complete.
Using Proposition 3.2 it is easy to show that ABH is an upper average. In

the following, A : C → R denotes an upper average. The function A : C → R
given by A−(f) = −A(−f) will be referred as the loweraverage associated to
A.

Proposition 3.3 .- AT ≤ A ≤ A ≤ AT .

Proof. Let us fix f ∈ C and β > AT (f). By lemma 3 of [4] , there exists
a bounded and continuouslydifferentiable function B : R → R such that

f(t) ≤ β + B′(t) ∀ t ∈ R,

and by A1)−A5),

A(f) ≤ A(β + B′) ≤ A(β) + A(B′) = A(β) = β.

From this, A ≤ AT .
On the other hand

A(f) +A(−f) ≥ A(f − f) = A(0) = 0

and hence A(f) ≥ A(f). The rest of the proof follows easily since AT (f) =
−AT (−f).

Let F =
{
f ∈ C : A−T (f) = AT (f)

}
. It is clear that F is the subspace

of C consisting of all points f ∈ C such that

1

T

∫ s+T

s
f(σ)dσ → λ as T → +∞ uniformly on s ∈ R

for some λ ∈ R. In fact, λ = AT (f) = AT (f). As a corollary of Proposition
3.3 we have:

Corollary 3.4 .- If f ∈ F then

A(f) = lim
T→+∞

1

T

∫ s+T

s
f(σ)dσ, uniformly on s ∈ R.
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Remark 3.5.- F is a closed linear subspace of C which contains all
periodic functions. In particular, it contains the space of all almost periodic
functions. F also contains the space Bp of all points f ∈ C having a bounded
primitive and the space L of all points f ∈ C such that f(t) has a finite limit
λ as |t| → +∞. In this case, A(f) = A(f) = λ.

Let us define E =
{
f ∈ C : A(f) = A(f)

}
. By Proposition 3.3 we have

R ⊂ F ⊂ E . (3.1)

Proposition 3.6 .- a) A(f + g) = A(f) + A(g) if g ∈ E .

b)
∣∣∣A(f)− A(g)

∣∣∣ ≤ ‖f − g‖∞ .

c) E is a closed linear subspace of C .

Proof. Using A1) we have

A(f) = A(f+g−g) ≤ A(f+g)+A(−g) = A(f+g)−A−(g) = A(f+g)−A(g)

and the proof of a) follows from A1).
To show b), let us write ε = ‖f − g‖∞ , then g − ε ≤ f ≤ g + ε and the

proof follow from part a), A1) and A5).
Let us fix f, g ∈ E . Using part a) we have

−A(f) = A(−f) = A(−f + g − g) = A(−f − g) +A(g)

and hence, A(−f − g) = −A(f)−A(g) = −A(f + g). Thus, f + g ∈ E . The
rest of proof is similar.

Proposition 3.7 .- Suppose that
A6) A(f) = sup(f) if f−1(sup(f)) contains a sequence of intervals

{[an, bn]}
such that bn − an → +∞.

If f ∈ C and f(t) has a finite limit µ+ ( resp. µ−) as t→ +∞ ( resp. t→
−∞). Then,

A(f) = max {µ+ , µ−} .

Proof. If µ+ = µ−The result follows from Remark 3.5 and (3.1) . Thus,
we can suppose that µ+ > µ−.
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Let φ ∈ C be defined by φ(t) ≡ µ+ in [1, +∞) , φ(t) ≡ µ− in (−∞,−1]
and φ(t) is linear in [−1, 1] .

Then f(t)− φ(t) → 0 as |t| → ∞, and hence

A(f − φ) = A(φ− f) = 0.

On the other hand

A(f) = A(f − φ− φ) ≤ A(f − φ) + A(φ) = A(φ)

and by the same argument, A(φ) ≤ A(f). From this and A6), A(f) =
A(φ) = µ+ , and the proof is complete.

Remark .- AT is an upper average that satisfies A6). However ABH does
not satisfies this condition as the following example shows.

Let f : R → [1, 2] be a continuous function such that f ≡ 1 on [1,∞) and
f ≡ 2 on (−∞,−1] . It is easy to show that ABH (f) = 1, and so, ABH does
not satisfies A6).
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