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Abstract

System identification is an essential part of control design. Control en-
gineers must devote substantial effort to identification issues in order to ob-
tain suitable models for closed-loop control. Control-relevant identification
seeks to both simplify the modeling task and improve the usefulness of the
model by taking into account controller requirements during system identi-
fication. The advantages of this methodology can be better understood and
appreciated through the interactive software tool described in this paper.
The Interactive Tool for Control Relevant Identification (ITCRI) compre-
hensively captures the control-relevant identification process for the mono-
variable problem, from input design to closed-loop control, depicting these
stages simultaneously and interactively in one screen. By simultaneously
displaying both open- and closed-loop responses of the estimated models,
ITCRI enables the user to readily assess how design variable choices during
identification and control performance requirements impact model error and
ultimately, closed-loop performance. Moreover, the work presents several ex-
amples which the aim to illustrate the tool and the considerations that arise
when control requirements are taken into account during the identification
stage.
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1. Introduction

System identification focuses on the building of dynamical models from
data (Goodwin & Payne, 1977; Isermann & Miinchhof, 2010; Juang, 1994;
Keesman, 2011; Ljung, 1999; Pintelon & Schoukens, 2001; Walter & Pron-
zato, 1997). It is often considered the most challenging and time consuming
step in control engineering practice and thus represents an important compo-
nent in the professional training of any control engineer; to this end, flexible
and simple-to-use software tools are essential. Classical system identification
is focused on satisfying “open-loop” criteria that may lead to high-order mod-
els that are not be directly suitable for control system design. However, by
taking into account controller requirements during system identification, it
becomes possible to both simplify the modeling task and improve the useful-
ness of the model with respect to the intended application of control design;
this is the essence of control-relevant identification (van den Hof & Callafon,
2003; Hjalmarsson, 2005). Thus, control-relevant identification examines the
impact of the controller on the identification problem in order to develop a
methodology that produces useful models in spite of the limitations previous
stated (Rivera et al., 1992).

In recent years, the term interactivity is becoming common in the field of
Automatic Control since advances in information technologies have provided
powerful interactive software tools for training control engineers (Dormido,
2004; Casini et al., 2004; Nassirharand, 2008). Moreover, interactive soft-
ware tools have been proven as particularly useful techniques with high im-
pact on control education (Guzman et al., 2005, 2008a) and engineer training
(Guzman et al., 2008b; Normey-Rico et al., 2009). Interactive tools provide a
real-time connection between decisions made during the design phase and re-
sults obtained in the analysis phase of any control-related project. Prior work
involving the authors has resulted in ITSIF, an Interactive software Tool for
System Identification Education (Guzman et al., 2009a,b, 2011). ITSIFE is
focused exclusively on open-loop system identification; the current work goes
beyond this to explore the problem of control-relevant identification.

This work presents a brand new Interactive Tool for Control Relevant
Identification (ITCRI). The objective of this tool is to help educate users
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with an interest in better understanding control-relevant identification for
the monovariable problem. Thus, this tool is mainly aimed at control engi-
neering students but, at the same time, it can be used by control engineers
who wish to learn or extend their knowledge regarding this advanced control
concept. Users, in one single environment, can discover all the aspects of
this methodology, from the design of the input signal used for identification
to how the prefilter affects the chosen controller. Therefore, users can, using
a single visualization of the tool as a basis, analyze how the identified model
plant fulfills the control requirements previously stated.

The tool incorporates control-relevant methods well-known by the au-
thors (Rivera et al., 1992; Rivera & Gaikwad, 1996). These methods are not
the only ways to perform control-relevant identification; sice it is possible
to find similar methods and works in literature (Zang et al., 1995; Gevers,
2002). For this reason, the main novelties of this tool are twofold: i) the fact
that it relies on interactivity to teach the main features of control-relevant
identification and ii) the functionality provided by the interactive tool itself.
Interactivity as presented in this tool is at a much higher level than in related
packages such as CLOSID (van den Hof et al., 1996). Unlike CLOSID, which
is focused primarily on implementing closed-loop identification, the interac-
tive tool presented in this work is not a toolbox, but is coded in Sysquake,
a Matlab-like language with fast execution and excellent facilities for inter-
active graphics (Piguet, 2004), but stand-alone executable files that do not
require the Sysquake software are in the public domain and available for Win-
dows, Mac, and Linux operating systems (http://aer.ual.es/ITCRI/).

The tool considers the control-relevant estimation of low-order ARX and
Output Error models conforming to the IMC Prett-Garcia PID tuning rules
(Prett & Garcia, 1988). To this aim, two prefiltered prediction-error estima-
tion procedures are considered. The prefilters are systematically defined from
closed-loop performance requirements and the setpoint/disturbance changes
to be faced in the control problem. Moreover, this tool not only allows to de-
sign the prefilter but allows to study other design variables as the input signal
and the model structure, as it can be seen in the following sections. The inter-
active tool enables understanding how the tuning parameter of the prefilter
directly influences both the open- and closed-loop responses of the system.
Validation criteria allow the user to evaluate: (i) how control-relevant model-
ing keeps the error low over a bandwidth defined by the control requirements
specified by the user and (ii) how open-loop error in the model translates
into closed-loop behaviour. In order to show the advantages of the inter-
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active tool and to relate its results with theory, some illustrative examples
(involving two classical problems from the control literature, a high order
system and a first-order system with delay) and a case study involving a
fluidized bed calciner) are presented.

The paper is organized as follows. First, a brief description of the theoret-
ical background behind the tool is presented in Section 2, with a description
of the control-relevant estimation algorithms in Section 3. In Section 4, the
functionality of the tool is described. Some illustrative examples and a case
study are presented in Section 5. Finally, Section 6 presents the main con-
clusions and future research work.

2. Theoretical Background

This section is devoted to describing the theoretical background behind
the interactive tool. The aspects of the tool that are shared with the ITSIE
tool (Guzmaén et al., 2009a,b, 2011) are summarized, while concepts referring
exclusively to control-relevant identification are emphasized.

2.1. Plant to be identified and controlled

The plant to be identified, and subsequently controlled, consists of a
discrete-time system sampled at a value specified by the user (default value
T; = 1 min) and subject to noise and disturbances according to:

y(t) = Polg)(u(t) +n(t)) + na(t) (1)

where:

y(t) is the measured output signal.

u(t) is the input signal that is designed by the user.

Py(q) is the zero-order-hold-equivalent transfer function for Fp(s) and
q is the forward-shift operator.

ny is a stationary white noise signal that allows to evaluate the effects
of autocorrelated disturbances in the data.
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e 1, is a second stationary white noise signal that is introduced directly
to the output.

o v(t) = Py(q)ni(t) + na(t) is the global output noise signal.

