Persistence in the Mean of Some Competitive Systems

M. Gámez and R. Carreño

Departamento de Estadística y Matemática Aplicada.

Universidad de Almería. España.

1 de Noviembre 1997

Abstract

In this paper we study persistence in the mean for n-competing populations which are affected by some perturbation due to toxic effects.

Key words. Persistence in the mean, extinction, toxic effects, population models.

0 Introduction

The problem of estimating qualitatively the effects of a toxicant on a population by mathematical models has been studied by several authors [Hallam (1986), De Luna (1987), Huaping and Zhien (1991)], obtaining a survival threshold distinguishing between persistence in the mean and extinction of a single population. This problem includes the action of pesticide that check the growth of a population plague in a forming.

In this paper we study persistence, extinction and persistence in the mean for a system of n-competing species affected by the action of a toxic.

In the first section, we study the case of a single specie, getting accurate results about the persistence in the mean. We also give a specific example where the persistence in the mean holds, but the system is not persistent. In the second section, we use an idea in A. Tineo [5] to obtain a result about the persistence in the mean of the following n-competing species problem.

$$x'_{i} = x_{i} \left[r_{i0} - r_{i1}c_{0}(t) - \sum_{j=1}^{n} b_{ij} x_{j} \right] ,$$

where $c_0(t)$ represents an exogenous factor (toxicant, artificial predator, pesticide,...) that can affect the demographic parameters ; r_{i0} is the intrinsic growth rate of the *i* th population in the absence of toxicant; r_{i1} the doseresponse parameter of species *i* to the organisms.

In the case n=2, we also use an argument in Ahmad-Lazer [1], to study the extinction of one specie.

1 The Logistic Equation

In this section we study extinction and persistence in the mean [3] for the following logistic equation,

$$x' = x \left[a(t) - bx \right] \tag{1.1}$$

where $a: [0, \infty) \to R$ is bounded and continuous, and b > 0 is constant.

We recall that (1.1) is persistent in the mean if:

$$\liminf_{t \to +\infty} \frac{1}{t} \int_0^t x(s) ds > 0 ,$$

for any positive solution x(t) of (1.1).

We say that a positive solution x(t) of (1.1) goes to extinction if $x(t) \to 0$ as $t \to +\infty$.

We shall use the following notations:

Given a bounded function $g:[0,+\infty)\to R$, we define,

$$g^* = \limsup_{t \to +\infty} g(t)$$
; $g_* = \liminf_{t \to +\infty} g(t)$,

and given bounded continuous function

 $f:(0,+\infty)\to R$, we define,

$$\langle f \rangle (t) = \frac{1}{t} \int_0^t f(s) ds$$

In this paper we shall use several times the following result in [4].

Lemma 1.1 - Let $f \in C[R_+, R_+^0]$; $R_+ := [0, +\infty)$, $R_+^0 := (0, +\infty)$. a) If there exist positive constants λ, λ_0, t_0 such that:

$$\ln f(t) \le \lambda t - \lambda_0 \int_0^t f(s) ds \text{ for all } t \ge t_0 \Longrightarrow \langle f \rangle^* \le \lambda / \lambda_0$$

b) If there exist positive constants γ, γ_0, t_1 such that:

$$\ln f(t) \ge \gamma t - \gamma_0 \int_0^t f(s) ds \text{ for all } t \ge t_1 \Longrightarrow \langle f \rangle_* \ge \gamma / \gamma_0$$

Actually only part a) of the lemma is proved in [4]. But the proof of b) can be obtained by the same arguments in that paper, by reversing the corresponding inequalities.

Let x be a solution of (1.1) such that x(0) > 0. It is easy to show that x is defined and bounded in $[0, \infty)$, moreover by theorem 2 of [3] we obtain.

Proposition 1.2.- $\langle x \rangle_* > 0$ if $\langle a \rangle_* > 0$ and $x^* = 0$ if $\langle a \rangle^* < 0$.

In Proposition 1.3 and Remark 1.4 below, we obtain a more precise estimating for $\langle x \rangle_*$ and $\langle x \rangle^*$.

Proposition 1.3.- If $\langle a \rangle_* > 0$ then $\langle x \rangle^* = b^{-1} \langle a \rangle^*$. *Proof.* By (1.1) webtain,

$$\langle a \rangle (t) = b \langle x \rangle (t) + \frac{1}{t} \ln \frac{x(t)}{x(0)} \quad for \ all \ t > 0 \ .$$
 (1.2)

Since x is bounded on $[0, +\infty)$ it follows

$$\limsup_{t \to \infty} \frac{1}{t} \ln \frac{x(t)}{x(0)} \le 0,$$

and using (1.2) we have,

$$\left\langle a\right\rangle^* \le b\left\langle x\right\rangle^* \,. \tag{1.3}$$

On the other hand, given $\mu > \langle a \rangle^*$, there exists $t_0 > 0$ such that $\langle a \rangle(t) \le \mu$ for all $t \ge t_0$, and by (1.2),

$$\frac{1}{t}\ln\frac{x(t)}{x(0)} \le \mu - b\langle x \rangle(t) \quad for \ all \ t \ge t_0$$

From Lemma 1.1, $\langle x \rangle^* \leq \mu / b$, and consequently, $b \langle x \rangle^* \leq \langle a \rangle^*$. The proof follows now from (1.3).

