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Abstract

System identification is an essential part of control design. Control en-
gineers must devote substantial effort to identification issues in order to ob-
tain suitable models for closed-loop control. Control-relevant identification
seeks to both simplify the modeling task and improve the usefulness of the
model by taking into account controller requirements during system identi-
fication. The advantages of this methodology can be better understood and
appreciated through the interactive software tool described in this paper.
The Interactive Tool for Control Relevant Identification (ITCRI) compre-
hensively captures the control-relevant identification process for the mono-
variable problem, from input design to closed-loop control, depicting these
stages simultaneously and interactively in one screen. By simultaneously
displaying both open- and closed-loop responses of the estimated models,
ITCRI enables the user to readily assess how design variable choices during
identification and control performance requirements impact model error and
ultimately, closed-loop performance. Moreover, the work presents several ex-
amples which the aim to illustrate the tool and the considerations that arise
when control requirements are taken into account during the identification
stage.
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1. Introduction1

System identification focuses on the building of dynamical models from2

data (Goodwin & Payne, 1977; Isermann & Münchhof, 2010; Juang, 1994;3

Keesman, 2011; Ljung, 1999; Pintelon & Schoukens, 2001; Walter & Pron-4

zato, 1997). It is often considered the most challenging and time consuming5

step in control engineering practice and thus represents an important compo-6

nent in the professional training of any control engineer; to this end, flexible7

and simple-to-use software tools are essential. Classical system identification8

is focused on satisfying “open-loop” criteria that may lead to high-order mod-9

els that are not be directly suitable for control system design. However, by10

taking into account controller requirements during system identification, it11

becomes possible to both simplify the modeling task and improve the useful-12

ness of the model with respect to the intended application of control design;13

this is the essence of control-relevant identification (van den Hof & Callafon,14

2003; Hjalmarsson, 2005). Thus, control-relevant identification examines the15

impact of the controller on the identification problem in order to develop a16

methodology that produces useful models in spite of the limitations previous17

stated (Rivera et al., 1992).18

In recent years, the term interactivity is becoming common in the field of19

Automatic Control since advances in information technologies have provided20

powerful interactive software tools for training control engineers (Dormido,21

2004; Casini et al., 2004; Nassirharand, 2008). Moreover, interactive soft-22

ware tools have been proven as particularly useful techniques with high im-23

pact on control education (Guzmán et al., 2005, 2008a) and engineer training24

(Guzmán et al., 2008b; Normey-Rico et al., 2009). Interactive tools provide a25

real-time connection between decisions made during the design phase and re-26

sults obtained in the analysis phase of any control-related project. Prior work27

involving the authors has resulted in ITSIE, an Interactive software Tool for28

System Identification Education (Guzmán et al., 2009a,b, 2011). ITSIE is29

focused exclusively on open-loop system identification; the current work goes30

beyond this to explore the problem of control-relevant identification.31

This work presents a brand new Interactive Tool for Control Relevant32

Identification (ITCRI). The objective of this tool is to help educate users33
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with an interest in better understanding control-relevant identification for34

the monovariable problem. Thus, this tool is mainly aimed at control engi-35

neering students but, at the same time, it can be used by control engineers36

who wish to learn or extend their knowledge regarding this advanced control37

concept. Users, in one single environment, can discover all the aspects of38

this methodology, from the design of the input signal used for identification39

to how the prefilter affects the chosen controller. Therefore, users can, using40

a single visualization of the tool as a basis, analyze how the identified model41

plant fulfills the control requirements previously stated.42

The tool incorporates control-relevant methods well-known by the au-43

thors (Rivera et al., 1992; Rivera & Gaikwad, 1996). These methods are not44

the only ways to perform control-relevant identification; sice it is possible45

to find similar methods and works in literature (Zang et al., 1995; Gevers,46

2002). For this reason, the main novelties of this tool are twofold: i) the fact47

that it relies on interactivity to teach the main features of control-relevant48

identification and ii) the functionality provided by the interactive tool itself.49

Interactivity as presented in this tool is at a much higher level than in related50

packages such as CLOSID (van den Hof et al., 1996). Unlike CLOSID, which51

is focused primarily on implementing closed-loop identification, the interac-52

tive tool presented in this work is not a toolbox, but is coded in Sysquake,53

a Matlab-like language with fast execution and excellent facilities for inter-54

active graphics (Piguet, 2004), but stand-alone executable files that do not55

require the Sysquake software are in the public domain and available for Win-56

dows, Mac, and Linux operating systems (http://aer.ual.es/ITCRI/).57

The tool considers the control-relevant estimation of low-order ARX and58

Output Error models conforming to the IMC Prett-Garćıa PID tuning rules59

(Prett & Garćıa, 1988). To this aim, two prefiltered prediction-error estima-60

tion procedures are considered. The prefilters are systematically defined from61

closed-loop performance requirements and the setpoint/disturbance changes62

to be faced in the control problem. Moreover, this tool not only allows to de-63

sign the prefilter but allows to study other design variables as the input signal64

and the model structure, as it can be seen in the following sections. The inter-65

active tool enables understanding how the tuning parameter of the prefilter66

directly influences both the open- and closed-loop responses of the system.67

Validation criteria allow the user to evaluate: (i) how control-relevant model-68

ing keeps the error low over a bandwidth defined by the control requirements69

specified by the user and (ii) how open-loop error in the model translates70

into closed-loop behaviour. In order to show the advantages of the inter-71
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active tool and to relate its results with theory, some illustrative examples72

(involving two classical problems from the control literature, a high order73

system and a first-order system with delay) and a case study involving a74

fluidized bed calciner) are presented.75

The paper is organized as follows. First, a brief description of the theoret-76

ical background behind the tool is presented in Section 2, with a description77

of the control-relevant estimation algorithms in Section 3. In Section 4, the78

functionality of the tool is described. Some illustrative examples and a case79

study are presented in Section 5. Finally, Section 6 presents the main con-80

clusions and future research work.81

2. Theoretical Background82

This section is devoted to describing the theoretical background behind83

the interactive tool. The aspects of the tool that are shared with the ITSIE84

tool (Guzmán et al., 2009a,b, 2011) are summarized, while concepts referring85

exclusively to control-relevant identification are emphasized.86

2.1. Plant to be identified and controlled87

The plant to be identified, and subsequently controlled, consists of a88

discrete-time system sampled at a value specified by the user (default value89

Ts = 1 min) and subject to noise and disturbances according to:90

y(t) = P0(q)(u(t) + n1(t)) + n2(t) (1)

= P0(q) u(t) + ν(t)

where:91

• y(t) is the measured output signal.92

• u(t) is the input signal that is designed by the user.93

• P0(q) is the zero-order-hold-equivalent transfer function for P0(s) and94

q is the forward-shift operator.95

• n1 is a stationary white noise signal that allows to evaluate the effects96

of autocorrelated disturbances in the data.97
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• n2 is a second stationary white noise signal that is introduced directly98

to the output.99

• ν(t) = P0(q)n1(t) + n2(t) is the global output noise signal.100

2.2. Input signals for identification101

This tool allows to use, among the several input signals which can be used102

for control-relevant identification, two of the most common ones: Pseudo-103

Random Binary Sequences (PRBS) and multisine signals. A PRBS is a104

binary signal generated by using shift register modulo 2 addition. One cycle105

of a PRBS sequence is determined by the number of registers nr and the106

switching time Tsw which is an integer multiple of the sampling time Ts. The107

signal repeats itself after NsTsw units of time, where Ns = 2nr − 1. Multisine108

signals are deterministic, periodic signals, represented in the single input case109

by the equation:110

u(k) = ρ

ns∑
i=1

√
2αi cos(ωikTs + ϕi) (2)