2.2. Input signals for identification

This tool allows to use, among the several input signals which can be used
for control-relevant identification, two of the most common ones: Pseudo-
Random Binary Sequences (PRBS) and multisine signals. A PRBS is a
binary signal generated by using shift register modulo 2 addition. One cycle
of a PRBS sequence is determined by the number of registers n, and the
switching time T, which is an integer multiple of the sampling time T;. The
signal repeats itself after N7}, units of time, where N, = 2™ — 1. Multisine
signals are deterministic, periodic signals, represented in the single input case
by the equation:

u(k) = pZS 2a; cos(wikTs + &) (2)

i=1

w; = 2mi/NTs, ngs < Ng/2

where u(k) is the value of u(t) at discrete time k. The power spectrum of
the multisine input is directly specified through the selection of the scaling
factor p, the Fourier coefficients «;, the number of harmonics ng, and the
signal length Nj.

In the tool, the input signal can be designed by means of direct parameter
specification or by applying time constant-based guidelines. In practice, little
is known about the process dynamics at the start of identification testing, and
plant operating restrictions will discourage excessively long or very intrusive
identification experiments. A guideline that provides a suitable estimate of
the frequency band over which excitation is required is:

1 Qg
<w< (3)
/BSTﬁm T(i)m
where:
e 717 s high estimate of the dominant time constant.
o 7L islow estimate of the dominant time constant.
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e [, is an integer factor representing the settling time of the process.

e «y is a factor representing the closed-loop speed of response, written as
a multiple of the open-loop response time.

Eq. (3) is used in the tool to specify design variables in both PRBS and
multisine signals. Expressions for specifying T, and n, based on Eq. (3) are
developed in Rivera (1992):

L H
Tsw S 2.87—dom’ Ns _ 2nT -1 Z 27T637—dom

4
as TS’LU ( )

where n, and N; must be integer values. Similarly, Eq. (3) can also be used to

specify design variables in multisine inputs, using guidelines found in Rivera
et al. (1993):

21 B,TH N, T«
Ns > S d07n7 5 > s+t stts 5
- T s = 27T7'£)m (5)
In both cases, increasing o, and [, will widen the frequency band of

emphasis in the input signal and increase the resolution of the input signal
spectrum.

2.3. Data preprocessing

ITCRI data preprocessing supports mean subtraction, differencing, and
substraction of baseline values, whereas mean detrending is applied by de-
fault.

2.4. Digital PID controller design

An algorithm for digital PID controller design which is based on the
Internal Model Control (IMC) design procedure for discrete-time models
(Morari & Zafiriou, 1997), is presented in Prett & Garcia (1988). These
PID controllers possess the feature that they have a single adjustable pa-
rameter § = exp(—75/\) which is directly linked to the closed-loop speed of
response \. In ITCRI, second-order plants without integrator are identified
according to the tuning rules summarized in Table 1, resulting in Prett &
Garcia (1988) controllers of the general form:

Au(k) = K.le.(k) — mrec.(k — 1) + mpe.(k — 2)] + TrAu(k — 1) (6)
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where Au(k) is the change in controller output, that is, Au(k) = u(k) —
wlk —1) = (1 — ¢ ') and e.(k) = r(k) — y(k) is the setpoint tracking error.
The parameters K., 77, Tp and 7p are coefficients of the difference equation
in Eq. (6) and are not equivalent to the continuous PID controllers parame-
ters. f’(q) refers to the estimated plant model and 7 is the complementary
sensitivity operator (Morari & Zafiriou, 1997).

Table 1: Prett-Garcia Digital PID Controller Parameters for Low-Order Models. (0 < 6 <
1, § = exp(—Ts/A) is an adjustable parameter; T is the sampling time).

P(q) n(q) KK. 11 71 TF ‘
0<B<1 el =2 15 o a 3
g>1 % 1%2% 1_—_5‘5 o1 Qo w -1
B <0 % (11%? (1q:/3ﬁ)q = 4 a (11—25

2.5. Model structure selection and parameter estimation

The interactive tool allows to work with AutoRegresive model with eX-
ternal input (ARX) models and Output Error (OE) models. Both type of
models belong to the general family of prediction-error (PEM) models which
corresponds to

Aal) = gt = k) + et )

y(t) = Pqu(t) + H(q)e(t) (8)

In Eq. (8) H(q) is the noise model and e(t) is the prediction error, usually a
white noise disturbance. A'(q), B'(¢), C'(¢), D'(¢q) and F’(q) are polynomials
in ¢, where the roots of A’(¢) and F’(q) are the poles of the plant whereas
the roots of B’(q) are the zeros of the plant. The two PEM models used in
ITCRI for control-relevant identification are shown in Table 2.

Choosing a suitable model structure is a relevant point in the identifi-
cation procedure and a prior knowledge about the system to be modelled
is a valuable help. The ARX model is the simplest model incorporating an
input signal for identification. The estimation of the ARX model is the most
efficient of the polynomial estimation methods because it is the result of
solving linear regression equations in analytic form. Moreover, the solution

7
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Table 2: Prediction-error model structures evaluated in ITCRI.

Method P(q) | H(q)| A B | C"|\D| F
ARX T8 g [ A [ B@] 1] 1] 1
Output Error ?,—Eggq*”k 1 1 B(g)| 1] 1| Fl(g

is unique, i.e., the solution always satisfies the global minimum of the loss
function. The ARX model therefore is preferable, especially when the model
order is high. The disadvantage of the ARX model is that disturbances are
part of the system dynamics. The estimated plant model p(q) and the noise
model H (¢) have the same set of poles, the roots of the A’(q) polynomial.
This coupling can be unrealistic but this disadvantage can be reduced with
a good signal-to-noise ratio.

When the disturbance e(t) of the system is not white noise, the coupling
between the estimated plant model and the noise model can bias the estima-
tion of the ARX model. In order to minimize the equation error is advisable
to set the model order higher than the actual model order, especially when
the signal-to-noise ratio is low. However, increasing the model order can
change some dynamic characteristics of the model, such as its stability.

On the other hand, the OE model allows to describes the system dynamics
separately due to there are not any shared poles between the estimated plant
model and the noise model. That is, no parameters are used for modelling
the disturbance characteristics, H (q) = 1, see Table 2. However, it requires
nonlinear optimization in the identification procedure and the minimization
can get stuck at a false local minimum, especially when the order is high and
the signal-to-noise ratio is low. However, this kind of models are better to
use when it is not necessary to estimate the noise model and it affects only
the output (Juang, 1994; Ljung, 1999).

