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Abstract

In this paper we study persistence in the mean for n-competing popula-
tions which are affected by some perturbation due to toxic effects.
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tion models.

0 Introduction

The problem of estimating qualitatively the effects of a toxicant on a popu-
lation by mathematical models has been studied by several authors [ Hallam
(1986), De Luna (1987), Huaping and Zhien (1991) ], obtaining a survival
threshold distinguishing between persistence in the mean and extinction of a
single population. This problem includes the action of pesticide that check
the growth of a population plague in a forming.

In this paper we study persistence, extinction and persistence in the mean
for a system of n-competing species affected by the action of a toxic.

In the first section, we study the case of a single specie, getting accurate
results about the persistence in the mean. We also give a specific example
where the persistence in the mean holds, but the system is not persistent.
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In the second section, we use an idea in A. Tineo [5] to obtain a re-
sult about the persistence in the mean of the following n-competing species
problem.

x′i = xi


ri0 − ri1c0(t) −

n∑

j=1

bij xj


 ,

where c0(t) represents an exogenous factor (toxicant, artificial predator , pes-

ticide,...) that can affect the demographic parameters ; ri0 is the intrinsic
growth rate of the i th population in the absence of toxicant; ri1 the dose-
response parameter of species i to the organisms..

In the case n=2, we also use an argument in Ahmad- Lazer [1], to study
the extinction of one specie.

1 The Logistic Equation

In this section we study extinction and persistence in the mean [3] for the
following logistic equation,

x′ = x [a(t)− bx] (1.1)

where a : [0,∞) → R is bounded and continuous, and b > 0 is constant.

We recall that (1.1) is persistent in the mean if:

lim inf
t→+∞

1

t

∫ t

0
x(s)ds > 0 ,

for any positive solution x(t) of (1.1).
We say that a positive solution x(t) of (1.1) goes to extinction if

x(t) → 0 as t → +∞.
We shall use the following notations:
Given a bounded function g : [0, +∞) → R , we define,

g∗ = lim sup
t→+∞

g(t) ; g∗ = lim inf
t→+∞ g(t) ,

and given bounded continuous function

2



f : (0, +∞) → R ,we define,

〈f〉 (t) =
1

t

∫ t

0
f(s)ds .

In this paper we shall use several times the following result in [4].

Lemma 1.1 .- Let f ∈ C
[
R+, R0

+

]
; R+ := [0, +∞) , R0

+ := (0, +∞) .

a) If there exist positive constants λ, λ0, t0 such that:

ln f(t) ≤ λt− λ0

∫ t

0
f(s)ds for all t ≥ t0 =⇒ 〈f〉∗ ≤ λ/λ0

b) If there exist positive constants γ, γ0, t1 such that:

ln f(t) ≥ γt− γ0

∫ t

0
f(s)ds for all t ≥ t1 =⇒ 〈f〉∗ ≥ γ/γ0

Actually only part a) of the lemma is proved in [4] . But the proof of
b) can be obtained by the same arguments in that paper, by reversing the
corresponding inequalities.

Let x be a solution of (1.1) such that x(0) > 0. It is easy to show that x
is defined and bounded in [0,∞) , moreover by theorem 2 of [3] we obtain.

Proposition 1.2 .- 〈x〉∗ > 0 if 〈a〉∗ > 0 and x∗ = 0 if 〈a〉∗ < 0.

In Proposition 1.3 and Remark 1.4 below, we obtain a more precise esti-
mating for 〈x〉∗ and 〈x〉∗ .

Proposition 1.3 .- If 〈a〉∗ > 0 then 〈x〉∗ = b−1 〈a〉∗ .
Proof. By (1.1) weobtain,

〈a〉 (t) = b 〈x〉 (t) +
1

t
ln

x(t)

x(0)
for all t > 0 . (1.2)

Since x is bounded on [0, +∞) it follows

lim sup
t→∞

1

t
ln

x(t)

x(0)
≤ 0,

and using (1.2) we have,

〈a〉∗ ≤ b 〈x〉∗ . (1.3)
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On the other hand, given µ > 〈a〉∗ ,there exists t0 > 0 such that 〈a〉 (t) ≤
µ for all t ≥ t0 , and by (1.2) ,

1

t
ln

x(t)

x(0)
≤ µ − b 〈x〉 (t) for all t ≥ t0.

From Lemma 1.1, 〈x〉∗ ≤ µ /b , and consequently, b 〈x〉∗ ≤ 〈a〉∗ .
The proof follows now from (1.3) .

2

Remark 1.4 .- Using Lemma 1.1 b) in the previous proposition, we also
obtain

b 〈x〉∗ ≥ 〈a〉∗ .