ωi = 2πi/NsTs, ns ≤ Ns/2

where u(k) is the value of u(t) at discrete time k. The power spectrum of111

the multisine input is directly specified through the selection of the scaling112

factor ρ, the Fourier coefficients αi, the number of harmonics ns, and the113

signal length Ns.114

In the tool, the input signal can be designed by means of direct parameter115

specification or by applying time constant-based guidelines. In practice, little116

is known about the process dynamics at the start of identification testing, and117

plant operating restrictions will discourage excessively long or very intrusive118

identification experiments. A guideline that provides a suitable estimate of119

the frequency band over which excitation is required is:120

1

βsτHdom
≤ ω ≤ αs

τLdom
(3)

where:121

• τHdom is high estimate of the dominant time constant.122

• τLdom is low estimate of the dominant time constant.123
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• βs is an integer factor representing the settling time of the process.124

• αs is a factor representing the closed-loop speed of response, written as125

a multiple of the open-loop response time.126

Eq. (3) is used in the tool to specify design variables in both PRBS and127

multisine signals. Expressions for specifying Tsw and nr based on Eq. (3) are128

developed in Rivera (1992):129

Tsw ≤ 2.8τLdom
αs

, Ns = 2nr − 1 ≥ 2πβsτ
H
dom

Tsw

(4)

where nr and Ns must be integer values. Similarly, Eq. (3) can also be used to130

specify design variables in multisine inputs, using guidelines found in Rivera131

et al. (1993):132

Ns ≥
2πβsτ

H
dom

Ts

, ns ≥
NsTsαs

2πτLdom
(5)

In both cases, increasing αs and βs will widen the frequency band of133

emphasis in the input signal and increase the resolution of the input signal134

spectrum.135

2.3. Data preprocessing136

ITCRI data preprocessing supports mean subtraction, differencing, and137

substraction of baseline values, whereas mean detrending is applied by de-138

fault.139

2.4. Digital PID controller design140

An algorithm for digital PID controller design which is based on the141

Internal Model Control (IMC) design procedure for discrete-time models142

(Morari & Zafiriou, 1997), is presented in Prett & Garćıa (1988). These143

PID controllers possess the feature that they have a single adjustable pa-144

rameter δ = exp(−Ts/λ) which is directly linked to the closed-loop speed of145

response λ. In ITCRI, second-order plants without integrator are identified146

according to the tuning rules summarized in Table 1, resulting in Prett &147

Garćıa (1988) controllers of the general form:148

∆u(k) = Kc[ec(k)− τIec(k − 1) + τDec(k − 2)] + τF∆u(k − 1) (6)
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where ∆u(k) is the change in controller output, that is, ∆u(k) = u(k) −149

u(k − 1) = (1 − q−1) and ec(k) = r(k) − y(k) is the setpoint tracking error.150

The parameters Kc, τI , τD and τF are coefficients of the difference equation151

in Eq. (6) and are not equivalent to the continuous PID controllers parame-152

ters. P̂ (q) refers to the estimated plant model and η̃ is the complementary153

sensitivity operator (Morari & Zafiriou, 1997).154

Table 1: Prett-Garćıa Digital PID Controller Parameters for Low-Order Models. (0 < δ <
1, δ = exp(−Ts/λ) is an adjustable parameter; Ts is the sampling time).

P̂ (q) η̃(q) KKc τI τD τF

0 ≤ β < 1 K(q−β)
(q2−α1q+α2)

1−δ
q−δ

1− δ α1 α2 β

β ≥ 1 K(q−β)
(q2−α1q+α2)

1−δ
q−δ

q−β
1−βq

1−δ
−β

α1 α2
δ(1+β)

β
− 1

β < 0 K(q−β)
(q2−α1q+α2)

1−δ
q−δ

q−β
(1−β)q

1−δ
1−β

α1 α2
(1−δ)β
1−β

2.5. Model structure selection and parameter estimation155

The interactive tool allows to work with AutoRegresive model with eX-156

ternal input (ARX) models and Output Error (OE) models. Both type of157

models belong to the general family of prediction-error (PEM) models which158

corresponds to159

A′(q)y(t) =
B′(q)

F ′(q)
u(t− nk) +

C ′(q)

D′(q)
e(t) (7)

y(t) = P̂ (q)u(t) + Ĥ(q)e(t) (8)

In Eq. (8) Ĥ(q) is the noise model and e(t) is the prediction error, usually a160

white noise disturbance. A′(q), B′(q), C ′(q), D′(q) and F ′(q) are polynomials161

in q, where the roots of A′(q) and F ′(q) are the poles of the plant whereas162

the roots of B′(q) are the zeros of the plant. The two PEM models used in163

ITCRI for control-relevant identification are shown in Table 2.164

Choosing a suitable model structure is a relevant point in the identifi-165

cation procedure and a prior knowledge about the system to be modelled166

is a valuable help. The ARX model is the simplest model incorporating an167

input signal for identification. The estimation of the ARX model is the most168

efficient of the polynomial estimation methods because it is the result of169

solving linear regression equations in analytic form. Moreover, the solution170
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Table 2: Prediction-error model structures evaluated in ITCRI.

Method P̂ (q) Ĥ(q) A′ B′ C ′ D′ F ′

ARX B′(q)
A′(q)

q−nk 1
A′(q)

A′(q) B′(q) 1 1 1

Output Error B′(q)
F ′(q)

q−nk 1 1 B′(q) 1 1 F ′(q)

is unique, i.e., the solution always satisfies the global minimum of the loss171

function. The ARX model therefore is preferable, especially when the model172

order is high. The disadvantage of the ARX model is that disturbances are173

part of the system dynamics. The estimated plant model P̂ (q) and the noise174

model Ĥ(q) have the same set of poles, the roots of the A′(q) polynomial.175

This coupling can be unrealistic but this disadvantage can be reduced with176

a good signal-to-noise ratio.177

When the disturbance e(t) of the system is not white noise, the coupling178

between the estimated plant model and the noise model can bias the estima-179

tion of the ARX model. In order to minimize the equation error is advisable180

to set the model order higher than the actual model order, especially when181

the signal-to-noise ratio is low. However, increasing the model order can182

change some dynamic characteristics of the model, such as its stability.183

On the other hand, the OE model allows to describes the system dynamics184

separately due to there are not any shared poles between the estimated plant185

model and the noise model. That is, no parameters are used for modelling186

the disturbance characteristics, Ĥ(q) = 1, see Table 2. However, it requires187

nonlinear optimization in the identification procedure and the minimization188

can get stuck at a false local minimum, especially when the order is high and189

the signal-to-noise ratio is low. However, this kind of models are better to190

use when it is not necessary to estimate the noise model and it affects only191

the output (Juang, 1994; Ljung, 1999).192

Control-relevant identification in ITCRI is accomplished via prefiltered193

prediction error estimation,194

arg min
P̂ ,Ĥ

1

N

N∑
i=1

e2F (i) (9)

where eF (t) = L(q)e(t) is the prefiltered prediction error, and L(q) is the195

prefilter. The use of Parseval’s Theorem enables a frequency-domain analysis196

of bias effects in PEM estimation that allows deep insights into the selection197
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of the prefilter and other identification design variables. As the number of198

observations N → ∞, the least-squares estimation problem denoted by (9)199

can be written as:200

lim
N→∞

1

N

N∑
i=1

e2F (i) =
1

2π

∫ π

−π

ΦeF (ω)dω (10)

where ΦeF (ω), the prediction-error power spectrum is201

ΦeF (ω) =
|L(ejω)|2

|Ĥ(ejω)|2
(
|P0(e

jω)− P̂ (ejω)|2Φu(ω) + |P0(e
jω)|2σ2

n1
+ σ2

n2

)
(11)

