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Almeŕıa, Spain; bDep. of Automatic Control, Lund University, Box 118 SE-22100 Lund,
Sweden

ARTICLE HISTORY

Compiled November 18, 2022

ABSTRACT

Feedforward control can be considered as the most well-known control approach
to deal with measurable disturbances. It started to be used almost 100 years ago,
and since then it is being used in most industrial processes. It is a very simple
technique that has been used typically as a complement to PID control, although it
can be combined with any feedback controller. The feedforward control design has
traditionally been performed assuming perfect cancellation of the disturbance signal,
and when this solution was not possible because of non-realizable problems, static
design solutions were usually implemented. In the last decade, this issue has been
researched and analyzed, and new designs for feedforward control have appeared to
face these problems. As a result, a set of new simple tuning rules have been obtained
providing considerable improvements in the control system performance. This paper
presents a summary of these contributions and a short history of feedforward control.
The main objective is to highlight the advantages of this control approach and to
provide a tutorial about a group of simple tuning rules with remarkable practical
application.
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1. Introduction

Load disturbances, together with model uncertainties, are one of the main reasons
for feedback control. Disturbances are exogenous signals that move the controlled
process variable away from the desired setpoint. Most industrial process are affected
by disturbances, e.g., flow variations in the input of a steam engine, solar radiation
changes affecting a solar power plant, road slopes in a car speed control, etc.

A regulation control problem is classically known as the design of a feedback control
law to reduce the disturbance effects on the process variable. In that problem, it is
assumed that the load disturbance is unmeasurable and therefore no information is
available about the disturbance signal. However, in many cases, disturbances can be
measured and this information can be incorporated into the feedback loop to contribute
to the disturbance rejection. This is the main idea of the feedforward control approach,
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as its name indicates. That is, the disturbance signal is measured and fed in advance
(forward) into the loop before affecting the process output. Thus, feedforward control
is proactive against load disturbances, while a feedback control scheme is a reactive
since it acts once the process output has been modified by the disturbance signal (Liu,
Tian, Xue, Zhang, & Chen, 2019).

Notice that in literature, the term feedforward control is used for two situations, the
problem of setpoint tracking and the load disturbance rejection problem, respectively.
In this paper, the second case is treated (Guzmán, Hägglund, & Visioli, 2012).

The first use of feedforward control for load disturbances dates from 1925 for drum
level control in boilers using the three-element control configuration (Seborg, Edgar,
& Mellichamp, 1989). For this application, the feedforward was almost a prerequisite
to handle the shrink and swell effect of the process. Around this time, feedforward
was also applied to control of distillation columns (Nisenfeld & Miyasak, 1973). Also
in this case, the feedforward technique was used as a means to handle that difficult
control problem. Feedforward was not treated as a general concept to improve feedback
control by feeding information about disturbances forward to the controller.

Feedforward control was not widely used in process control until the 60’ies, when
Greg Shinskey wrote the pioneering paper (Shinskey, 1963). The technique was also
presented in his book (Shinskey, 1967), with the latest edition (Shinskey, 1996). Since
then, the advantages of feedforward control arose and is nowadays part of most basic
control courses and textbooks, and implemented in most industrial distributed control
systems and particularly as complement to PID control. The increased use of feedfor-
ward control is of course enabled by the technical development of control equipment
during the last century.

The design of the feedforward compensator to deal with measurable disturbances is
in principle very simple and is based in open-loop dynamics of the process. The ideal
compensator is formed as the dynamics between the load disturbance and the process
output divided by the dynamics between the control signal and the process output,
with reversed sign. If this feedforward compensator is used, the effects of the load
disturbance are completely eliminated from the process output. This is the basic idea
that is taught in most undergraduate and postgraduate courses. Feedforward control is
normally introduced during a few teaching hours as a control approach to completely
remove the disturbance effect.

However, it is not always possible to implement and apply the ideal feedforward
design, since it results from a division between two transfer functions. Thus, the com-
pensator may be non-causal (having a negative delay), non-proper (having more zeros
than poles), or unstable. Perfect cancellation of the disturbance is not possible in these
cases, and there is a need for tuning rules to determine the feedforward compensator.
This situation is rarely studied in control courses, and when non-causal problems ap-
pear in industry, only static feedforward compensators are usually implemented to
treat these problems.