 $\operatorname{Remark} 1.4$.- Using Lemma 1.1 b)
 in the previous proposition, we also obtain

$$b\langle x\rangle_* \ge \langle a\rangle_*$$

In particular (1.1) is permanentin mean if $\langle a \rangle_* > 0$.

We recall that (1.1) is permanent in the mean if there exists m > 0 such that $\langle x \rangle_* \ge m$ for any positive solution x of (1.1).

Note also that if $\langle a \rangle^* = \langle a \rangle_* > 0$, then $\langle x \rangle^* = \langle x \rangle_* > 0$, for any positive solution of (1.1).

In the following example we exhibit a logistic equation which is *permanent* in mean but is not persistent.

Example.- There exists a continuous function $a: [0, +\infty) \to [0, 1]$ and a sequence $t_n \to +\infty$ $(t_n \ge 0)$ such that.

$$\lim_{t \to +\infty} \frac{1}{t} \int_0^t a(s) ds = \frac{1}{2}$$
(1.4)

$$\lim_{t_n \to +\infty} x(t_n) = 0$$

for any positive solution x(t) of the following logistic equation.

$$x' = x \left[a(t) - x \right] \tag{1.5}$$

Proof. Given an interval $I = [\alpha, \beta]$ such that $\beta - \alpha > 2$ we define $a_I : I \to [0, 1]$ by

$$a_{I}(t) = \begin{cases} t - \alpha & if & \alpha \le t \le \alpha + 1\\ 1 & if & \alpha + 1 \le t \le \alpha + l + 1\\ \alpha + l + 2 - t & if & \alpha + l + 1 \le t \le \alpha + l + 2\\ 0 & if & \alpha + l + 2 \le t \le \beta \end{cases}$$

where $2l = \beta - \alpha - 2$.

For each $n \in N$, let us define $I_n = [t_{n-1}, t_n] := [(n-1)(n+2), n(n+3)]$ and $a(t) = a_{I_n}(t)$ if $t \in I_n$. Evidently $a : [0, +\infty) \to [0, 1]$ is a well defined continuous function, and by induction it is easy to show that

$$\langle a \rangle (t_n) = \frac{1}{2} \quad for \ all \ n \in N.$$

On the other hand we have:

$$0 \le \frac{1}{2} - \langle a \rangle (t) \le \frac{1}{2t_n} \quad if \quad t_n \le t \le t_n + 1,$$

$$0 \le \langle a \rangle (t) - \frac{1}{2} \le \frac{1+n}{2(t_n+n)} \quad if \quad t_n + 1 \le t \le t_{n+1},$$

and the proof of (1.4) is complete

Let x be a solution of (1.5) such that x(0) > 0. In $[t_{n+1} - n, t_{n+1}]$ we have $a \equiv 0$, and hence $x' = -x^2$ in this interval. That is, $\left(\frac{1}{x}\right)' = -1$ on $[t_{n+1} - n, t_{n+1}]$, and writing $\xi_n = x (t_{n+1} - n)$ we have,

$$x(t_{n+1}) = \frac{1}{n + \frac{1}{\xi_n}} < \frac{1}{n} \to 0 \quad as \quad n \to +\infty$$

2 Persistence in the Mean for some Competitive Systems

Let us consider the n- competing systems ; $n\geq 2$;

$$x'_{i} = x_{i} \left[a_{i}(t) - \sum_{j=1}^{n} b_{ij} x_{j} \right] , \qquad (2.1)$$

where $a_i : [0, +\infty) \to R$ is a bounded continuous function and b_{ij} is a positive constant. It is easy to show that if $x = (x_1, ..., x_n)$ is a solution of (2.1) and x(0) > 0 then x is defined and bounded on $[0, \infty)$.

Theorem 2.1 .- Assume that for some $1 \le i \le n$,

$$\langle a_i \rangle_* > \sum_{j \in J_i} b_{ij} \frac{\langle a_j \rangle^*}{b_{jj}}$$
 (2.2)

where $J_i = \{j = 1, 2, ..., n : i \neq j\}$. Then,

$$b_{ii} \langle x_i \rangle_* \ge \langle a_i \rangle_* - \sum_{j \in J_i} \frac{b_{ij}}{b_{jj}} \langle a_j \rangle^*,$$

for any positive solution $(x_1, ..., x_n)$ of (2.1). In particular, if (2.2) holds for all i = 1, ..., n, then (2.1) is permanent in the mean.