Eq. (11) helps explain systematic bias effects in identification, which can202

be readily explored in ITCRI. This includes issues relating to the spectral203

content in the input signal, bias that is introduced (or removed) by the204

choice of model structure (particularly the noise model), and the associated205

multi-objective optimization problem resulting from varying magnitudes of206

the noise variances σ2
n1

and σ2
n2
. Most importantly, Eq. (11) shows that207

prefiltering acts as a frequency-dependent weight on the goodness-of-fit in208

prediction-error estimation. How to properly design this prefilter to take209

into account closed-loop performance requirements is the focus of the ensuing210

section.211

2.6. Control-Relevant Parameter Estimation212

The model structures required by the controllers in Table 1 are often213

times too simple to describe the entire dynamic behaviour of the plant. How-214

ever, control requirements can narrow the regions of time and frequency over215

which an adequate model fit is necessary. Therefore, the objective of the216

control-relevant identification process is to obtain improved models over the217

frequency band of importance of the control problem. To fulfill this objective,218

a control-relevant prefilter from the 2-norm closed-loop objective function is219

developed, which acts as a frequency-dependent weight on the parameter220

estimation problem and systematically incorporates control requirements in221

the parameter estimation problem (Rivera et al., 1992).222

Control-relevance thus requires that one defines the control problem for223

which the model is intended. In the interactive tool, the control-relevant224

estimation is exclusively focused on a plant model P̂ to be used for single225

degree-of-freedom feedback control using the tuning rules given in Prett &226
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Garćıa (1988). The control objective is to minimize the 2-norm of the control227

error ec(t) = (r(t) − y(t)), that is, the difference between the reference r(t)228

and the measured output signal y(t):229

∥ec∥2 =

(
∞∑
k=0

e2c(k)

)1/2

(12)

The feedback controller C(q), that is assumed to be a single degree-of-230

freedom, is designed on the basis of P̂ (q). Resulting in the following nominal231

response transfer function:232

η̃(q) =
P̂ (q)C(q)

1 + P̂ (q)C(q)
(13)

ϵ̃(q) = (1− η̃(q)) =
1

1 + P̂ (q)C(q)
(14)

where ϵ̃ is the sensitivity operator of the closed-loop system (Morari &233

Zafiriou, 1997). When C(q) is implemented on the plant P0(q), the dete-234

rioration in control performance caused by plant/model mismatch is235

ec(q) =
ϵ̃(q)

1 + η̃(q)em(q)
(r(q)− d(q)) (15)

where em(q) =
(
P0(q)− P̂ (q)

)
P̂−1(q) is the multiplicative error between the236

true plant and the calculated model which can describe an uncertain actu-237

ator, and d(q) is the disturbance signal. Stability of C(q) on P̂ (q) does not238

ensure stability with regards to P0(q). A computationally simpler stability239

requirement used for stability is the small gain theorem:240

|η̃
(
ejω
)
em
(
ejω
)
| ≤ 1 ∀ − π ≤ ω ≤ π (16)

When Eq. (16) holds, Eq. (15) can be approximated by a first term Taylor241

series if |η̃ (ejω) em (ejω) | ≪ 1 over the bandwidth defined by ϵ̃(q)(r − d):242

ec(q) ≈ ϵ̃(q) (1− η̃(q)em(q)) (r(q)− d(q)) (17)

The control objective function that appears in Eq. (12) can be approxi-243

mated by substituting Eq. (17) into Eq. (12). Once expressed the approxi-244

mation in the frequency domain via Parseval’s Theorem:245
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∥ec∥2 ≈

 1

2π

π∫
−π

|ϵ̃|2|1− η̃em|2|r − d|2dω

1/2

(18)

≤

 1

2π

π∫
−π

|ϵ̃|2|r − d|2dω

1/2

+

 1

2π

π∫
−π

|ϵ̃|2|η̃em|2|r − d|2dω

1/2

(19)

The statement of the control-relevant parameter estimation problem is246

obtained by minimizing the contribution arising from identification error:247

min
P̂

 1

2π

π∫
−π

|ϵ̃
(
ejω
)
|2|η̃

(
ejω
)
|2 |r − d|2|em

(
ejω
)
|2dω

)1/2

(20)

Equation (20) is the problem whose solution is solved in the time domain248

by means of prefiltered ARX and OE estimation. As presented in Rivera249

et al. (1992), the relationship between Eq. (11) and (20) leads to a general250

definition for the control-relevant prefilter:251

L(q) = Ĥ(q)P̂−1(q)ϵ̃(q)η̃(q)(r(q)− d(q)) (21)

It is important to highlight the components that form the prefilter L(q):252

• The closed-loop transfer functions η̃(q) and ϵ̃(q) that define the closed-253

loop speed of response.254

• The setpoint/disturbance direction (r(q)− d(q)).255

• The identified plant and noise models P̂ (q) and Ĥ(q).256

Since P̂ (q) is initially unknown, the implementation of the prefilter is inher-257

ently iterative. However, in ITCRI two algorithms to calculated the prefilter258

are implemented: (i) a rigorous iterative implementation that is applied to259

an ARX high-order model and (ii) a simplified non-iterative alternative that260

is applied directly to the data. These are summarized in the ensuing section.261
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3. Control-relevant estimation algorithms262

The ITCRI tool evaluates two alternate procedures for arriving at a263

control-relevant low-order model conforming to the Prett-Garćıa PID tun-264

ing rules. In both cases, prefiltering is applied. These are described below:265

Direct one-step approach using input/output data.266

ARX-[2 2 1] or OE-[2 2 1] models are obtained directly from the pre-267

filtered input-output data. Where ARX-[2 2 1] refers to an ARX model268

with two poles, two zeros and one sample delay. Equivalently, OE-[2269

2 1] refers to an OE model with two poles, two zeros and one sample270

delay (MATLAB notation).271

Iterative approach from a full-order estimated model.272

A high-order ARX model is obtained first, followed by control-relevant273

model reduction to an ARX-[2 2 1] or OE-[2 2 1] model structure.274

The control-relevant model reduction step is accomplished via iterative275

prefiltered estimation.276

The reader is referred to Rivera et al. (1992) where the iterative and direct277

(single-pass) algorithms are presented with some examples; moreover, a more278

detailed description of the iterative case appears in Rivera & Gaikwad (1996).279