Although the realization problems, caused by the fact that the compensator includes
the inversion of a process transfer function, seem obvious, it is surprising that until
2011 there were no design rules presented for feedforward compensators to account
for this situation. Only a few textbooks and research papers mentioned the inversion
problems.

In (Shinskey, 1996), a design procedure for a lead–lag compensator was proposed,
but without treating the inversion problem. The static gain of the compensator is first
determined from pure static models, where the gain is chosen so that a step change in
the load is eliminated in steady state, without any action from the feedback controller.
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The time constants of a lead–lag filter are then determined with the goal to reach an
Integral Error (IE), IE = 0, with minimized the Integral Absolute Error (IAE).

Another design procedure was presented in (Seborg et al., 1989), where the feed-
forward gain is determined in the same way as in (Shinskey, 1996). The difference is
the way the time constants in the lead-lag filter are determined. (Seborg et al., 1989)
suggested a manual tuning procedure based on repeated step changes of the load.
(Coughanowr, 1991) presented a tuning procedure that was based on a training film
from Foxboro, produced in 1978. The tuning procedure is made in the same way as in
(Shinskey, 1996), but with different time constants of the lead–lag filter.

All procedures mentioned so far were based on an open-loop design, i.e. the feedback
controller is not taken into account when the feedforward compensator is designed.
This drawback was noticed in (Brosilow & Joseph, 2002), and the suggested solution
to the problem was to add another feedforward component to the control structure,
so that a load change not only affects the controller output, but also its input. As a
result, a new non-interacting control scheme was proposed. It is described in Section 5.
(Isaksson, Molander, Modén, Matsko, & Starr, 2008) also pointed out that the feedback
controller should be taken into account when designing the feedforward compensator.
The paper presented an advanced design procedure based on repeated solutions to
least-squares problems.

This lack of tuning rules motivated the starting of a new research line on this topic,
and in the last decade several tuning rules for feedforward control have been proposed.
In (Guzmán & Hägglund, 2011), the first tuning rules for feedforward compensators
were developed to deal with the time dealy inversion problems. The rules allow to
design the feedforward parameters directly from the process models and the feedback
controller parameters. The proposed design takes the feedback controller into account
in the design process, and provides a load disturbance response that has a minumum
IAE value without overshoot.

Afterwards, these tuning rules were adapted to the non-interacting control scheme
in (Rodŕıguez, Guzmán, Berenguel, & Hägglund, 2013). The rules are therefore based
on the open-loop dynamics and the controller is not taken into account. The new
rules allow to tune the response looking for non-overshoots, IAE minimization, or ISE
minimization. Moreover, a hybrid tuning rule was proposed where a faster response
without oscillations was obtained. In parallel, an analytic solution to design a feedfor-
ward which minimizes the ISE was developed in (Hast & Hägglund, 2014), also for the
non-interacting control scheme. In that work, the feedforward compensator is low-pass
filtered to assure that the controller attenuates high-frequency noise.

In (Veronesi, Guzmán, Visioli, & Hägglund, 2017), tuning rules for the static gain of
the feedforward compensators were proposed by considering the closed-loop response
and to deal with both overshoot reduction and IAE minimization solutions. Recently,
this idea was generalized in (Rodŕıguez, Aranda-Escolástico, Guzmán, Berenguel,
& Hägglund, 2020) for a wide range of processes and types of disturbance signals.
The proposed rules are inspired by the IMC approach with the aim of minimis-
ing the ISE value. Other tuning rules dealing with realization problems because of
non-minimum phase or non-proper transfer functions were presented in (Rodŕıguez,
Guzmán, Berenguel, & Hägglund, 2014) and (Rodŕıguez, Guzmán, Berenguel, &
Normey-Rico, 2014), respectively.

This tutorial paper presents an overview of most of these recent contributions to
feedforward control as support to a single feedback control loop based on PID con-
trollers. First, the load disturbance reject problem is introduced using pure feedback
control with a PID controller. The limitations of this solution are presented and an-
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alyzed. Then, feedforward control is introduced and motivated, highlighting its main
advantages. Afterwards, the inversion problems in the design of feedforward compen-
sators will be presented, and solutions to this problem will be described. After that,
the main tuning rules will be summarized and compared through several simulation
examples. Finally, some challenges and opportunities about future works will be dis-
cussed.

2. The load disturbance rejection problem

This section summarizes the general control scheme considered in this paper as well
as the controller and process transfer functions.