In particular (1.1) is permanentin mean if 〈a〉∗ > 0.
We recall that (1.1) is permanent in the mean if there exists m > 0 such

that 〈x〉∗ ≥ m for any positive solution x of (1.1) .
Note also that if 〈a〉∗ = 〈a〉∗ > 0, then 〈x〉∗ = 〈x〉∗ > 0, for any positive

solution of (1.1) .
In the following example we exhibit a logistic equation which is permanent

in mean but is not persistent.

Example.- There exists a continuous function a : [0, +∞) → [0, 1] and a
sequence tn → +∞ (tn ≥ 0) such that.

lim
t→+∞

1

t

∫ t

0
a(s)ds =

1

2
(1.4)

lim
tn→+∞x(tn) = 0

for any positive solution x(t) of the following logistic equation.

x′ = x [a(t)− x] (1.5)

Proof. Given an interval I = [α, β] such that β − α > 2 wedefine
aI : I → [0, 1] by

aI(t) =





t− α if α ≤ t ≤ α + 1
1 if α + 1 ≤ t ≤ α + l + 1

α + l + 2− t if α + l + 1 ≤ t ≤ α + l + 2
0 if α + l + 2 ≤ t ≤ β
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where 2l = β − α− 2.
For each n ∈ N , let us define In = [tn−1, tn] := [ (n− 1) (n + 2) , n (n + 3) ]

and a(t) = aIn(t) if t ∈ In. Evidently a : [0, +∞) → [0, 1] is a well defined
continuous function, and by induction it is easy to show that

〈a〉 (tn) =
1

2
for all n ∈ N.

On the other hand we have:

0 ≤ 1

2
− 〈a〉 (t) ≤ 1

2tn
if tn ≤ t ≤ tn + 1,

0 ≤ 〈a〉 (t)− 1

2
≤ 1 + n

2 (tn + n)
if tn + 1 ≤ t ≤ tn+1,

and the proof of (1.4) is complete
Let x be a solution of (1.5) such that x(0) > 0. In [tn+1 − n, tn+1] we

have a ≡ 0 , and hence x′ = −x2 in this interval. That is ,
(

1
x

)′
= −1 on

[tn+1 − n, tn+1] , and writing ξn = x (tn+1 − n) we have,

x(tn+1) =
1

n + 1
ξn

<
1

n
→ 0 as n → +∞

2

2 Persistence in the Mean for some Compet-

itive Systems

Let us consider the n- competing systems ; n ≥ 2 ;

x′i = xi


ai(t)−

n∑

j=1

bij xj


 , (2.1)

where ai : [0, +∞) → R is a bounded continuous function and bij is a
positive constant. It is easy to show that if x = (x1, ..., xn) is a solution
of (2.1) and x(0) > 0 then x is defined and bounded on [0,∞) .
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Theorem 2.1 .- Assume that for some 1 ≤ i ≤ n,

〈ai〉∗ >
∑

j∈Ji

bij
〈aj〉∗
bjj

(2.2)

where Ji = {j = 1, 2, ..., n : i 6= j} . Then,

bii 〈xi〉∗ ≥ 〈ai〉∗ −
∑

j∈Ji

bij

bjj

〈aj〉∗ ,

for any positive solution (x1, ..., xn) of (2.1) . In particular, if (2.2) holds for
alli = 1, ..., n, then (2.1) is permanent in the mean.

Proof. Let Xj be the solutionof

X ′ = X [aj(t)− bjjX] X(0) = xj(0) .

We know that Xj ≥ xj on [0 , +∞) and 〈Xj〉∗ = 〈aj〉∗
bjj

. See Proposi-

tion 1.3. In particular

x′i(t) ≥ xi(t)


ai(t)− biixi(t)−

∑

j∈Ji

bijXj(t)


 .

That is, xi is a supersolution of the system

y′ = y [ηi − biiy] (2.3)

where ηi := ai(t)− ∑
j∈Ji

bijXj(t) . Note also that

〈ηi〉∗ ≥ 〈ai〉∗ −
∑

j∈Ji

bij 〈Xj〉∗ = 〈ai〉∗ −
∑

j∈Ji

bij
〈aj〉∗
bjj

and by (2.2) 〈ηi〉∗ > 0 .From this , if y denotes the solution of (2.3) deter-
mined by the initial condition y(0) = xi(0) ,we have xi(t) ≥ y(t) and the
proof follows from Remark 1.4 .

2

Theorem 2.2 .- Assume that 〈ai〉∗ = 〈ai〉∗ and that (2.2) hold for all
i = 1, ...n.
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Then there exists p ∈ Rn ; p > 0 ; such that 〈x〉 (t) → p as t → +∞ for
all positive solutions x of (2.1).