A summary of the procedures is enclosed below.280

3.1. Single-pass prefilter applied to data281

This algorithm requires that the user specify up-front reasonable esti-282

mates for the dominant plant time constant and desired closed-loop speed283

of response, and substitute these into (21). For η̃, the following structure is284

used:285

η̃(q) = q−nkf(q) (22)

where the order of f(q) is dictated by the control design procedure. In ITCRI,286

the second-order filter structure:287

f(q) =
(1− δ)2q2

(q − δ)2
(23)

is used, where δ = exp(−1.555Ts/τcl), with τcl being the anticipated closed-288

loop time constant. Furthermore, a priori knowledge of the plant dominant289

time constant is used to approximate P̂ as:290
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P̂ (q) =
q−nk+1

(q − α)
(24)

where α = e−Ts/τdom and τdom is an estimate of the dominant time constant291

of the system. For OE estimation, Ĥ = 1, while for ARX models, Ĥ can be292

approximated with the same dominant time constant guess made for P̂ :293

Ĥ(q) =
q

(q − α)
(25)

3.2. Iterative prefiltering approach294

The iterative prefiltering approach is split in two steps. The first step295

consists of estimating a full-order PEM model that meets classical validation296

criteria (e.g., white residuals uncorrelated with the input). In ITCRI, this297

full-order model is estimated via high-order ARX estimation, which can be298

consistently estimated if a persistently exciting input is used (Ljung, 1999).299

The second step consists of model reduction, in which the impulse between300

u and y of the full-order model is reduced to a restricted complexity form as301

summarized in Table 1. The impulse response of the full-order plant can be302

adequately represented by a FIR model:303

y(t) = B(q) u(t− nk), (26)

B(q) = b1 + b2q
−1 + . . .+ bnb

q−nb+1

where nb is chosen big enough to capture the transfer function dynamics and304

nk refers to the delay estimated in the high-order model. In fact, with a305

nb big enough the delay dynamics of the high-order model are included by306

default. The goal is to approximate Eq. (26) with a low-order ARX model,307

see Eq. (27). It is important to highlight here, that the noise term, e(t),308

does not appear in Eq. (26) because the low-order ARX model captures the309

dynamics of the high-order model without noise involved.310

A′(q)y(t) = B′(q)u(t− 1) + er(t) (27)

where311

A′(q) = 1 + a′1q
−1 + . . .+ a′n′

a
q−n′

a

B′(q) = b′1 + b′2q
−1 + . . .+ b′n′

b
q−n′

b+1
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and n′
a and n′

b are low-numbered integers (1 or 2); in ITCRI, n′
a = 2 and312

n′
b = 2. In this method, the prediction error er(t) represents the model re-313

duction error. The objective minimized in ARX identification is the squared314

filtered prediction error (ef (t) = L(q)er(t)) which for N → ∞ can be written315

equivalently in the frequency domain as:316

V =
1

2π

∫ π

−π

∣∣∣∣B(ejω)− B′(ejω)

A′(ejω)

∣∣∣∣2 |A′(ejω)|2|L(ejω)|2Φu(ω)dω (28)

where Φu(ω) represents the power spectra for the input. Because the model317

reduction step is applied to a noise-free data set (i.e., the full-order model’s318

impulse response), the influence of noise n1 and n2 is greatly reduced, in319

contrast to more general PEM estimation as seen in (11). The definition of320

the prefilter is obtained by comparing the frequency-domain expressions of321

the prefiltered ARX problem that appear in Eq. (28) to that of the control-322

relevant parameter estimation problem in Eq. (20). Since u(t) is an impulse,323

(Φu(ω) = 1 ∀ ω) this leads to:324

L(q) = B′(q)−1ϵ̃(q)η̃(q)(r(q)− d(q)) (29)

Thus, the iterative method to calculate the prefilter for open-loop stable325

systems is composed of five steps:326

1. Performance specification. From Table 1, the user chooses the structure327

for P̂ and η̃. The user must only specify the value for the closed-loop328

time constant λ, which in turn defines the value of the filter adjustable329

parameter according to δ = exp(−Ts/λ).330

2. Initialization. In the first iteration, i.e., i = 1, y(t), the finite impulse
response, and u(t) are filtered using L(q) defined according to Eq. (29)
with:

B′(q) = 1 η̃(q) =
(1− δ)

q − δ
r(q)− d(q) =

q

q − 1

One must now perform ARX estimation using yF (t) and uF (t) (the pre-331

filtered output and input) to obtain an initial estimate for the reduced-332

order model P̂ .333

3. Iteration. Use the models P̂ (q) and Ĥ(q) obtained from initialization,334

i = 1, or from the previous iteration, i − 1, to update B′(q), η̃(q) and335

thus, define a new L(q). Proceed then to prefilter y(t) and u(t) and336

redo ARX estimation.337
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4. Termination. This step determines when convergence has been reached338

and, therefore, the iteration is finished. For this aim, two criteria are339

used. If the difference between the objective function, V , in the current340

iteration, i, and the one in the previous iteration, i−1, does not change341

by a specified amount, that is:342

|Vi − Vi−1| ≤ TOL (30)

and the parameters of P̂ change by less than a user-defined tolerance,343

TOL, then terminate, go to Point 5. Otherwise, complete another344

iteration, i.e., return to Point 3.345

5. Validation. Once iterations have converged, one must verify that: (i)346

the estimated model is stable and, (ii) the small gain condition in347

Eq. (16) has been satisfied. Failure to satisfy these criteria implies348

that either the closed-loop speed of response must decrease, or the or-349

der of the model must increase, in both cases the user must return to350

Point 1.351

It is important to highlight here that, the iterative method as described352

is the full step by step version, which involves user input at several points.353

However, in the interactive software tool presented in this paper, the iterative354

process is automated and totally transparent for the user. The only informa-355

tion that the user has to provide is the desired closed-loop speed response,356

as the model structure is fixed by the requirement to obtain a Prett-Garćıa357

controller.358

3.3. Model validation359

ITCRI provides classical methods for validation which include simulation,360

crossvalidation, residual analysis on the prediction errors (for full-order ARX361

modeling), and step responses. The percent output variance obtained by each362

model on the crossvalidation data set is also reported. For control-relevant363

validation, a valuable metric is to compare the multiplicative error em with364

the prefilter L(q); a good control-relevant model will display low |em| over365

the bandwidth denoted by L(q). Ultimately, the most informative piece of366

control-relevant model validation is the closed-loop response resulting from367

the estimated model, which in the ITCRI tool is contrasted simultaneously368

with the open-loop response.369
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4. Interactive Tool Description370