Figure 1 shows the classical feedback control scheme to deal with the rejection of load
disturbances. The diagram consists of the basic feedback loop with feedback controller
C, process Pu, and the signals setpoint r, control signal u, and process output y. A
load disturbance d influences the feedback loop according to the figure, with transfer
function Pd between load d and process output y.

r yu

d

C Pu

Pd

−1

ΣΣ

Figure 1. Feedback control scheme to deal with load disturbances.

The classical regulation control problem is considered when the disturbances are
not measurable. This case is traditionally represented by adding the load disturbance,
d, to the control signal, u. However, notice that this situation is a particular case of
the control scheme depicted in Figure 1, by considering that Pd is equal to Pu.

In this paper, we assume that the two process transfer functions are modeled as
first-order systems with time delay, i.e.

Pu =
Ku

1 + sTu
e−sLu Pd =

Kd

1 + sTd
e−sLd (1)

where Ku and Kd are the static gains, Tu and Td the time constants, and Lu and Ld

are the time delays.
There are, of course, processes that are not well described by these simple transfer

functions, but for process control applications this structure is mostly good enough,
and the structure has become the standard model in process control application. In
section 5, other structures including non-minimum phase and integrating dynamics
will be discussed.
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It is assumed that the feedback controller is a PID controller with transfer function

C = K

(

1 +
1

sτi
+ sτd

)

, (2)

where K is the proportional gain, τi is the integral time, and τd the derivative time,
and where τd = 0 in case of PI control and τi = ∞ for PD control. Note that (2) is
only the basic structure. In the real implementation, features like filters, anti-windup,
and limitations must be added. More complex controller structures can be used, and
the results obtained in this paper can easily be extended to other feedback controller
structures as well. For the sake of simplicity, PI control will mainly be used in this paper
to show the different results in combination with the feedforward control approaches.

The closed-loop transfer function relating the load disturbance with the process
output is given by:

Gy/d =
Pd

1 + CPu
(3)

and the closed-loop transfer function for the control effort is:

Gu/d = −
CPd

1 + CPu
(4)

Let’s consider the Lambda tuning method to design the PI controller in order to
simplify the analysis further. Thus, the PI controller parameters are given by:

K =
Tu

Ku(λ+ Lu)
, τi = Tu (5)

where λ is the desired closed-loop time constant.
An interesting analysis can be obtained by using the final value theorem and the

initial value theorem. From (3), the transfer function between d and y becomes

Gy/d =
Pd

1 + CPu
=

Kd

1 + sTd
e−sLd

1 +K
1 + sτi
sτi

Ku
1

1 + sTu
e−sLu

Using τi = Tu from the Lambda tuning rule, the expression can be simplified to

Gy/d =
sTuKde

−sLd

(1 + sTd)(sTu +KKue−sLu)

If the load disturbance is a unit step, the process output becomes

Y (s) = Gy/dD(s) = Gy/d
1

s

Now, the final value theorem can be used to calculate the integral of y after the step
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load disturbance, resulting in

IE =

∫ ∞

0
y(t)dt = lim

s→0
s ·

1

s
Y (s) = lim

s→0

TuKde
−sLd

(1 + sTd)(sTu +KKue−sLu)
=

KdTu

KKu

Here, fore simplicity, it is assumed that the setpoint is zero. Determining controller
gain K from the Lambda tuning rule (5) finally gives

IE =
KdTuKu(λ+ Lu)

TuKu
= Kd(λ+ Lu) (6)

Since the controller is tuned using the Lambda tuning rule, the response is overdamped
as long as λ is not too short. In this case, IE is equal to IAE which is one of the most
common measures of process control performance. Equation (6) shows that the IE
value is proportional to the gain of Pd and that it increases when the delay of the
process Pu and the desired time constant of the closed-loop system, λ, increases.

