

Satellite	Country	Launched	Res. PAN (m)	Res. MS (m)	Swath (km)
IKONOS	US	09/24/99	1.0	4	11
QuickBird-2	US	10/18/01	0.61	2.44	16
EROS B1	Israel	04/25/06	0.7		7
Resurs DK-1	Russia	06/15/06	1.0	3	28
KOMPSAT-2	Korea	07/28/06	1.0	4	15
IRS Cartosat 2	India	01/10/07	0.8		10
WorldView -1	US	09/18/07	0.5		16
GeoEye-1	US	06/09/08	0.41*	1.64*	15
WorldView -2	US	08/10/09	0.46*	1.84*	16
Pleiades-1	France	16/12/2011	0.7	2.8	20
Pleiades-2	France	2/12/2012	0.7	2.8	20
KOMPSAT-3	Korea	17/5/2012	0.7	3.8	15
WorldView -3	US	2014?	0.31*	1.24*	16

Very High Resolution Commercial Satellite Imagery, July 17th, 2013, Perugia, Italy

3.- Orthoimages, the star product from VHR satellites

 $\mathsf{RMSE}_{\mathsf{2D}}$ Mean values computed on the orthorectified GeoEye-1 Geo and WV-2 ORS2A imagery by using RPC0 model and seven GCPs.

Image Product	Off-Nadir	Orthoimage LiDAR DEM ICPs RMSE _{2D} (m)	Orthoimage Andalusia DEM ICPs RMSE _{2D} (m)	
	-	Mean	Mean	
GeoEye-1 Geo	8.5°	0.404 ^a	0.546 ª	
	20.6°	0.464 ^b	0.622 ^b	
	23.1°	0.501 ^c	0.689 ^c	
WV-2 ORS2A	5°	0.425 ª	0.501 ª	
	10°	0.462 ª	0.584 ^b	
	22.4°	0.632 ^b	0.951 ^c	
	Aguilar e Obser	et al. (2013). International Journal vation and Geoinformation 21 (20	of Applied Earth 113) 427–435	
Ver	/ High Resolutio	n Commercial Satellite Imagery, July	17 th , 2013, Perugia, Italy 26	

	7 Applications. Impervious surface areas (ISAs).							
	TextureAll:	Accuracy results for the entire area using TextureAll strategy.						
(Caracter and a second	R, G, B, PAN, Nir means values (5)		GE1	ArO				
	+ ratios to scene for R, G, B and Nir (4)	OA	90.4	88.1				
	+ the normalized differences for B, G	PA p	90.5	88.6				
	and R (NDBI, NDGI and NDVI) (3)	PA i	90.1	87.5				
	+ local variance estimated through a 3x3 window size on PAN orthoimage, 5x5 and 7x7 (3)	UA p	91.5	89.2				
		UA i	89.0	86.8				
		KHAT	0.806	0.760				
Università degli Studi di Perugia	= (15 total features)							

Very High Resolution Commercial Satellite Imagery, July 17th, 2013, Perugia, Italy

9.- Conclusions

The orthoimages are the main product derived from VHR satellite imagey. We can achieve geometric accuracies from GE1 or WV2 compatible with large scales map (1/2000) using only few GCPs and a DEM.

DSMs or DEM can be extracted from VHR satellite stereo pair. Vertical accuracies around GSD of the original images could be attained.

The accuracies obtained in PAN and MS orthoimages together with the possibility of using Vertical Information (DSM or DEM), provide high capabilities for land-use classification, change detection and automatic update of large-scale mapping.

The constant improvement of the geometric and radiometric resolution that offer VHR satellite images (e.g. WorldView-2) makes this research line especially interesting, moreover, a certain challenge.