This section is devoted to describe the main features of the interactive371

tool. However, it is important to mention that interactivity, which is one of372

the most important features of the tool, cannot be fully appreciated through373

written text alone. Thus, the reader is cordially invited to download the tool374

at http://aer.ual.es/ITCRI/ (see Fig. 1) and personally experience its375

interactive features. The tool is standalone and does not require a Sysquake376

license in order to execute.377

ITSIE interactive tool user interface demonstrating four cycles of a PRBS378

input applied to a simulated fifth-order system. The time-constant guidelines379

from Section 2 are used to define input parameters. An OE-[2 2 1] model380

is compared with an ARX-[5 7 1] model obtained from exhaustive order381

selection on a crossvalidation data set.382

The plant to be identified can be loaded indicating the transfer function383

for both the model and the prefilter. This can be done from the menu384

option Mode → Simulation. The graphical distribution has been designed385

according to the most important steps in a control-relevant identification. It386

is described as follows (see Fig. 1):387

• Input signal definition. In the main screen, at the top left corner, there388

is a section called Input signal parameters. Here, the user can choose389

the type of the input signal (PRBS or multisine) and by means of the390

checkbox called Guidelines to decide between specifying the input signal391

directly or following the guidelines given in Guzmán et al. (2009a,b,392

2011). For instance, if the PRBS is selected without activating the393

checkbox Guidelines, a text edit and two sliders appear to modify the394

number of cycles (N Cycles), the number of registers (N Reg), and the395

switching time (Tsw). At the bottom left corner, there are two graphics396

namely Input signal and Power Spectrum or AutoCorrelation depending397

on the chosen option. The graph above, Input signal, shows one cycle of398

the input signal, the graph below represents the input signal correlation399

or the input signal power spectrum depending on the chosen option in400

the radio buttons at the top right of the graph. The input signal can401

be modified dragging on both graphics too. Once an input signal has402

been configured, the final input signal is shown in Full input signal graph,403

located at the bottom of the central part of the main screen. When the404

checkbox Filtered Data is activated, the input signal is filtered too.405
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• Process definition. Below the section Input signal parameters, there is406

another section called Model parameters, where there are two radio but-407

tons that allow to choose between ARX and OE, i.e. the type of model408

used for control-relevant identification. The order of the model, see409

Table 2, is limited to na = 2, nb = 2 and nk = 1 for ARX model, and410

nf = 2, nb = 2 and nk = 1 for OE model. By default, the tool calcu-411

lates a high-order ARX model, ARX Order selection, to compare with412

the low-order models calculated through control-relevant identification.413

Note that, the na, nb and nk values of this high-order model appear414

also in the section Model parameters. Depending on the type of model415

used for control-relevant identification, one or two sliders will appear416

to determine the values of the two parameters needed for single pass417

prefiltered estimation (Prefiltering): the dominant plant-time constant418

(O-L Tau), only for the OE model, and the desired closed-loop speed of419

response (C-L Tau) for both the ARX and the OE models. Once a plant420

structure is selected, the full input signal applied to the simulated plant421

with noise is shown in black in the graph called Output signal located422

at the center of the main screen. This input signal is used to obtain423

the simulated “real data”, which are then used as real process data424

in the estimation and validation process. In this graph, an interactive425

magenta vertical dashed line defines the estimation (yellow area) and426

validation data (white area) sets.427

• Closed-loop specification. In the section Closed loop and simulation pa-428

rameters, at the center of the left side of the main screen, the parame-429

ter λ for the IMC filter time constant (first-order filter only) which is430

used by the Prett-Garcia controller (Prett & Garćıa, 1988), is specified431

through a slider called Lambda. Below this slider, other two sliders432

called Noise 1 and Noise 2 determine the level of noise in the data, n1,433

and in the output signal, n2, respectively.434

• Model validation. The magenta-colored vertical line of the Output sig-435

nal graphic is interactively used to define the estimation and validation436

data sets. The validation data is used for crossvalidation purposes.437

Model validation results are displayed in other two different graphics:438

Step Responses and Correlation function of residuals. Note that, this last439

one only appears if the checkbox Residuals is activated. The Step Re-440

sponses graph, which is located at the upper right-hand side of the tool,441
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shows the step responses for the following models: (i) ARX Order selec-442

tion: an ARX high-order model, green solid line, (ii) Non-Prefiltering:443

depending on the chosen type of model, an ARX or OE low-order model444

without prefiltering, red or blue solid line respectively, (iii) Prefiltering:445

depending on the chosen type of model, an ARX or OE low-order model446

prefiltered with the single-pass prefilter implementation, red or blue447

dashed line respectively, and (iv) Iterative: an ARX low-order model448

prefiltered with the iterative prefilter implementation, magenta solid449

line. Together with the step response of the models, a legend repre-450

senting its goodness of fit in % is shown. Confidence intervals can be451

also shown in this graphic activating this option from the Parameters452

menu. In the Correlation function of residuals graphic, at the left of the453

Step responses graphic, the same color distribution explained previously454

is used to represent the results of each model. Moreover, above of this455

graphic there are two radio buttons that allow to commutate between456

this graphic and others two called Open-Loop Frequency Response and457

Multiplicative Error. In the first one, the frequency response of the cal-458

culated models is shown. In the second one, the frequency response459

of the multiplicative error produced by each model is shown together460

with the frequency response of both the iterative and the single-pass461

prefilters.462

• Closed-loop response. At the lower right corner of the tool, there are463

two graphs that show the closed-loop response of the resulting feedback464

control system. The upper graph, where the output of the closed-465

loop is shown, is called Closed-loop output. Moreover, it is possible to466

simulate disturbances or noise on the closed-loop responses trough a467

vertical green or black solid line, respectively. The lower graph called468

Closed-loop input shows the output of the calculated IMC controllers.469

This graph, which contains digitally sampled signals, is displayed as470

stairstep-like graph due to the use of zero-order hold for these digital471

signals. In both graphs, it is important highlight two facts: i) the472

same color distribution previously explained is used to represent the473

results for each resulting model and ii) the time-scale of these graphs474

is independent to the one used in Step Responses graph due to time-475

constant of both open- and closed-loop responses may be different.476

As an interactive tool, there is no one single standard procedure for mak-477

ing use of ITCRI. However, the flowchart shown in Fig. 2 provides useful478
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Figure 2: Flow diagram of Interactive Software Tool for Control-Relevant Identification
ITCRI.

guidance regarding the structure and proper utilization of the tool.479

5. Illustrative Examples and Case Study480

In this section, two illustrative examples and a case study are developed481

to demonstrate the functionality and benefits of the interactive tool. The482

two examples correspond to representative transfer function models from the483

control literature, while the case study is based on an industrial process484

model. In the process of working with the tool, the reader should note485

how a model with a potentially poor fit in the open-loop can result in good486

closed-loop performance, provided that control-relevant emphasis (through487

prefiltering or other means) is used to improve the goodness-of-fit in the488

regions of time and frequency that contribute the most to the closed-loop489
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response.490

5.1. Fifth order example491

In this example, a simulated fifth-order system is considered. The system492

is represented by the transfer function:493

P0(s) =
1

(s+ 1)5
(31)

with a default sample time of Ts = 1 min. Results of this comparison are494

shown in Fig. 1 where an ARX-like model has been chosen. A PRBS input495

signal is used for identification, with parameters: m = 3 (number of cycles),496

αs = 2, (factor representing the closed-loop speed of response), βs = 3 (factor497

representing the settling time of the process), τLdom = 3 (low estimate of the498

dominant time constant) and τHdom = 5 (high estimate of the dominant time499

constant). Moreover, the noise on the output signal, n2(t) in Eq. (1), is500

augmented to a value of 2, whereas the noise on the disturbance (n1(t) in501

Eq. (1)) is set to 0.5.502

A high-order ARX model, with a structure of ARX-[3 5 1], is obtained503

from this identification signal. Its open-loop response is shown in the Step Re-504

sponses graph (ARX Order selection), at the upper right-hand side of the tool,505

together with the response of three ARX low-order models (ARX-[2 2 1]): (i)506

Non-Prefiltering, an ARX model without prefiltering, (ii) Prefiltering, an ARX507

low-order model prefiltered with the single-pass prefilter implementation, and508