Proof. Let X_j be the solution f

$$X' = X [a_j(t) - b_{jj}X] \qquad X(0) = x_j(0).$$

We know that $X_j \ge x_j$ on $[0, +\infty)$ and $\langle X_j \rangle^* = \frac{\langle a_j \rangle^*}{b_{jj}}$. See Proposition 1.3. In particular

$$x'_i(t) \ge x_i(t) \left[a_i(t) - b_{ii}x_i(t) - \sum_{j \in J_i} b_{ij}X_j(t) \right] \,.$$

That is, x_i is a supersolution of the system

$$y' = y \left[\eta_i - b_{ii}y\right] \tag{2.3}$$

where $\eta_i := a_i(t) - \sum_{j \in J_i} b_{ij} X_j(t)$. Note also that

$$\langle \eta_i \rangle_* \ge \langle a_i \rangle_* - \sum_{j \in J_i} b_{ij} \langle X_j \rangle^* = \langle a_i \rangle_* - \sum_{j \in J_i} b_{ij} \frac{\langle a_j \rangle^*}{b_{jj}}$$

and by (2.2) $\langle \eta_i \rangle_* > 0$. From this, if y denotes the solution of (2.3) determined by the initial condition $y(0) = x_i(0)$, we have $x_i(t) \ge y(t)$ and the proof follows from Remark 1.4.

Theorem 2.2 .- Assume that $\langle a_i \rangle_* = \langle a_i \rangle^*$ and that (2.2) hold for all i = 1, ...n.

Then there exists $p \in \mathbb{R}^n$; p > 0; such that $\langle x \rangle(t) \to p$ as $t \to +\infty$ for all positive solutions x of (2.1).

Proof. Let us fix i = 1, 2, ..., n and $0 < \varepsilon < \min \{ \langle a_i \rangle_* : 1 \le i \le n \}$. (Note that by (2.2), $\langle a_i \rangle_* > 0$ for all i). We knowthat,

$$\frac{1}{t}\ln\frac{x_i(t)}{x_i(0)} = \langle a_i \rangle (t) - b_{ii} \langle x_i \rangle (t) - \sum_{j \in J_i} b_{ij} \langle x_j \rangle (t)$$

and so, there exists $t_0 > 0$ such that

$$\frac{1}{t}\ln\frac{x_i(t)}{x_i(0)} \ge \langle a_i \rangle_* - \varepsilon - b_{ii}x_i(0)\frac{\langle x_i \rangle(t)}{x_i(0)} - \sum_{j \in J_i} b_{ij}\left(\langle x_j \rangle^* + \varepsilon\right) \quad for \ all \ t \ge t_0.$$

From this and Lemma 1.1, it follows

$$\langle x_i \rangle_* \ge \frac{\langle a_i \rangle_* - \varepsilon - \sum_{j \in J_i} b_{ij} \left(\langle x_j \rangle^* + \varepsilon \right)}{b_{ii}}$$

and letting $\varepsilon \to 0^+$, we obtain,

$$b_{ii} \langle x_i \rangle_* + \sum_{j \in J_i} b_{ij} \langle x_j \rangle^* \ge \langle a_i \rangle_*$$
 (2.4)

Similarly,

$$b_{ii} \langle x_i \rangle^* + \sum_{j \in J_i} b_{ij} \langle x_j \rangle_* \le \langle a_i \rangle^*$$
 (2.5)

Since $\langle a_i \rangle_* = \langle a_i \rangle^*$ we have

$$\sum_{j \in J_i} b_{ij} \left(\left\langle x_j \right\rangle^* - \left\langle x_j \right\rangle_* \right) \ge b_{ii} \left(\left\langle x_i \right\rangle^* - \left\langle x_i \right\rangle_* \right) \,.$$

Following [5] pag. 13 , we define $w_i := b_{ii} (\langle x_i \rangle^* - \langle x_i \rangle_*)$, and fix k = 1, ..., n such that

$$\frac{w_k}{\alpha_k} \ge \max_j \left\{ \frac{w_j}{\alpha_j} : j = 1, ..., n \right\}.$$
(2.6)