Control-relevant identification in ITCRI is accomplished via prefiltered
prediction error estimation,

g win < 2 (9)

where ep(t) = L(q)e(t) is the prefiltered prediction error, and L(q) is the
prefilter. The use of Parseval’s Theorem enables a frequency-domain analysis
of bias effects in PEM estimation that allows deep insights into the selection

8
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of the prefilter and other identification design variables. As the number of
observations N — oo, the least-squares estimation problem denoted by (9)
can be written as:

A}l_t}I;O—ZeF 27?/ O, (w)dw (10)

where @, (w), the prediction-error power spectrum is

_ L) eI9Y _ P(edw)|2 N2 4o
Trl) = S )|2<|P0( ) = P(e)Ru(w) + | Po(e) P2, + 02, (11)

Eq. (11) helps explain systematic bias effects in identification, which can
be readily explored in ITCRI. This includes issues relating to the spectral
content in the input signal, bias that is introduced (or removed) by the
choice of model structure (particularly the noise model), and the associated
multi-objective optimization problem resulting from varying magnitudes of
the noise variances 021 and 07212. Most importantly, Eq. (11) shows that
prefiltering acts as a frequency-dependent weight on the goodness-of-fit in
prediction-error estimation. How to properly design this prefilter to take
into account closed-loop performance requirements is the focus of the ensuing

section.

2.6. Control-Relevant Parameter Estimation

The model structures required by the controllers in Table 1 are often
times too simple to describe the entire dynamic behaviour of the plant. How-
ever, control requirements can narrow the regions of time and frequency over
which an adequate model fit is necessary. Therefore, the objective of the
control-relevant identification process is to obtain improved models over the
frequency band of importance of the control problem. To fulfill this objective,
a control-relevant prefilter from the 2-norm closed-loop objective function is
developed, which acts as a frequency-dependent weight on the parameter
estimation problem and systematically incorporates control requirements in
the parameter estimation problem (Rivera et al., 1992).

Control-relevance thus requires that one defines the control problem for
which the model is intended. In the interactive tool, the control-relevant
estimation is exclusively focused on a plant model P to be used for single
degree-of-freedom feedback control using the tuning rules given in Prett &
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Garcia (1988). The control objective is to minimize the 2-norm of the control
error e.(t) = (r(t) — y(t)), that is, the difference between the reference r(t)
and the measured output signal y(t):

~ 1/2
lecll2 = (Z 63(@) (12)

k=0
The feedback controller C'(q), that is assumed to be a single degree-of-
freedom, is designed on the basis of P(q). Resulting in the following nominal
response transfer function:

. P(9)C(q)

ile) = 1+ P(q)C(q) (1)
N
é(q) = (1 —1(q)) P00 (14)

where € is the sensitivity operator of the closed-loop system (Morari &
Zafiriou, 1997). When C(q) is implemented on the plant Py(q), the dete-
rioration in control performance caused by plant/model mismatch is

B é(q)
) = T lgent

where e,,(q) = (Po(q) - P(q)) P~1(q) is the multiplicative error between the

(r(q) = d(g)) (15)

true plant and the calculated model which can describe an uncertain actu-
ator, and d(q) is the disturbance signal. Stability of C'(q) on P(q) does not
ensure stability with regards to Py(q). A computationally simpler stability
requirement used for stability is the small gain theorem:

7 () em ()| <1 V—r<w<n (16)

When Eq. (16) holds, Eq. (15) can be approximated by a first term Taylor
series if |7 (e7*) e,, (/)| < 1 over the bandwidth defined by €(q)(r — d):

ec(q) ~ €(q) (1 = n(q)em(q)) (r(q) — d(q)) (17)

The control objective function that appears in Eq. (12) can be approxi-
mated by substituting Eq. (17) into Eq. (12). Once expressed the approxi-
mation in the frequency domain via Parseval’s Theorem:

10



246

247

248

249

250

251

252

253

254

255

257

258

259

260

261

1/2

lecle = ( g [ 1671 = enPlr — dPd (18)
- . 1/2
< %/]E|2lr—d|2dw
- - 1/2
|\ gn [ 16Plenllr - dPde (19

The statement of the control-relevant parameter estimation problem is
obtained by minimizing the contribution arising from identification error:

T 1/2
min L / (™) P17 (") [P |r — d|em (¢7) ]2dw> (20)
p \ 2w

Equation (20) is the problem whose solution is solved in the time domain
by means of prefiltered ARX and OE estimation. As presented in Rivera
et al. (1992), the relationship between Eq. (11) and (20) leads to a general
definition for the control-relevant prefilter:

~ ~

L(q) = H(a)P~(9)é(a)(a)(r(q) — d(q)) (21)
It is important to highlight the components that form the prefilter L(q):

e The closed-loop transfer functions 7j(q) and €(q) that define the closed-
loop speed of response.

e The setpoint /disturbance direction (r(q) — d(q)).

e The identified plant and noise models P(q) and H(q).

Since P (q) is initially unknown, the implementation of the prefilter is inher-
ently iterative. However, in ITCRI two algorithms to calculated the prefilter
are implemented: (i) a rigorous iterative implementation that is applied to
an ARX high-order model and (ii) a simplified non-iterative alternative that
is applied directly to the data. These are summarized in the ensuing section.

11



262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

284

285

286

287

288

289

3. Control-relevant estimation algorithms

The ITCRI tool evaluates two alternate procedures for arriving at a
control-relevant low-order model conforming to the Prett-Garcia PID tun-
ing rules. In both cases, prefiltering is applied. These are described below:

Direct one-step approach using input/output data.
ARX-[2 2 1] or OE-[2 2 1] models are obtained directly from the pre-
filtered input-output data. Where ARX-[2 2 1] refers to an ARX model
with two poles, two zeros and one sample delay. Equivalently, OE-[2
2 1] refers to an OE model with two poles, two zeros and one sample
delay (MATLAB notation).

Iterative approach from a full-order estimated model.
A high-order ARX model is obtained first, followed by control-relevant
model reduction to an ARX-[2 2 1] or OE-[2 2 1] model structure.
The control-relevant model reduction step is accomplished via iterative
prefiltered estimation.

The reader is referred to Rivera et al. (1992) where the iterative and direct
(single-pass) algorithms are presented with some examples; moreover, a more
detailed description of the iterative case appears in Rivera & Gaikwad (1996).
A summary of the procedures is enclosed below.