Proof. Let us fix i = 1, 2, ..., n and 0 < ε < min {〈ai〉∗ : 1 ≤ i ≤ n} . (Note
that by (2.2) , 〈ai〉∗ > 0 for all i ). We knowthat ,

1

t
ln

xi(t)

xi(0)
= 〈ai〉 (t)− bii 〈xi〉 (t)−

∑

j∈Ji

bij 〈xj〉 (t)

and so, there exists t0 > 0 such that

1

t
ln

xi(t)

xi(0)
≥ 〈ai〉∗ − ε− biixi(0)

〈xi〉 (t)
xi(0)

− ∑

j∈Ji

bij (〈xj〉∗ + ε ) for all t ≥ t0.

From this and Lemma 1.1 , it follows

〈xi〉∗ ≥
〈ai〉∗ − ε− ∑

j∈Ji

bij (〈xj〉∗ + ε)

bii

and letting ε → 0+, we obtain,

bii 〈xi〉∗ +
∑

j∈Ji

bij 〈xj〉∗ ≥ 〈ai〉∗ . (2.4)

Similarly,

bii 〈xi〉∗ +
∑

j∈Ji

bij 〈xj〉∗ ≤ 〈ai〉∗ . (2.5)

Since 〈ai〉∗ = 〈ai〉∗we have

∑

j∈Ji

bij

(
〈xj〉∗ − 〈xj〉∗

)
≥ bii (〈xi〉∗ − 〈xi〉∗) .

Following [5] pag. 13 , we define wi := bii (〈xi〉∗ − 〈xi〉∗) , and fix k =
1, ..., n such that

wk

αk

≥ max
j

{
wj

αj

: j = 1, ..., n

}
. (2.6)

Since wi ≤ ∑
i∈Ji

bij

bjj
wj for all i then , by (2.6) ,
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wk ≤
∑

j∈Jk

bkj

bjj

wj ≤
∑

j∈Jk

bkj

bjj

αj
wk

αk

,

and hence , 
αk −

∑

j∈Jk

bkj

bjj

αj


 wk ≤ 0 ,

so , wk = 0, and by (2.6) , 〈xj〉∗ = 〈xj〉∗ for all j = 1, ..., n .
Let us define pi = 〈xi〉∗ = 〈xi〉∗ . By (2.4) − (2.5) , we conclude that

p = (p1, ..., pn) is the solution of linear system,

n∑

j=1

bijxj = 〈ai〉∗ ,

and the proof is complete
2

Using an idea in proposition 1.4 of [1]; we obtain .

Theorem 2.3 .- Suppose n = 2 and 〈ai〉∗ > 0 for i = 1, 2 . If ,

b22 〈a1〉∗ > b12 〈a2〉∗

b11 〈a2〉∗ ≤ b21 〈a1〉∗ (2.7)

Then ,

〈x1〉∗ ≥
〈a1〉∗
b11

and 〈x2〉∗ = 0,

for any positive solution (x1, x2) of (2.1) .
Proof. By Theorem 2.1,

b11 〈x1〉∗ ≥ 〈a1〉∗ −
b12

b22

〈a2〉∗ > 0 ,

and by the arguments in Theorem 2.2 , we have

〈a1〉∗ ≤ b11 〈x1〉∗ + b12 〈x2〉∗ (2.8)
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〈a2〉∗ ≥ b21 〈x1〉∗ + b22 〈x2〉∗ .

From this ,

(b11b22 − b12b21) 〈x1〉∗ ≥ b22 〈a1〉∗ − b12 〈a2〉∗ > 0 (2.9)

(b11b22 − b12b21) 〈x2〉∗ ≤ b11 〈a2〉∗ − b21 〈a1〉∗ ≤ 0 (2.10)

By (2.9) 0 < b11b22− b12b21 and by (2.10) 〈x2〉∗ = 0. The proof follows
now from (2.8).

2

Remark.- If in (2.7) ,we replace ≤ by < , then x2(t) → 0 as t → +∞.
Proof. From the equation

x′2 = x2 [a2 − b21x1 − b22x2] ,

we obtain

lim sup
t→+∞

1

t
ln

x2(t)

x2(0)
≤ 〈a2〉∗ − b21 〈x1〉∗ − b22 〈x2〉∗ ≤ 〈a2〉∗ − b21 〈x1〉∗ ,

and by (2.8) , 〈x1〉∗ ≥ 〈a1〉∗
b11

. Thus ,

lim sup
t→+∞

1

t
ln

x2(t)

x2(0)
≤ 〈a2〉∗ − b21

b11

〈a1〉∗ < 0 ,

and the proof follows easily.
2
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