(iii) Iterative, an ARX low-order model prefiltered with the iterative prefilter509

implementation. The validation criteria indicates the poor fit of these mod-510

els. This is due to the high value of the noise signals n1 and n2, since ARX511

model estimation involves a tradeoff between the fit to the noise model and512

the fit to the transfer function. Notice that the ARX Order selection model513

displays the highest goodness of fit in %. Regarding closed-loop parameters,514

the filter parameter λ of the IMC controllers is set to a value of λ = 5. The515

closed-loop time constant estimation used in the control-relevant prefilter516

(Prefiltering) model is also set to τcl = 5.517

The inputs and outputs of the resulting feedback system are shown in518

Closed-loop input and Closed-loop output graphs, respectively. Notice the poor519

performance of the closed-loop system without prefilter (red solid line in the520

graphs), with a large overshoot of 30 % of the setpoint change magnitude.521

This fact is due to the high level of the noise in the data, which does not allow522

a good fit of the open-loop model Non-Prefiltering. From the Step Responses523
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graph, it is possible to note how there is a substantial mismatch in the static524

gain between the Non-Prefiltering model and the real plant.525

In the case of the Prefiltering model, the prefilter is calculated with the526

single-pass algorithm, PREF Prefilter, and applied directly to the noisy in-527

put/output data in order to calculate an ARX model, Prefiltering. The fre-528

quency response of both the prefilter and the multiplicative error associated529

with the ARX model can be observed in the Multiplicative Error graph, where530

it is possible to note how the prefilter enables the ARX model to achieve the531

control requirements imposed by specifiying τcl = 5. Although the Prefiltering532

model displays a poor fit with an open-loop response that resembles an un-533

derdamped system, the closed-loop response from this model is much better534

than the previous model (resulting from Non-Prefiltering) with a substantial535

reduction in overshoot as a result of control-relevant modeling.536

The third model, Iterative, is calculated from the high-order ARX model537

(ARX Order selection) through the iterative prefiltering method, ITER Pre-538

filter. Its frequency response, together with the multiplicative error associ-539

ated with the Iterative model, are shown in the Multiplicative Error graph.540

With the iterative approach, it is possible to calculate an ARX model that541

better fulfills control requirements in comparison to the Prefiltering model.542

The multiplicative error for the Iterative model (magenta line) is the lowest of543

all control-relevant reduced-order models, matching closely the error of the544

high-order ARX model (green line) up to a few multiples past the bandwidth545

of the iterative prefilter (ITER Prefilter, cyan solid line). The closed-loop con-546

trolled variable response (magenta solid line) displays no overshoot, very little547

oscillation, and has the fastest settling time of all reduced-order controllers548

evaluated.549

We note that the ITER Prefilter (cyan solid line) has a lower gain in the550

high frequencies than the PREF Prefilter (gold solid line). For this reason,551

both the open-loop response of the Iterative model and the closed-loop per-552

formance of its feedback system are superior compared to the other methods.553

We conduct an additional evaluation of the tool with the transfer func-554

tion in Eq. (31), this time using Output Error (OE) model structures. The555

parameters of the PRBS signal used for identification and the values for n1(t)556

and n2(t) in Eq. (1) remain the same as in the previous ARX test. However,557

in this case the magnitude of the PRBS signal has been reduced to 0.75, see558

Input signal graph in Fig. 3. Since a OE model has been chosen, the dominant559

plant-time constant (O-L Tau) required by the prefilter is set to τdom = 2.560

Moreover, the closed-loop time constant τcl used in the Prefiltering model, as561
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well as the filter parameter λ used by the IMC controllers, are set to 2 as562

well.563

In this case, a high-order ARX model with structure of ARX-[2 6 1] is564

obtained from this identification signal. Its open-loop response is shown in565

the Step Responses graph (ARX Order selection), at the upper right-hand566

side of the tool, together with the response of two OE low-order models567

(OE-[2 2 1]): (i) Non-Prefiltering, an OE model without prefiltering and (ii)568

Prefiltering, an OE low-order model prefiltered with the single-pass prefilter569

implementation. A fourth open-loop response corresponding to an ARX low-570

order model prefiltered with the iterative prefilter implementation Iterative,571

is shown. The goodness of fit obtained from these models is worse than the572

ones obtained from the models of the previous test; this is largely due to573

lower value for the input signal magnitude, compared to the ARX test.574

In the Closed-loop output graph, it is possible to appreciate the poor575

performance of the closed-loop system without prefilter Non-Prefiltering (blue576

solid line in the graph), with a large overshoot of 20 % of the setpoint change577

magnitude. Regarding the prefiltered models two consideration aspects have578

to be taken into account. On the one hand, the Prefiltering model has the579

best closed-loop response (blue dashed line in the Closed-loop output graph)580

than the previous model without prefilter, with a smaller overshoot around581

6 % of the setpoint change magnitude. On the other hand, the Iterative model582

has a similar closed-loop response (magenta line) than the Prefiltering model583

although a little bit worse. Additionally, it spends more time to reach the584

setpoint, t = 12, and it has an overshoot around 9 % of the setpoint change585

magnitude.586

It is important to highlight that the Iterativemodel is more consistent with587

respect to different processes noise, although in this case the Prefilteringmodel588

has the best results. The interested reader is cordially invited to test several589

simulations with the same parameters but with different processes of the noise590

just doing click into the Output signal graph at the center of the interactive591

tool. These tests probe that the Iterative model is more consistent than592

the Prefiltering model since its performance remains equal along the tests.593

Moreover, when the ratio between the magnitudes of the signal identification594

and the noise is high, as happens in this case, both prefiltered models are595

more consistent than the non-prefiltered one, Non-Prefiltering, which closed-596

loop performance changes significantly with the processes of the noise.597
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5.2. First order plant with delay example598

This example is meant to show the advantages of control-relevant identi-599

fication in a system with significant delay:600

P0(s) =
1

(10s+ 1)
e−10s ≃ 1

(10s+ 1)
R10,10(s) (32)

which must be reduced into a plant without delay in order to conform to the601

IMC Prett-Garćıa tuning rules in Table 1. In order to work with the tool,602

the Model Configuration feature is used to introduce a Padé approximation603

in lieu of a pure delay. R10,10(s) is the tenth order Padé approximation of604

e−10s (see Eq. (33) and Table 3)605

R10,10(s) =

g10s
10 − g9s

9 + g8s
8 − g7s

7 + g6s
6 − g5s

5 + g4s
4 − g3s

3 + g2s
2 − g1s+ g0

g10s10 + g9s9 + g8s8 + g7s7 + g6s6 + g5s5 + g4s4 + g3s3 + g2s2 + g1s+ g0
(33)

Table 3: Coefficients of R10,10(s).

g10 g9 g8 g7 g6 g5 g4 g3 g2 g1 g0
1 11 59.4 205.9 504.5 908.1 1211 1176 793.9 335.2 67.04