From (4) the transfer function between d and u becomes

Gu/d = −
CPd

1 + CPu
= −

K
1 + sτi
sτi

Kd
1

1 + sTd
e−sLd

1 +K
1 + sτi
sτi

Ku
1

1 + sTu
e−sLu

Using τi = Tu from the Lambda tuning rule (5), the expression can be simplified to

Gu/d = −
KKd(1 + sTu)e

−sLd

(1 + sTd)(sTu +KKue−sLu)

If the load disturbance is a unit step, the control signal becomes

U(s) = Gu/dD(s) = Gu/d
1

s

Now, the initial value theorem can be used to calculate the initial derivative of u after
the step load disturbance. Whithout loss of generality, it can be assumed that Ld = 0.

lim
t→0

u̇(t) = lim
s→∞

s · sU(s) = lim
s→∞

−
sKKd(1 + sTu)

(1 + sTd)(sTu +KKue−sLu)
= −

KKd

Td

Determining controller gain K from the Lambda tuning rule (5) finally gives

lim
t→0

u̇(t) = −
KdTu

KuTd(λ+ Lu)
(7)

The initial derivative of the control signal is a measure of the control signal activity.
Comparing Equations (6) and (7), it is seen that the factor (λ + Lu) appears in
both equations, in the numerator in (6) and in the denominator in (7). Thus, there
is a tradeoff between performance and control signal activity when it comes to load
disturbance rejection using feedback control.

The analysis in this section has demonstrated that load disturbance rejection us-
ing feedack control is a trade-off between rejection efficiency and control signal effort.

6



However, one should keep in mind that this trade-off can not be made without tak-
ing other aspects like robustness and stability into account. These aspects limit the
possibility to reject load disturbances effectively.

Nevertheless, if the load disturbances are measurable, feedforward control can be
used to solve this problem and improve the load disturbance rejection further without
influencing robustness and stability. This is discussed in the next section.

3. Feedforward control

Feedforward control can be considered as the classical solution to deal with the mea-
surable disturbance rejection problem and treat the limitations of feedback control
described above. The feedforward control scheme is presented in Figure 2. A feed-
forward compensator Cff is connected in open-loop to counteract the effect of the
measurable disturbance.

r u y

d

ΣΣΣ C Pu

−Cff Pd

−1

Figure 2. Classical feedforward control scheme to deal with measurable disturbances.

According to this scheme, the transfer function between disturbance d and process
output y becomes

Gy/d =
Pd − PuCff

1 + CPu
(8)

where the feedforward compensator should be calculated in the following way in order
to remove the disturbance effect:

Cff =
Pd

Pu
(9)

When (9) is realizable and is substituted in (8), the disturbance signal is completely
removed before affecting the process output. As Pu and Pd are represented by low-order

7



models, then (9) is usually given by a classical lead-lag filter:

Cff = kff
sTz + 1

sTp + 1
e−sLff (10)

Notice that in process control plants, more complex structures are seldom used.
Using the transfer functions (1) in (10), the feedforward compensator becomes:

Cff =
Kd

Ku

sTu + 1

sTd + 1
e−s(Ld−Lu) (11)

4. Inversion problems

From (11), it can be seen that when Ld < Lu the compensator is not realizable and thus
perfect cancellation is not be possible. When this situation arises, the performance of
the feedforward control approach will be considerably affected and additional analysis
is required.

Notice that realization problems can appear because of some other reasons such as
non-minimum phase behavior, improper transfer function or integrator poles. However,
in this work, the delay inversion problem will be used as a guide case to illustrate all
the discussions and motivations around the realization problems. However, in Section
6, solutions for some other realizable problems will be also presented.

To illustrate the delay inversion problem, consider the following example:

Pu =
1

1 + 2s
e−2s Pd =

1

1 + s
e−s (12)

The PI controller parameters are set to K = 0.3431 and τi = 2 according to the
λ method and considering λ = (0.5 +

√
2)Lu = 3.83 to avoid oscillatory responses

(Guzmán, Hägglund, Veronesi, & Visioli, 2015). From (11), the feedforward compen-
sator becomes

Cff =
2s+ 1

s+ 1
(13)

where the delays in Pu and Pd have been neglected since they would had provided a
non-causal compensator.

The proposed example has been simulated for the open-loop (when the feedback
controller is disconnected) and closed-loop cases. Figure 3 shows the simulation re-
sults. As observed, the disturbance cannot be completely rejected because of the delay
inversion problem. The reason is that the feedforward contribution can only act on the
system once the disturbance has affected the process output, that is, after Lu−Ld = 1
second. It is interesting to see that the closed-loop case provides the worst response
with a significant overshoot (Guzmán & Hägglund, 2011). This is not surprising. The
feedforward compensation is designed for the situation when a complete elimination
of the disturbance response is possible, i.e. when no feedback action from controller
C is made. Now, both the feedforward compensator and the feedback controller re-
acts on the disturbance, resulting in an overcompensation and therefore a significant
overshoot.
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Figure 3. Example of delay inversion problem. Open-loop (C = 0) and closed-loop responses are compared
for an unitary step disturbance signal at time instant t = 1.