3.1. Single-pass prefilter applied to data

This algorithm requires that the user specify up-front reasonable esti-
mates for the dominant plant time constant and desired closed-loop speed
of response, and substitute these into (21). For 7, the following structure is
used:

i(q) = ¢ " f(q) (22)
where the order of f(q) is dictated by the control design procedure. In ITCRI,
the second-order filter structure:

(1—6)%¢
(g —0)?
is used, where 6 = exp(—1.555T;/7y), with 7 being the anticipated closed-

loop time constant. Furthermore, a priori knowledge of the plant dominant
time constant is used to approximate P as:

fla) = (23)

12
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P =1=a)

where o« = e~ T8/Taom and 71,4, is an estimate of the dominant time constant

of the system. For OE estimation, H= 1, while for ARX models, H can be
approximated with the same dominant time constant guess made for P:

(24)

H(g) = —2 (25)

3.2. Iterative prefiltering approach

The iterative prefiltering approach is split in two steps. The first step
consists of estimating a full-order PEM model that meets classical validation
criteria (e.g., white residuals uncorrelated with the input). In ITCRI, this
full-order model is estimated via high-order ARX estimation, which can be
consistently estimated if a persistently exciting input is used (Ljung, 1999).
The second step consists of model reduction, in which the impulse between
u and y of the full-order model is reduced to a restricted complexity form as
summarized in Table 1. The impulse response of the full-order plant can be
adequately represented by a FIR model:

y(t) = Bla) ult — ng), (26)
B(q) = bi+byqg ' +...+b,qg ™!
where n; is chosen big enough to capture the transfer function dynamics and
ny refers to the delay estimated in the high-order model. In fact, with a
n, big enough the delay dynamics of the high-order model are included by
default. The goal is to approximate Eq. (26) with a low-order ARX model,
see Eq. (27). It is important to highlight here, that the noise term, e(t),

does not appear in Eq. (26) because the low-order ARX model captures the
dynamics of the high-order model without noise involved.

A(q)y(t) = B'(qu(t — 1) + e, (t) (27)

where

Aq) = 1+dqgt+... + a;gq_"g
B'(q) = by+bhg 4. b, g

13
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and n), and n; are low-numbered integers (1 or 2); in ITCRI, n) = 2 and
ny, = 2. In this method, the prediction error e,(t) represents the model re-
duction error. The objective minimized in ARX identification is the squared
filtered prediction error (ef(¢) = L(q)e,(t)) which for N — oo can be written
equivalently in the frequency domain as:

2

L[ A () PILE) o) (28)

:% -

B'(e?)

Al(er)
where @, (w) represents the power spectra for the input. Because the model
reduction step is applied to a noise-free data set (i.e., the full-order model’s
impulse response), the influence of noise n; and ny is greatly reduced, in
contrast to more general PEM estimation as seen in (11). The definition of
the prefilter is obtained by comparing the frequency-domain expressions of
the prefiltered ARX problem that appear in Eq. (28) to that of the control-

relevant parameter estimation problem in Eq. (20). Since u(t) is an impulse,
(®,(w) =1V w) this leads to:

B(el)

L(g) = B'(¢)""é(@)ii(q)(r(q) — d(q)) (29)
Thus, the iterative method to calculate the prefilter for open-loop stable
systems is composed of five steps:

1. Performance specification. From Table 1, the user chooses the structure
for P and 7. The user must only specify the value for the closed-loop
time constant A, which in turn defines the value of the filter adjustable
parameter according to 0 = exp(—Ts/\).

2. Initialization. In the first iteration, i.e., i = 1, y(¢), the finite impulse
response, and u(t) are filtered using L(q) defined according to Eq. (29)
with:

Blo)=1 ig=-—y  rla)-dg=-"5
One must now perform ARX estimation using y(t) and ug(t) (the pre-
filtered output and input) to obtain an initial estimate for the reduced-
order model P.

3. Iteration. Use the models P(q) and H(q) obtained from initialization,
i = 1, or from the previous iteration, i — 1, to update B’(q), 7(q) and
thus, define a new L(g). Proceed then to prefilter y(¢) and wu(t) and
redo ARX estimation.
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4. Termination. This step determines when convergence has been reached
and, therefore, the iteration is finished. For this aim, two criteria are
used. If the difference between the objective function, V', in the current
iteration, ¢, and the one in the previous iteration, s — 1, does not change
by a specified amount, that is:

Vi = Vi < TOL (30)

and the parameters of P change by less than a user-defined tolerance,
TOL, then terminate, go to Point 5. Otherwise, complete another
iteration, i.e., return to Point 3.

5. Validation. Once iterations have converged, one must verify that: (i)
the estimated model is stable and, (ii) the small gain condition in
Eq. (16) has been satisfied. Failure to satisfy these criteria implies
that either the closed-loop speed of response must decrease, or the or-
der of the model must increase, in both cases the user must return to
Point 1.

It is important to highlight here that, the iterative method as described
is the full step by step version, which involves user input at several points.
However, in the interactive software tool presented in this paper, the iterative
process is automated and totally transparent for the user. The only informa-
tion that the user has to provide is the desired closed-loop speed response,
as the model structure is fixed by the requirement to obtain a Prett-Garcia
controller.

3.8. Model validation

ITCRI provides classical methods for validation which include simulation,
crossvalidation, residual analysis on the prediction errors (for full-order ARX
modeling), and step responses. The percent output variance obtained by each
model on the crossvalidation data set is also reported. For control-relevant
validation, a valuable metric is to compare the multiplicative error e,, with
the prefilter L(q); a good control-relevant model will display low |e,,| over
the bandwidth denoted by L(g). Ultimately, the most informative piece of
control-relevant model validation is the closed-loop response resulting from
the estimated model, which in the ITCRI tool is contrasted simultaneously
with the open-loop response.
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4. Interactive Tool Description

This section is devoted to describe the main features of the interactive
tool. However, it is important to mention that interactivity, which is one of
the most important features of the tool, cannot be fully appreciated through
written text alone. Thus, the reader is cordially invited to download the tool
at http://aer.ual.es/ITCRI/ (see Fig. 1) and personally experience its
interactive features. The tool is standalone and does not require a Sysquake
license in order to execute.

ITSIFE interactive tool user interface demonstrating four cycles of a PRBS
input applied to a simulated fifth-order system. The time-constant guidelines
from Section 2 are used to define input parameters. An OE-[2 2 1] model
is compared with an ARX-[5 7 1] model obtained from exhaustive order
selection on a crossvalidation data set.