The default sampling time of Ts = 1 min is used, while the Order selection606

limits in the menu Parameters have been augmented to 15.607

A minimum crest factor multisine input has been chosen for the iden-608

tification signal, its parameter values have been set to: i) Maxp = 200,609

maximum L2p-norm of the multisine signal, ii) m = 4 (number of cycles)610

and iii) Ns = 228 (signal length) and iv) ns = 40 (number of harmonics).611

Furthermore, the input magnitude of this identification signal is ±1, the612

values of the noise on the disturbance, n1(t), and the noise on the output613

signal, n2(t), are set to 1 and 0.2, respectively. A high-order ARX model,614

with a structure of ARX-[2 9 8], is obtained from this identification signal.615

Its open-loop response is shown in the Step Responses graph (ARX Order se-616

lection), at the upper right-hand side of the tool. This model obtains the best617

goodness of fit of entire set of models presented in the graph, i.e. two OE618

low-order models (Non-Prefiltering and Prefiltering) and an ARX low-order619
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Iterative. It is important to highlight that the open-loop responses of the620

low-order prefiltered models, Prefiltering and Iterative, display non-minimum621

phase dynamics in which the pure delay is approximated through inverse622

response. On the contrary, the open-loop response of the Non-Prefiltering623

model does not include the inverse response and ultimately fails to control624

the system for the specified control requirements.625

In this example, the dominant plant-time constant (O-L Tau) for OE626

models is set to τdom = 10. Both the closed-loop time constant estimate627

τcl used for the Prefiltering option as well as the filter parameter λ for the628

IMC controllers are set to 10. The inputs and outputs of the feedback system629

using those parameters are shown in Closed-loop input and Closed-loop output630

graphs, respectively. Notice the unstable response of the Non-Prefiltering631

model’s closed-loop response (blue solid line in the graphs), which is produced632

due to the improperly modeled delay in the reduced model. However, both633

low-order prefiltered models, Prefiltering and Iterative, which approximate634

the time delay through a Right-Half Plane zero, show good performance and635

fulfill desired control requirements.636

Examining the problem in the frequency domain through the Multiplica-637

tive Error graph is possible to observe how the Non-Prefiltering model has638

higher multiplicative error gain (blue solid line) in the intermediate frequency639

range than the Prefiltering and Iterativemodels (dashed blue line and magenta640

solid line respectively) which show lower error in the bandwidth of the ITER641

and PREF prefilters (cyan and gold solid lines, respectively). Because the642

control-relevant models are better fits in this frequency range of importance643

to the problem, they are able to generate better closed-loop performance644

than the unprefiltered OE model.645

5.3. Fluidized Bed Calciner Case Study646

This case study is meant to demonstrate the tool with a complex model647

from an application in the chemical process industry: a fluidized bed calciner.648

A fluidized bed calciner system (which a generic schematic shown in Fig. 5)649

consists of a bed of heated particles, kept fluidized by air. The bed is kept650

at high temperature by in-bed combustion of fuel. Solid feed material, as a651

very fine powder, is sprayed into the bed where it is calcined and sicks to the652

bed particles leading to their growth. Product particles are withdrawn from653

the bed at a controlled rate to maintain a constant bed mass. Seed particles,654

obtained by crushing part of the product, are intermittently added to the655

bed to maintain the cumulative mass fraction (Ramanathan et al., 1989).656
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Figure 5: Scheme of a fluidized bed calciner.

Control of particle size distribution is better achieved through control of the657

cumulative mass fraction above a cut-point size, since it is easily measured.658

The transfer function which relates the particle size distribution with the659

cumulative mass fraction above a cut-point size Zc, has the following form660

in continuous time (Ramanathan et al., 1989):661

P0(s) =
P1(s)− P2(s)e

−Zcs

Q(s)
(34)

where P1(s), P2(s) and Q(s) are polynomials in the Laplace variable s, with662

the order of P1(s) and P2(s) being less or equal than the order of Q(s).663

This irrational transfer function corresponds to a quasirational distributed664

system (QRDS; (Ramanathan et al., 1989)), and is obtained from a partial665

differential equation (PDE). Although this kind of transfer function is not666

widely seen in the control literature, it represents a large class of processes667
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with a wide range of dynamic behaviour (Curtain & Morris, 2009), such668

as solar collector fields (Álvarez et al., 2007) and tubular heat exchangers669

(Cohen & Johnston, 1956). A QRDS does not exhibit the simple delayed670

response characteristic of lumped parameter systems with time delays unless671

P1(s) = 0. Some QRDS exhibit nonminimum phase behaviour, and can yield672

poor performance and stability properties in the closed-loop with restricted673

complexity controllers (e.g., PID controllers).674

For this work, Zc = 2 has been used which corresponds to a typical675

industrial choice (Moran & Wall, 1965) with a steady-state cumulative mass676

fraction of 85 % above 20 mesh. With this choice of cut-point size, the677

polynomials in Eq. (34) become:678

P0(s) =
((8s3 + 36s2 + 60s+ 38)/38)e−2s − 1

s(s+ 1)(s2 + 3s+ 3)
(35)

Results of this system are shown in Fig. 6. A PRBS signal of amplitude679

±1 (see Input signal graph), is used for identification in this example. With680

the Guidelines option checked, the signal parameters are: m = 4, αs = 2,681

βs = 3, τLdom = 1 and τHdom = 2. Moreover, the noise on the disturbance (n1(t)682

in Eq. (1)) as well as the noise on the output signal (n2(t) in Eq. (1)) are set683

to a value of 0.2. For the closed-loop response, both the filter parameter λ684

for the IMC controllers and the closed-loop time constant estimate τcl used685

in the control-relevant prefilter (Prefiltering) are set to a value of 4.686

A high-order ARX model with a structure of ARX-[1 9 4] is obtained from687

this identification signal with a sample time of Ts = 0.2. As in the previous688

examples, its open-loop response (ARX Order selection), together with the689

response of three ARX low-order models (ARX-[2 2 1]), Non-Prefiltering,690

Prefiltering and Iterative), are shown in the Step Responses graph. The ARX691

Order selection model produces a step response that matches well the peculiar692

dynamics of the calciner plant, with the highest goodness of fit (54.54 %); the693

remaining low-order ARX models result in goodness of fit values that range694

from poor to acceptable. Since low-order ARX model estimation involves695

a tradeoff between the fit to the noise model and the fit to the transfer696

function (as indicated by Eq. (11)), the poor model estimate obtained from697

no prefiltering is to be expected. The use of direct single-pass prefiltering698

results in improvements, but does not match an iterative approach that relies699

on first obtaining an adequate high-order model (which essentially removes700

noise from the data) prior to accomplishing control-relevant model reduction.701
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Closed-loop responses for both setpoint tracking and disturbance rejec-702

tion are shown in the Closed-loop input and Closed-loop output graphs. The703

response from the Non-Prefiltering model displays large overshoot and signif-704

icant oscillations; see the dashed red line in the Closed-loop output graph.705

The use of the single pass prefiltered model Prefiltering lowers the overshoot706

substantially, but oscillations still remain. The Iterativemodel results in over-707