The delay inversion problem can easily be analyzed in the open-loop case, which is
given by:

Gol = Pd − PuCff (14)

Figure 4 shows the simulation result for the previous example only for the open-
loop case. In the upper graphic, the two terms of (14) are simulated separately. As
observed, the process output is affected by the load disturbance from the time instant
t = 2 seconds through the Pd dynamics, and the feedforward action cannot act on the
process output until after Lu seconds, which corresponds to the time instant t = 3
seconds. Thus, the feedforward compensation arrives too late, after Lu − Ld seconds,
and the disturbance cannot be completely rejected.

The previous analysis opens a very interesting idea regarding feedforward tuning.
As observed from Figure 4, the dotted line in the upper graphic is shaped by the feed-
forward compensator design, which indirectly determines the process output response
given in the bottom graphic. In this case, the zero and pole of the compensator are
set according to the classical tuning rule given in (11). However, if the feedforward
pole, Tp, is tuned to be smaller or larger than Td, the response of the process output
can easily be made faster or slower as shown in Figure 5. Thus, this result shows that
when non-realization problems arise, tuning rules for feedforward compensators can
highly contribute to improve the load disturbance rejection.
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Figure 4. Understanding the delay inversion problem. Analysis of the open-loop response for an unitary step
disturbance signal at time instant t = 1.

Therefore, from the previous examples, two important conclusions can be drawn.
First, it was noticed that when the disturbance effect cannot be completely rejected by
the feedforward compensator, the closed-loop response is highly affected as shown in
Figure 3. The feedback and feedforward compensators should be co-designed somehow
to account for this problem. A second conclusion is derived from the results presented
in Figure 5, where it was demonstrated that by proposing new tuning rules for the
feedforward parameters, remarkable improvements of the process output performance
can be obtsained.

5. Solutions for the realization problem and tuning rules for feedforward

This section introduces and summarizes different solutions and tuning rules for feed-
forward control when non-realizable problem appears. First, classical solutions are
presented, and afterwards, several tuning rules to improve the control system per-
formance according to classical indexes such as IAE, IE or process output overshoot
are described. Most of the proposed tuning rules are presented for the delay inversion
problem, which is the case where tuning methods are really necessary. Then, additional
rules for the non-minimum and integrating cases are also introduced.
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Figure 5. Effect of feedfoward compensator pole, Tp. Open-loop response for an unitary step disturbance
signal at time instant t = 1.

5.1. Classical solutions

5.1.1. Static feedforward compensator

A static feedforward compensator is a solution widely used in industry, which is given
by:

Cff =
Kd

Ku
(15)

The reason to use this simple solution is that drastic improvements can be obtained
compared with pure feedback control by using just this simple compensator. More-
over, it can be used to account for any non-realizable problem. However, the resulting
performance is also limited because of its simplicity.

5.1.2. Non-interactive control scheme

In (Brosilow & Joseph, 2002), a solution was proposed based on a modification of the
classical feedforward control scheme, resulting in the control structure presented in
Figure 6. This control approach is known as the non-interacting feedforward control
scheme, where the main contribution is the use of a new block, H, which is determined
as follows

H = Pd − PuCff , (16)
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and which allows to remove the disturbance influence from the feedback error.
Thus, this control structure allows to separate the design of feedforward and feed-

back controllers when the perfect compensator is not realizable. Therefore, it is possi-
ble to design the feedforward compensator by just considering the open-loop response
from the disturbance avoiding the closed-loop effects observed in Figure 3.

Notice that this scheme can be combined with any feedforward structure, e.g. the
static feedforward compensator described above.

r u y

d

ΣΣΣ C Pu

−Cff PdH

−1

Figure 6. Block diagram illustrating the non-interacting feedforward control scheme.

5.2. Tuning rules for delay inversion problem

The delay inversion problem within the feedforward control approach has been widely
studied based on the motivation presented in Section 4. As a result, different tuning
rules have been proposed to improve the system performance. The tuning rules are
obtained for the two control schemes presented above, the classical control scheme and
the non-interactive control approach. In the first case, the tuning rules must consider
the overshoot effect when feedback and feedfoward actions are combined, such as
presented in Figure 3, but with the non-interactive control scheme, open-loop tuning
rules can be directly formulated.