Since $w_i \leq \sum_{i \in J_i} \frac{b_{ij}}{b_{jj}} w_j$ for all *i* then , by (2.6),

$$w_k \leq \sum_{j \in J_k} \frac{b_{kj}}{b_{jj}} w_j \leq \sum_{j \in J_k} \frac{b_{kj}}{b_{jj}} \alpha_j \frac{w_k}{\alpha_k},$$

and hence,

$$\left[\alpha_k - \sum_{j \in J_k} \frac{b_{kj}}{b_{jj}} \alpha_j\right] w_k \le 0 ,$$

so , $w_k = 0$, and by (2.6) , $\langle x_j \rangle_* = \langle x_j \rangle^*$ for all j = 1, ..., n. Let us define $p_i = \langle x_i \rangle_* = \langle x_i \rangle^*$. By (2.4) – (2.5), we conclude that $p = (p_1, ..., p_n)$ is the solution of linear system,

$$\sum_{j=1}^{n} b_{ij} x_j = \langle a_i \rangle^* \,,$$

and the proof is complete

Using an idea in proposition 1.4 of [1]; we obtain . **Theorem 2.3**.- Suppose n = 2 and $\langle a_i \rangle_* > 0$ for i = 1, 2. If,

$$b_{22} \langle a_1 \rangle_* > b_{12} \langle a_2 \rangle^*$$
$$b_{11} \langle a_2 \rangle^* \le b_{21} \langle a_1 \rangle_* \tag{2.7}$$

Then,

$$\langle x_1 \rangle_* \ge \frac{\langle a_1 \rangle_*}{b_{11}} \quad and \quad \langle x_2 \rangle^* = 0,$$

for any positive solution (x_1, x_2) of (2.1).

Proof. By Theorem 2.1,

$$b_{11} \langle x_1 \rangle_* \ge \langle a_1 \rangle_* - \frac{b_{12}}{b_{22}} \langle a_2 \rangle^* > 0$$

and by the arguments in Theorem 2.2, we have

$$\langle a_1 \rangle_* \le b_{11} \langle x_1 \rangle_* + b_{12} \langle x_2 \rangle^* \tag{2.8}$$

$$\langle a_2 \rangle^* \ge b_{21} \langle x_1 \rangle_* + b_{22} \langle x_2 \rangle^*$$
.

From this,

$$(b_{11}b_{22} - b_{12}b_{21}) \langle x_1 \rangle_* \ge b_{22} \langle a_1 \rangle_* - b_{12} \langle a_2 \rangle^* > 0$$
(2.9)

$$(b_{11}b_{22} - b_{12}b_{21}) \langle x_2 \rangle^* \le b_{11} \langle a_2 \rangle^* - b_{21} \langle a_1 \rangle_* \le 0$$
(2.10)

By (2.9) $0 < b_{11}b_{22} - b_{12}b_{21}$ and by (2.10) $\langle x_2 \rangle^* = 0$. The proof follows now from (2.8).

Remark.- If in (2.7), we replace \leq by <, then $x_2(t) \rightarrow 0$ as $t \rightarrow +\infty$. *Proof.* From the equation

$$x_2' = x_2 \left[a_2 - b_{21} x_1 - b_{22} x_2 \right] \;,$$

we obtain

$$\limsup_{t \to +\infty} \frac{1}{t} \ln \frac{x_2(t)}{x_2(0)} \le \langle a_2 \rangle^* - b_{21} \langle x_1 \rangle_* - b_{22} \langle x_2 \rangle_* \le \langle a_2 \rangle^* - b_{21} \langle x_1 \rangle_* ,$$

and by (2.8) , $\langle x_1 \rangle_* \ge \frac{\langle a_1 \rangle_*}{b_{11}}$. Thus,

$$\limsup_{t \to +\infty} \frac{1}{t} \ln \frac{x_2(t)}{x_2(0)} \le \langle a_2 \rangle^* - \frac{b_{21}}{b_{11}} \langle a_1 \rangle_* < 0 ,$$

and the proof follows easily.

-	-	-	-

ACKNOWLEDGEMENTS

We thank Professor A. Tineo for fruitful and valuable suggestions during his stay at University of Almeria. We also thank the Dirección General de Enseñanza Superior (ref. 1995-0675) that made this stay possible.

References

- S. Ahmad and A.C. Lazer, Asymptotic behavior of solutions of periodic competition diffusion systems. J. Nonlinear Analysis. Vol 13, N^o 3 (1989), 263-284.
- [2] J. T. De Luna and T. G. Hallam, Effects of toxicantsof population: a qualitative approach IV. Resource-Consumer-Toxicant models. Ecol. Modelling. Vol 35 (1987), 249-273.
- [3] T. G. Hallam and M. Zhien, Persistence in population models with demographic fluctuations. J. Math. Biol. Vol 24 (1986), 327-339.
- [4] L. Huaping and M. Zhien, The threshold of survival for system of two species in a polluted environment. J. Math. Biol. Vol 30 (1991), 49-61.
- [5] A. Tineo, An iterative scheme for n-competing speciesproblem. J. of Differential Equations. Vol 116, N^o 1 (1995), 1-15.