The plant to be identified can be loaded indicating the transfer function
for both the model and the prefilter. This can be done from the menu
option Mode — Simulation. The graphical distribution has been designed
according to the most important steps in a control-relevant identification. It
is described as follows (see Fig. 1):

e Input signal definition. In the main screen, at the top left corner, there
is a section called Input signal parameters. Here, the user can choose
the type of the input signal (PRBS or multisine) and by means of the
checkbox called Guidelines to decide between specifying the input signal
directly or following the guidelines given in Guzmén et al. (2009a,b,
2011). For instance, if the PRBS is selected without activating the
checkbox Guidelines, a text edit and two sliders appear to modify the
number of cycles (N Cycles), the number of registers (N Reg), and the
switching time (Tsw). At the bottom left corner, there are two graphics
namely Input signal and Power Spectrum or AutoCorrelation depending
on the chosen option. The graph above, Input signal, shows one cycle of
the input signal, the graph below represents the input signal correlation
or the input signal power spectrum depending on the chosen option in
the radio buttons at the top right of the graph. The input signal can
be modified dragging on both graphics too. Once an input signal has
been configured, the final input signal is shown in Full input signal graph,
located at the bottom of the central part of the main screen. When the
checkbox Filtered Data is activated, the input signal is filtered too.
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e Process definition. Below the section Input signal parameters, there is

another section called Model parameters, where there are two radio but-
tons that allow to choose between ARX and OE, i.e. the type of model
used for control-relevant identification. The order of the model, see
Table 2, is limited to n, = 2, n, = 2 and nk = 1 for ARX model, and
ny =2, ny, = 2 and nk = 1 for OE model. By default, the tool calcu-
lates a high-order ARX model, ARX Order selection, to compare with
the low-order models calculated through control-relevant identification.
Note that, the n,, n, and nk values of this high-order model appear
also in the section Model parameters. Depending on the type of model
used for control-relevant identification, one or two sliders will appear
to determine the values of the two parameters needed for single pass
prefiltered estimation (Prefiltering): the dominant plant-time constant
(O-L Tau), only for the OE model, and the desired closed-loop speed of
response (C-L Tau) for both the ARX and the OE models. Once a plant
structure is selected, the full input signal applied to the simulated plant
with noise is shown in black in the graph called Output signal located
at the center of the main screen. This input signal is used to obtain
the simulated “real data”, which are then used as real process data
in the estimation and validation process. In this graph, an interactive
magenta vertical dashed line defines the estimation (yellow area) and
validation data (white area) sets.

Closed-loop specification. In the section Closed loop and simulation pa-
rameters, at the center of the left side of the main screen, the parame-
ter A for the IMC filter time constant (first-order filter only) which is
used by the Prett-Garcia controller (Prett & Garcia, 1988), is specified
through a slider called Lambda. Below this slider, other two sliders
called Noise 1 and Noise 2 determine the level of noise in the data, nq,
and in the output signal, ny, respectively.

Model validation. The magenta-colored vertical line of the Output sig-
nal graphic is interactively used to define the estimation and validation
data sets. The validation data is used for crossvalidation purposes.
Model validation results are displayed in other two different graphics:
Step Responses and Correlation function of residuals. Note that, this last
one only appears if the checkbox Residuals is activated. The Step Re-
sponses graph, which is located at the upper right-hand side of the tool,
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shows the step responses for the following models: (i) ARX Order selec-
tion: an ARX high-order model, green solid line, (ii) Non-Prefiltering:
depending on the chosen type of model, an ARX or OE low-order model
without prefiltering, red or blue solid line respectively, (iii) Prefiltering:
depending on the chosen type of model, an ARX or OE low-order model
prefiltered with the single-pass prefilter implementation, red or blue
dashed line respectively, and (iv) Iterative: an ARX low-order model
prefiltered with the iterative prefilter implementation, magenta solid
line. Together with the step response of the models, a legend repre-
senting its goodness of fit in % is shown. Confidence intervals can be
also shown in this graphic activating this option from the Parameters
menu. In the Correlation function of residuals graphic, at the left of the
Step responses graphic, the same color distribution explained previously
is used to represent the results of each model. Moreover, above of this
graphic there are two radio buttons that allow to commutate between
this graphic and others two called Open-Loop Frequency Response and
Multiplicative Error. In the first one, the frequency response of the cal-
culated models is shown. In the second one, the frequency response
of the multiplicative error produced by each model is shown together
with the frequency response of both the iterative and the single-pass
prefilters.

Closed-loop response. At the lower right corner of the tool, there are
two graphs that show the closed-loop response of the resulting feedback
control system. The upper graph, where the output of the closed-
loop is shown, is called Closed-loop output. Moreover, it is possible to
simulate disturbances or noise on the closed-loop responses trough a
vertical green or black solid line, respectively. The lower graph called
Closed-loop input shows the output of the calculated IMC controllers.
This graph, which contains digitally sampled signals, is displayed as
stairstep-like graph due to the use of zero-order hold for these digital
signals. In both graphs, it is important highlight two facts: i) the
same color distribution previously explained is used to represent the
results for each resulting model and ii) the time-scale of these graphs
is independent to the one used in Step Responses graph due to time-
constant of both open- and closed-loop responses may be different.

As an interactive tool, there is no one single standard procedure for mak-
ing use of I'TCRI. However, the flowchart shown in Fig. 2 provides useful
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Figure 2: Flow diagram of Interactive Software Tool for Control-Relevant Identification
ITCRI.

guidance regarding the structure and proper utilization of the tool.

5. Illustrative Examples and Case Study

In this section, two illustrative examples and a case study are developed
to demonstrate the functionality and benefits of the interactive tool. The
two examples correspond to representative transfer function models from the
control literature, while the case study is based on an industrial process
model. In the process of working with the tool, the reader should note
how a model with a potentially poor fit in the open-loop can result in good
closed-loop performance, provided that control-relevant emphasis (through
prefiltering or other means) is used to improve the goodness-of-fit in the
regions of time and frequency that contribute the most to the closed-loop
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response.

5.1. Fifth order example

In this example, a simulated fifth-order system is considered. The system
is represented by the transfer function:

1

Po(s) = CESIE (31)
with a default sample time of T, = 1 min. Results of this comparison are
shown in Fig. 1 where an ARX-like model has been chosen. A PRBS input
signal is used for identification, with parameters: m = 3 (number of cycles),
a, = 2, (factor representing the closed-loop speed of response), 5, = 3 (factor
representing the settling time of the process), 72 = 3 (low estimate of the
dominant time constant) and 7/ =5 (high estimate of the dominant time
constant). Moreover, the noise on the output signal, ny(t) in Eq. (1), is
augmented to a value of 2, whereas the noise on the disturbance (ny(t) in
Eq. (1)) is set to 0.5.