5.2.1. Tuning rules for classical control scheme

For the classical control approach, three tuning rules are presented. The guidelines
for all of them are given below, but more information ca be found in (Guzmán &
Hägglund, 2011; Rodŕıguez et al., 2020; Veronesi et al., 2017).

5.2.1.1. Rule #1. IAE minimization and overshoot reduction: kff and Tp.
The fist tuning rule consists in setting the feedforward gain and pole in order to reduce
the overshoot in the process output and minimize the IAE value. It is summarized as
follows (Guzmán & Hägglund, 2011):

(1) Set Tz = Tu and Lff = max(0, Ld − Lu).
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(2) Calculate Tp as:

Tp =











Td Lu − Ld ≤ 0

Td − Lu−Ld

1.7 0 < Lu − Ld < 1.7Td

0 Lu − Ld > 1.7Td

(3) Calculate the compensator gain kff as:

kff =
Kd

Ku
−

K

τi
IE

IE =

{

Kd (Tu − Td + Tp − Tz) Ld ≥ Lu

Kd (Lu − Ld + Tu − Td + Tp − Tz) Ld < Lu

(4) End of design.

5.2.1.2. Rule #2. IAE minimization: kff . In this second tuning rule, only the
feedforward compensator gain is calculated for IAE minimization. The rule is given
by (Veronesi et al., 2017):

(1) Set Tz = Tu and Tp = Td.
(2) Calculate the compensator gain kff as:

kff =
Kd (Td + Ld)

Ku (Td + Lu)

(3) End of design.

5.2.1.3. Rule #3. ISE minimization: kff . The third tuning rule is focused on
minimizing the ISE value by setting the feedforward compensator gain in the following
way (Rodŕıguez et al., 2020):

(1) Set Tz = Tu and Tp = Td.
(2) Calculate the compensator gain kff as:

kff =
Kd

Ku
e
−

Lu−Ld
λ+Td

where λ is the closed-loop time constant given for tuning the PI controller with
the Lambda method.

(3) End of design.

5.2.2. Tuning rules for non-interacting control scheme

In the case of the non-interactive control scheme, two tuning rules are presented to
design the feedforward compensator for the open-loop case. Detailed information can
be found in (Hast & Hägglund, 2014; Rodŕıguez et al., 2013).
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5.2.2.1. Rule #4. Overshoot removal, and IAE/ISE minimization: Tp.
This tuning rule tries to generalize the results obtained in (Guzmán & Hägglund,
2011). Three different rules are given for the feedforward compensator time constant,
Tp, depending on the desired performance objective: IAE minimization, ISE minimiza-
tion, or overshoot removal, respectively. The guideline for this tuning rule is given as
follows (Rodŕıguez et al., 2013):

(1) Set kff = Kd/Ku, Tz = Tu and Lff = max(0, Ld − Lu).
(2) Calculate Lb = Lu − Ld.
(3) Calculate α depending on the desired behaviour:

α =















Lb

2Td(1−
√
e−(Lb/Td))

aggressive (ISE minimization)

1.7 moderate (IAE minimization)

4 conservative (overshoot removal)

(4) Set Tp according to:

Tp =











Td Lb ≤ 0

Td − Lb

α 0 < Lb < 4Td

0 Lb ≥ 4Td

If Tp = 0, select a value close to zero to obtain a realizable compensator.
(5) Set H(s) with Equation (16) for the non-interacting scheme.
(6) End of design.

5.2.2.2. Rule #5. ISE minimization: Tp and Tz. In this case, both the pole
and zero of the feedforward compensator are tuned to minimize the ISE value. With
this rule, additional considerations must be added to account for undesirable peaks in
the control signal. The different steps are given in the following (Hast & Hägglund,
2014):

(1) Calculate L = Lu − Ld.
(2) If L < 0, then set Lff = 0.
(3) Set kff = Kd/Ku

(4) Calculate a = Tu/Td and b = a(a+ 1)eL/Td .
(5) Calculate Tp as:

Tp =







3a− 1− b+ (a− 1)
√
1 + 4b

b− 2
τd If b < 4a2 − 2a or b < a+

√
a

Tp = 0 Otherwise

(6) Calculate Tz as:

Tz = (Tp + Tu)

(

1−
2τu

b(Td + Tp)

)

(7) If Tp = 0, the feedforward compensator is augmented with a second-order low-
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pass filter as follows:

Cff = kff
Tz s+ 1

(Tf s+ 1)2
e−Lff s

where Tf is the time constant of the filter. To obtain a control signal with a peak
of ∆ value (being ∆ > 1), Tf should be calculated with the following expression:

Tf =
Tz

1 + 1

W0( e−1

∆−1)

where W0 is the principal branch of the LambertW function (Hast & Hägglund,
2014).