damped closed-loop behaviour with gentle manipulated variable moves. At708

the end of the closed-loop response, since time equal to 60 until the end, a709

white noise is introduced in the closed-loop response in order to give an idea710

of the sensitivity of these controllers towards noise.711

The control adequacy of these various models can be understood by ex-712

amining the multiplicative error amplitude |em| shown in the Multiplicative713

Error graph. |em| is high over all frequencies for the Non-Prefiltering model,714

while the prefiltered models Prefiltering and Iterative reduce multiplicative715

error over the bandwidth of the prefilter. The multiplicative error for the716

Iterative model (magenta line) is the lowest of all the reduced-order models,717

matching closely the error of the high-order ARX model (green line) up to718

a few multiples past the bandwidth of the iterative prefilter (ITER Prefilter,719

cyan solid line). Consequently, the best closed-loop results are obtained from720

this model.721

Finally, it is important to highlight that in the majority of the examples722

presented throughout this section, the model calculated with the Iterative723

method displays the best results in terms of both open- and closed-loop724

responses. Nevertheless, the ARX high-order model from which the Iterative725

model is calculated can fail when reproducing the most relevant dynamics726

of the real plant if the identification signal, either multisine or PRBS type,727

does not satisfy the requirement of persistent excitation with respect to the728

full-order plant. Under these circumstances, the single pass Prefiltering729

option may still provide acceptable results, as only the lower persistence of730

excitation requirements for the reduced-order model need to be satisfied.731

6. Conclusions732

Control-relevant identification involves an interplay between system iden-733

tification and control design. In this paper, an interactive tool which performs734

the main stages of control-relevant identification has been developed. The735

tool provides a diverse series of functional modes which make it possible for736

control users to apply concepts and become proficient in various aspects of737
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control-relevant identification, with a low learning curve. The tool is freely738

available from http://aer.ual.es/ITCRI/.739

The interactive tool allows the user to compare the closed-loop results740

from different models which have been developed with and without control-741

relevant prefiltering. Moreover, the user can examine other considerations742

too; these include the effects of model structure (between ARX and OE743

models), closed-loop speed-of-response, noise magnitude, experiment length,744

input signal power, and so forth. The user can discover that some mod-745

els resulting from identification are not suitable for control, since they have746

not been designed taking into account control requirements. Several exam-747

ples have been presented in order to show the benefits of this identification748

methodology and to prove the functionality and capabilities of the interactive749

tool. Two of them are based on classical examples which can be found in750

the control literature; one of them is a high-order transfer function and the751

other one is a low-order transfer function with delay. These two examples752

can be useful for teaching this identification methodology to control students753

or control engineers. The last example is based on a practical application, a754

fluidized bed calciner, which is described by an irrational transfer function755

and consequently necessitates some form of model reduction to a structure756

amenable for control. This case study interactively demonstrates the advan-757

tages of control-relevant identification for real-life plants.758

Two control-relevant methodologies were examined. In principle, the it-759

erative approach is the most desirable, because the initial step of high-order760

ARX modeling will reduce the effects of noise in the subsequent model re-761

duction stage. However, under conditions of low noise, the direct single pass762

approach will yield equivalent results, with less effort. The iterative approach763

will demand a higher order of persistence of excitation in the identification764

experiment in support of high-order ARX estimation. Future efforts in de-765

veloping this interactive tool include an extension to multivariable problems766

and an evaluation of control-relevant identification under closed-loop identi-767

fication conditions.768
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Appendix A. Nomenclature773

αi Fourier coefficients
αs Input signal parameter which represents the closed-loop speed

of response
βi Zeros of the plant

β̂i Images of the zeros of the plant
βs Input signal parameter which represents the settling time of the

process
δ Adjustable parameter, discrete IMC filter
ϵ̃ Sensitivity operator
η̃ Complementary sensitivity operator
λ Desired closed-loop speed of response
ν Global output noise signal
ρ Magnitude of the input signal for identification
τcl Closed-loop speed-of-response
τdom Dominant time constant
τHdom High estimate of the dominant time constant
τLdom Low estimate of the dominant time constant
ΦeF Power spectra of the prediction-error
Φu Power spectra of input
Φν Power spectra of disturbance
ω Frequency (radians/time)
∥ · ∥2 2-norm objective function
A′(q) Autoregressive polynomial, ARX model structure
B′(q), F ′(q)Polynomials describing the model structure for inputs
C ′(q), D′(q)Polynomials describing the noise model
C Feedback controller
d Disturbance time series
e(t) Prediction error
ec Feedback or control error
eF Prefiltered prediction error
em Multiplicative error
gx Coefficient of the Padé approximat

Ĥ(q) Noised model
i Current iteration in the iterative method
L(q) Prefilter
m Number of cycles of the identification signal
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N Number of observations in the identification
Ns Signal length
nk Time delay, prediction error models
n1(t) An unmeasured disturbance in the data
n2(t) An unmeasured disturbance in the output signal
na Order of the A′(q) polynomial
nb Order of the B′(q) polynomial
nf Order of the F ′(q) polynomial
nr Number of register
ns Number of harmonics
P0(q) True plant model

P̂ (q) Estimated plant model
P1(s) Polynomial in the Laplace variable s in the numerator of P0(s)

without associated delay in the fluidized bed calciner example
P2(s) Polynomial in the Laplace variable s in the numerator of P0(s)

with associated delay in the fluidized bed calciner example
Q(s) Polynomial in the Laplace variable s which is the denominator

of P0(s) in the fluidized bed calciner example
q Forward shift operator
q−1 Backward shift operator
r Reference setpoint
t Time
Ts Sampling time
Tsw Switching time
u Input time series
V Objective function, least square
y True plant output variable
Zc Cumulative mass fraction above a cut-point size, calciner plant
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Figure captions:865

866

Figure 1. Main screen of Interactive Software Tool for Control-Relevant867

Identification ITCRI, displaying results for a simulated fifth-order system868

explained in Section 5. At lower right charts, the results of three low order869

ARX models (without prefiltering, prefiltered with single-pass prefilter and870

prefiltered with iterative prefilter) in closed loop are compared.871

872

Figure 2. Flow diagram of Interactive Software Tool for Control-Relevant873

Identification ITCRI.874

875

Figure 3. Main screen of Interactive Software Tool for Control-Relevant876

Identification ITCRI, displaying results for a simulated fifth-order system877

explained in Section 5. At lower right charts, the results of three low order878

OE models (without prefiltering, prefiltered with single-pass prefilter and879

prefiltered with iterative prefilter) in closed loop are compared.880

881

Figure 4. Main screen of Interactive Software Tool for Control-Relevant Iden-882

tification ITCRI, displaying results for the delay system example. At lower883

right charts, the results of three low order OE models (without prefiltering,884

prefiltered with single-pass prefilter and prefiltered with iterative prefilter)885

in closed loop are shown. It is possible to note the unstable behaviour of the886

model without prefiltering.887

888

Figure 5. Scheme of a fluidized bed calciner.889

890

Figure 6. Main screen of Interactive Software Tool for Control-Relevant891

Identification ITCRI, displaying results for the calciner system example. At892

right charts, both results, open-loop and closed-loop, of two low-order ARX893

models (prefiltered with single-pass prefilter and prefiltered with iterative894

prefilter) are compared.895
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