A high-order ARX model, with a structure of ARX-[3 5 1], is obtained
from this identification signal. Its open-loop response is shown in the Step Re-
sponses graph (ARX Order selection), at the upper right-hand side of the tool,
together with the response of three ARX low-order models (ARX-[2 2 1]): (i)
Non-Prefiltering, an ARX model without prefiltering, (ii) Prefiltering, an ARX
low-order model prefiltered with the single-pass prefilter implementation, and
(iii) Iterative, an ARX low-order model prefiltered with the iterative prefilter
implementation. The validation criteria indicates the poor fit of these mod-
els. This is due to the high value of the noise signals n; and ns, since ARX
model estimation involves a tradeoff between the fit to the noise model and
the fit to the transfer function. Notice that the ARX Order selection model
displays the highest goodness of fit in %. Regarding closed-loop parameters,
the filter parameter A of the IMC controllers is set to a value of A = 5. The
closed-loop time constant estimation used in the control-relevant prefilter
(Prefiltering) model is also set to 74 = 5.

The inputs and outputs of the resulting feedback system are shown in
Closed-loop input and Closed-loop output graphs, respectively. Notice the poor
performance of the closed-loop system without prefilter (red solid line in the
graphs), with a large overshoot of 30 % of the setpoint change magnitude.
This fact is due to the high level of the noise in the data, which does not allow
a good fit of the open-loop model Non-Prefiltering. From the Step Responses
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graph, it is possible to note how there is a substantial mismatch in the static
gain between the Non-Prefiltering model and the real plant.

In the case of the Prefiltering model, the prefilter is calculated with the
single-pass algorithm, PREF Prefilter, and applied directly to the noisy in-
put/output data in order to calculate an ARX model, Prefiltering. The fre-
quency response of both the prefilter and the multiplicative error associated
with the ARX model can be observed in the Multiplicative Error graph, where
it is possible to note how the prefilter enables the ARX model to achieve the
control requirements imposed by specifiying 7., = 5. Although the Prefiltering
model displays a poor fit with an open-loop response that resembles an un-
derdamped system, the closed-loop response from this model is much better
than the previous model (resulting from Non-Prefiltering) with a substantial
reduction in overshoot as a result of control-relevant modeling.

The third model, Iterative, is calculated from the high-order ARX model
(ARX Order selection) through the iterative prefiltering method, ITER Pre-
filter. Its frequency response, together with the multiplicative error associ-
ated with the lterative model, are shown in the Multiplicative Error graph.
With the iterative approach, it is possible to calculate an ARX model that
better fulfills control requirements in comparison to the Prefiltering model.
The multiplicative error for the lterative model (magenta line) is the lowest of
all control-relevant reduced-order models, matching closely the error of the
high-order ARX model (green line) up to a few multiples past the bandwidth
of the iterative prefilter (ITER Prefilter, cyan solid line). The closed-loop con-
trolled variable response (magenta solid line) displays no overshoot, very little
oscillation, and has the fastest settling time of all reduced-order controllers
evaluated.

We note that the ITER Prefilter (cyan solid line) has a lower gain in the
high frequencies than the PREF Prefilter (gold solid line). For this reason,
both the open-loop response of the Iterative model and the closed-loop per-
formance of its feedback system are superior compared to the other methods.

We conduct an additional evaluation of the tool with the transfer func-
tion in Eq. (31), this time using Output Error (OE) model structures. The
parameters of the PRBS signal used for identification and the values for n4(t)
and no(t) in Eq. (1) remain the same as in the previous ARX test. However,
in this case the magnitude of the PRBS signal has been reduced to 0.75, see
Input signal graph in Fig. 3. Since a OE model has been chosen, the dominant
plant-time constant (O-L Tau) required by the prefilter is set to Tyom = 2.
Moreover, the closed-loop time constant 7., used in the Prefiltering model, as
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well as the filter parameter A used by the IMC controllers, are set to 2 as
well.

In this case, a high-order ARX model with structure of ARX-[2 6 1] is
obtained from this identification signal. Its open-loop response is shown in
the Step Responses graph (ARX Order selection), at the upper right-hand
side of the tool, together with the response of two OE low-order models
(OE-[2 2 1]): (i) Non-Prefiltering, an OE model without prefiltering and (ii)
Prefiltering, an OE low-order model prefiltered with the single-pass prefilter
implementation. A fourth open-loop response corresponding to an ARX low-
order model prefiltered with the iterative prefilter implementation lterative,
is shown. The goodness of fit obtained from these models is worse than the
ones obtained from the models of the previous test; this is largely due to
lower value for the input signal magnitude, compared to the ARX test.

In the Closed-loop output graph, it is possible to appreciate the poor
performance of the closed-loop system without prefilter Non-Prefiltering (blue
solid line in the graph), with a large overshoot of 20 % of the setpoint change
magnitude. Regarding the prefiltered models two consideration aspects have
to be taken into account. On the one hand, the Prefiltering model has the
best closed-loop response (blue dashed line in the Closed-loop output graph)
than the previous model without prefilter, with a smaller overshoot around
6 % of the setpoint change magnitude. On the other hand, the lterative model
has a similar closed-loop response (magenta line) than the Prefiltering model
although a little bit worse. Additionally, it spends more time to reach the
setpoint, ¢t = 12, and it has an overshoot around 9 % of the setpoint change
magnitude.

It is important to highlight that the Iterative model is more consistent with
respect to different processes noise, although in this case the Prefiltering model
has the best results. The interested reader is cordially invited to test several
simulations with the same parameters but with different processes of the noise
just doing click into the Output signal graph at the center of the interactive
tool. These tests probe that the Iterative model is more consistent than
the Prefiltering model since its performance remains equal along the tests.
Moreover, when the ratio between the magnitudes of the signal identification
and the noise is high, as happens in this case, both prefiltered models are
more consistent than the non-prefiltered one, Non-Prefiltering, which closed-
loop performance changes significantly with the processes of the noise.
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5.2. Fuirst order plant with delay example

This example is meant to show the advantages of control-relevant identi-
fication in a system with significant delay:

1

1
= _—10s ~_ - )
(10s+1)° R (82)

Po(s) = (105 + 1) 10,10(8)

which must be reduced into a plant without delay in order to conform to the
IMC Prett-Garcia tuning rules in Table 1. In order to work with the tool,
the Model Configuration feature is used to introduce a Padé approximation

in lieu of a pure delay. Rig10(s) is the tenth order Padé approximation of
e19% (see Eq. (33) and Table 3)

R10,10(5) =
G105™ — gos® + gss® — gr8™ + g6s° — 955" + gus® — g35® + g25® — 915 + go
91050 + 9957 + gss® + g7 + 9655 + g55° + gast + g35® + 925 + 15 + Go

33)

Table 3: Coefficients of R1g,10(s).

gi0 | 99 gs gr Je Js g4 g3 92 g1 90
1 [111]59.4|205.9 | 504.5 | 908.1 | 1211 | 1176 | 793.9 | 335.2 | 67.04

The default sampling time of Ty = 1 min is used, while the Order selection
limits in the menu Parameters have been augmented to 15.