(8) Set H(s) with Equation (16) for the non-interacting scheme.
(9) End of design.

5.3. Tuning rules for non-minimum phase and integrating behaviours

Apart from the delay inversion problem, other non-realizable situations can also ap-
pear, such as those because of non-minimum phase or integrating dynamics. No-
tice that other cases, like improper transfer functions can be solved by adding non-
dominant poles to the feedforward compensator. This section summarizes two tuning
rules for right-half plane zeros (Rodŕıguez, Guzmán, Berenguel, & Hägglund, 2014)
and integrating behaviours (Rodŕıguez et al., 2020), which are proposed for the non-
interactive control scheme and the classical control approach, respectively.

5.3.1. Rule #6. Tuning rules for non-minimum phase dynamics

To consider the right-half plane zero case, the transfer function for Pu presented in (1)
is modified as follows:

Pu =
Ku(1 + sβu)

1 + sTu
e−sLu (17)

with βu < 0.
Moreover, the feedforward control structure is also modified to account for this

particular case, resulting in the following transfer function:

Cff = kff
sTz + 1

sTp + 1

sβff + 1

sTff + 1
e−sLff (18)

where βff and Tff are new tuning parameters.
The proposed tuning rule is derived for the non-interactive control scheme to reach a

desired settling time, tst, or minimize the ISE value. The final guideline is summarized
as follows (Rodŕıguez, Guzmán, Berenguel, & Hägglund, 2014):

(1) Set kff = Kd/Ku, Tp = Td, Tz = Tu and Lff = max(0, Ld − Lu).
(2) Set βff = Td.
(3) Set Tff according to the desired specification:
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Tff =







tst − Ld

3
To reach a settling time tst

βu To minimize ISE

(4) Set H(s) with Equation (16) for the non-interacting scheme.
(5) End of design.

5.3.2. Rule #7. Tuning rules for integrating dynamics

In this case, the transfer function Pu is also modified to include the integrating behavior
in the following way:

Pu =
Ku

s(1 + sTu)
e−sLu (19)

The tuning rule is proposed for the classical control scheme and the delay inversion
problem is also considered. The rule minimizes the ISE value and the feedforward
compensator is calculated according to the following structure:

Cff = kff
s(sTz + 1)

(sTp + 1)2
e−sLff (20)

Then, the tuning rule is summarized as follows (Rodŕıguez et al., 2020):

(1) Set Tz = Tu and Tp = Td/2.
(2) Calculate the compensator gain kff as:

kff =
Kd

Ku
e
−

Lu−Ld
2λ+Td

where λ is the closed-loop time constant given for tuning the PI controller with
the Lambda method.

(3) End of design.

6. Examples

This section presents a simulation study to compare and discuss the different tuning
rules described above, where the main advantages and disadvantages of them are
highlighted. Graphical and numerical results are presented for all the simulations. In
the case of the numerical values, IAE, ISE, maximum overshoot and maximum control
signal peak are given as metrics to quantify the results. The case of using only feedback
control without feedforward compensator is also included in the numerical results to
show how much feedforward can contribute in the disturbance rejection problem.

6.1. Delay inversion case

In this first example, the same process transfer functions (12) as used above are con-
sidered. The same PI controller tuning is also used, with K = 0.3431 and τi = 2.
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Figure 7. Simulation example for the delay inversion case with the classical feedforward control scheme and
for an unitary step disturbance signal at time instant t = 1. The classical static and lead-lag compensators are
compared with the tuning rules #1, #2 and #3.

The simulation results are performed separately for the tuning rules using the classi-
cal control approach and those based on the non-interactive control scheme for a fair
comparison.

Figure 7 shows the simulation results using the classical control scheme. The tuning
rules #1, #2 and #3 are compared together with classical solutions based on static
and lead-lag feedforward compensators. Table 1 shows the numerical results for these
simulations. As observed, all the tuning rules provide better results than the classical
feedforward design, since the large overshoot in the classical design is reduced consid-
erably. Looking at the IAE and IE values, the classical design and rules #2 and #3
obtain about the same values, whereas rule #1 gives a significant reduction of these
performance indices. One reason is that rule #1 has reduced time constant Tp in the
compensator significantly, whereas rule #2 and #3 have kept the time constant used
in the classical design. It is interesting to note that time constant Tz is the same in all
tuning rules.