A minimum crest factor multisine input has been chosen for the iden-
tification signal, its parameter values have been set to: i) Max, = 200,
maximum L2p-norm of the multisine signal, ii) m = 4 (number of cycles)
and iii) Ny = 228 (signal length) and iv) ny = 40 (number of harmonics).
Furthermore, the input magnitude of this identification signal is 41, the
values of the noise on the disturbance, n;(t), and the noise on the output
signal, ny(t), are set to 1 and 0.2, respectively. A high-order ARX model,
with a structure of ARX-[2 9 8], is obtained from this identification signal.
Its open-loop response is shown in the Step Responses graph (ARX Order se-
lection), at the upper right-hand side of the tool. This model obtains the best
goodness of fit of entire set of models presented in the graph, i.e. two OE
low-order models (Non-Prefiltering and Prefiltering) and an ARX low-order
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Iterative. It is important to highlight that the open-loop responses of the
low-order prefiltered models, Prefiltering and lIterative, display non-minimum
phase dynamics in which the pure delay is approximated through inverse
response. On the contrary, the open-loop response of the Non-Prefiltering
model does not include the inverse response and ultimately fails to control
the system for the specified control requirements.

In this example, the dominant plant-time constant (O-L Tau) for OE
models is set to T4, = 10. Both the closed-loop time constant estimate
T4 used for the Prefiltering option as well as the filter parameter A for the
IMC controllers are set to 10. The inputs and outputs of the feedback system
using those parameters are shown in Closed-loop input and Closed-loop output
graphs, respectively. Notice the unstable response of the Non-Prefiltering
model’s closed-loop response (blue solid line in the graphs), which is produced
due to the improperly modeled delay in the reduced model. However, both
low-order prefiltered models, Prefiltering and Iterative, which approximate
the time delay through a Right-Half Plane zero, show good performance and
fulfill desired control requirements.

Examining the problem in the frequency domain through the Multiplica-
tive Error graph is possible to observe how the Non-Prefiltering model has
higher multiplicative error gain (blue solid line) in the intermediate frequency
range than the Prefiltering and Iterative models (dashed blue line and magenta
solid line respectively) which show lower error in the bandwidth of the ITER
and PREF prefilters (cyan and gold solid lines, respectively). Because the
control-relevant models are better fits in this frequency range of importance
to the problem, they are able to generate better closed-loop performance
than the unprefiltered OE model.

5.3. Fluidized Bed Calciner Case Study

This case study is meant to demonstrate the tool with a complex model
from an application in the chemical process industry: a fluidized bed calciner.
A fluidized bed calciner system (which a generic schematic shown in Fig. 5)
consists of a bed of heated particles, kept fluidized by air. The bed is kept
at high temperature by in-bed combustion of fuel. Solid feed material, as a
very fine powder, is sprayed into the bed where it is calcined and sicks to the
bed particles leading to their growth. Product particles are withdrawn from
the bed at a controlled rate to maintain a constant bed mass. Seed particles,
obtained by crushing part of the product, are intermittently added to the
bed to maintain the cumulative mass fraction (Ramanathan et al., 1989).
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Figure 5: Scheme of a fluidized bed calciner.

Control of particle size distribution is better achieved through control of the
cumulative mass fraction above a cut-point size, since it is easily measured.

The transfer function which relates the particle size distribution with the
cumulative mass fraction above a cut-point size Z., has the following form
in continuous time (Ramanathan et al., 1989):

Py(s) — Py(s)e™ %
Q(s)
where P;(s), P2(s) and Q(s) are polynomials in the Laplace variable s, with
the order of Pi(s) and P(s) being less or equal than the order of Q(s).
This irrational transfer function corresponds to a quasirational distributed
system (QRDS; (Ramanathan et al., 1989)), and is obtained from a partial
differential equation (PDE). Although this kind of transfer function is not
widely seen in the control literature, it represents a large class of processes

Po(s) = (34)
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with a wide range of dynamic behaviour (Curtain & Morris, 2009), such
as solar collector fields (Alvarez et al., 2007) and tubular heat exchangers
(Cohen & Johnston, 1956). A QRDS does not exhibit the simple delayed
response characteristic of lumped parameter systems with time delays unless
Pi(s) = 0. Some QRDS exhibit nonminimum phase behaviour, and can yield
poor performance and stability properties in the closed-loop with restricted
complexity controllers (e.g., PID controllers).

For this work, Z. = 2 has been used which corresponds to a typical
industrial choice (Moran & Wall, 1965) with a steady-state cumulative mass
fraction of 85 % above 20 mesh. With this choice of cut-point size, the
polynomials in Eq. (34) become:

((8s% + 36s% + 60s + 38)/38)e™2 — 1
s(s+1)(s2+3s+3)

Results of this system are shown in Fig. 6. A PRBS signal of amplitude
+1 (see Input signal graph), is used for identification in this example. With
the Guidelines option checked, the signal parameters are: m = 4, a, = 2,
Bs =3, 7L =1land 7 = 2. Moreover, the noise on the disturbance (n(t)
in Eq. (1)) as well as the noise on the output signal (ns(¢) in Eq. (1)) are set
to a value of 0.2. For the closed-loop response, both the filter parameter A
for the IMC controllers and the closed-loop time constant estimate 7., used
in the control-relevant prefilter (Prefiltering) are set to a value of 4.

A high-order ARX model with a structure of ARX-[1 9 4] is obtained from
this identification signal with a sample time of 75 = 0.2. As in the previous
examples, its open-loop response (ARX Order selection), together with the
response of three ARX low-order models (ARX-[2 2 1]), Non-Prefiltering,
Prefiltering and lterative), are shown in the Step Responses graph. The ARX
Order selection model produces a step response that matches well the peculiar
dynamics of the calciner plant, with the highest goodness of fit (54.54 %); the
remaining low-order ARX models result in goodness of fit values that range
from poor to acceptable. Since low-order ARX model estimation involves
a tradeoff between the fit to the noise model and the fit to the transfer
function (as indicated by Eq. (11)), the poor model estimate obtained from
no prefiltering is to be expected. The use of direct single-pass prefiltering
results in improvements, but does not match an iterative approach that relies
on first obtaining an adequate high-order model (which essentially removes
noise from the data) prior to accomplishing control-relevant model reduction.

Py(s) =

(35)
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Closed-loop responses for both setpoint tracking and disturbance rejec-
tion are shown in the Closed-loop input and Closed-loop output graphs. The
response from the Non-Prefiltering model displays large overshoot and signif-
icant oscillations; see the dashed red line in the Closed-loop output graph.
The use of the single pass prefiltered model Prefiltering lowers the overshoot
substantially, but oscillations still remain. The Iterative model results in over-
damped closed-loop behaviour with gentle manipulated variable moves. At
the end of the closed-loop response, since time equal to 60 until the end, a
white noise is introduced in the closed-loop response in order to give an idea
of the sensitivity of these controllers towards noise.

The control adequacy of these various models can be understood by ex-
amining the multiplicative error amplitude |e,,| shown in the Multiplicative
Error graph. |e,,| is high over all frequencies for the Non-Prefiltering model,
while the prefiltered models Prefiltering and Iterative reduce multiplicative
error over the bandwidth of the prefilter. The multiplicative error for the
Iterative model (magenta line) is the lowest of all the reduced-order models,
matching closely the error of the high-order ARX model (green line) up to
a few multiples past the bandwidth of the iterative prefilter (ITER Prefilter,
cyan solid line). Consequently, the best closed-loop results are obtained from
this model.

Finally, it is important to highlight that in the majority of the examples
presented throughout this section, the model calculated with the lterative
method displays the best results in terms of both open- and closed-loop
responses. Nevertheless, the ARX high-order model from which the lterative
model is calculated can fail when reproducing the most relevant dynamics
of the real plant if the identification signal, either multisine or PRBS type,
does not satisfy the requirement of persistent excitation with respect to the
full-order plant. Under these circumstances, the single pass Prefiltering
option may still provide acceptable results, as only the lower persistence of
excitation requirements for the reduced-order model need to be satisfied.

6. Conclusions

Control-relevant identification involves an interplay between system iden-
tification and control design. In this paper, an interactive tool which performs
the main stages of control-relevant identification has been developed. The
tool provides a diverse series of functional modes which make it possible for
control users to apply concepts and become proficient in various aspects of
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control-relevant identification, with a low learning curve. The tool is freely
available from http://aer.ual.es/ITCRI/.

The interactive tool allows the user to compare the closed-loop results
from different models which have been developed with and without control-
relevant prefiltering. Moreover, the user can examine other considerations
too; these include the effects of model structure (between ARX and OE
models), closed-loop speed-of-response, noise magnitude, experiment length,
input signal power, and so forth. The user can discover that some mod-
els resulting from identification are not suitable for control, since they have
not been designed taking into account control requirements. Several exam-
ples have been presented in order to show the benefits of this identification
methodology and to prove the functionality and capabilities of the interactive
tool. Two of them are based on classical examples which can be found in
the control literature; one of them is a high-order transfer function and the
other one is a low-order transfer function with delay. These two examples
can be useful for teaching this identification methodology to control students
or control engineers. The last example is based on a practical application, a
fluidized bed calciner, which is described by an irrational transfer function
and consequently necessitates some form of model reduction to a structure
amenable for control. This case study interactively demonstrates the advan-
tages of control-relevant identification for real-life plants.

Two control-relevant methodologies were examined. In principle, the it-
erative approach is the most desirable, because the initial step of high-order
ARX modeling will reduce the effects of noise in the subsequent model re-
duction stage. However, under conditions of low noise, the direct single pass
approach will yield equivalent results, with less effort. The iterative approach
will demand a higher order of persistence of excitation in the identification
experiment in support of high-order ARX estimation. Future efforts in de-
veloping this interactive tool include an extension to multivariable problems
and an evaluation of control-relevant identification under closed-loop identi-
fication conditions.
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773 Appendix A. Nomenclature

o Fourier coefficients

Qg Input signal parameter which represents the closed-loop speed
of response

Bi Zeros of the plant

B; Images of the zeros of the plant

Bs Input signal parameter which represents the settling time of the
process

) Adjustable parameter, discrete IMC filter

€ Sensitivity operator

7 Complementary sensitivity operator

A Desired closed-loop speed of response

v Global output noise signal

p Magnitude of the input signal for identification

Tel Closed-loop speed-of-response

Tdom Dominant time constant

i High estimate of the dominant time constant

& Low estimate of the dominant time constant

b .r Power spectra of the prediction-error

o, Power spectra of input

D, Power spectra of disturbance

w Frequency (radians/time)

Il 2 2-norm objective function

Al(q Autoregressive polynomial, ARX model structure

)
B'(q), F'(q) Polynomials describing the model structure for inputs
C'(q), D'(q)Polynomials describing the noise model

C Feedback controller

d Disturbance time series

e(t) Prediction error

I Feedback or control error

er Prefiltered prediction error

em Multiplicative error

Jx Coefficient of the Padé approximat

H(q) Noised model

1 Current iteration in the iterative method
L(q) Prefilter

m Number of cycles of the identification signal
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Number of observations in the identification
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Time delay, prediction error models

An unmeasured disturbance in the data

An unmeasured disturbance in the output signal

Order of the A’(q) polynomial
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Number of register
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True plant model
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Figure captions:

Figure 1. Main screen of Interactive Software Tool for Control-Relevant
Identification ITCRI, displaying results for a simulated fifth-order system
explained in Section 5. At lower right charts, the results of three low order
ARX models (without prefiltering, prefiltered with single-pass prefilter and
prefiltered with iterative prefilter) in closed loop are compared.

Figure 2. Flow diagram of Interactive Software Tool for Control-Relevant
Identification ITCRI.

Figure 3. Main screen of Interactive Software Tool for Control-Relevant
Identification ITCRI, displaying results for a simulated fifth-order system
explained in Section 5. At lower right charts, the results of three low order
OE models (without prefiltering, prefiltered with single-pass prefilter and
prefiltered with iterative prefilter) in closed loop are compared.

Figure 4. Main screen of Interactive Software Tool for Control-Relevant Iden-
tification ITCRI, displaying results for the delay system example. At lower
right charts, the results of three low order OE models (without prefiltering,
prefiltered with single-pass prefilter and prefiltered with iterative prefilter)
in closed loop are shown. It is possible to note the unstable behaviour of the
model without prefiltering.

Figure 5. Scheme of a fluidized bed calciner.

Figure 6. Main screen of Interactive Software Tool for Control-Relevant
Identification ITCRI, displaying results for the calciner system example. At
right charts, both results, open-loop and closed-loop, of two low-order ARX
models (prefiltered with single-pass prefilter and prefiltered with iterative
prefilter) are compared.
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