So, the rule #1 provides the best result from a performance point view obtaining
the fastest response with only a small overshoot. However, it provides also the largest
control signal peak. In this example, rule #2 is the only one that eliminates the over-
shoot completely, and gives the smallest control signal peak. Tuning rule #3 obtains
an interesting tradeoff between performance and control effort. Thus, according to
these results, three different options are available for the delay inversion case and us-
ing the classical control scheme: conservative response according to rule #2, fast but
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Figure 8. Simulation example for the delay inversion case with the non-interacting feedforward control scheme

and for an unitary step disturbance signal at time instant t = 1. The classical static and lead-lag compensators
are compared with the tuning rules #4 and#5 to minize the ISE value.

aggressive result for rule #1, and balanced response for rule #3.

Table 1. Numerical results for the simulations of Figure 7.

Tuning rule

Variable FBa Static FF Classical Lead-Lag Rule #1 Rule #2 Rule #3

IAE 5.82 2.87 1.78 0.70 1.94 1.42
ISE 3.55 0.83 0.45 0.24 0.69 0.49
Overshoot (%) 0.00 19.38 14.45 4.81 0.00 2.73
Control peak 1.00 1.32 1.95 4.10 1.30 1.59

kff – 1.00 1.00 0.93 0.667 0.813
Tz – – 2.00 2.00 2.00 2.00
Tp – – 1.00 0.412 1.00 1.00

aFB refers to the use of only the feedback controller and without feedforward compensator,
which has been included for comparisons.

Now, the same example is used for the non-interactive control scheme, and the
tuning rules #4 and #5 that are derived for this scheme are investigated. Figure 8
and Table 2 show the results. Again, classical static and lead-lag designs are included
for analysis purposes. In this case, the version of rule #4 that is based on the ISE
criteria is used, since this is the criteria also used in rule #5.

In Table 2 it can be seen that all tuning rules keep the gain used in the classical
design, and that rule #5 is the only rule that adjusts time consant Tz. Time constant
Tp is chosen differently in all rules. Tuning rule #5 provides a Tp value equal to zero,
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which results in a non-realizable feedforward compensator. Thus, such as suggested
above in the guideline for this tuning rule, a second-order low-pass filter must be
added. In this case, the filter time constant was tuned as Tf = 0.064 in order to reach
a control signal peak similar to the one obtained with the rule #4.

Both tuning rules #4 and #5 considerably improve the performance with respect to
classical solutions. The two rules have about the same IAE and ISE values, and these
values are significantly smaller than those given by the classical design. However,
strong control signal peaks are required to reach those improvements, and rule #4
gives a significant overshoot. These problems can be solved by re-tuning the filter
time constant in rule #5 for a smaller control signal peak, or using the other tuning
options available for rule #4.
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Figure 9. Simulation example for the delay inversion case with the non-interacting feedforward control scheme
and for an unitary step disturbance signal at time instant t = 1. The classical lead-lag compensator is compared
with the tuning rule #4 for tuning options: Overshoot removal, ISE mimimization and IAE minimization.

Figure 9 shows a comparison between the classical lead-lag compensator with the
tuning rule #4 for its three tuning options: overshoot removal, ISE minimization and
IAE minimization. Numerical results are given in Table 2. Now, a tradeoff between
performance and control effort can easily be selected ranging from the most conserva-
tive result with the overshoot removal option to the most aggressive response for the
ISE minimization result. All three rules have the same gain and Tz as the classical
design. The only parameter that differs between the tuning rules is time constant Tp.

Tables 1 and 2 show that the use of feedforward improves the load rejection sig-
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Table 2. Numerical results for simulations of Figure 8 and 9.

Tuning rule

Variable FBa Static FF Classical Lead-Lag Rule #4 Rule #4 Rule #4 Rule #5
(IAE) (ISE) (OS)

IAE 5.82 1.99 1.00 0.62 0.66 0.76 0.63
ISE 3.55 0.75 0.37 0.23 0.22 0.30 0.20
Overshoot (%) 0.00 0.00 0.00 5.77 14.5 0.00 2.2
Control peak 1.00 1.00 2.00 4.86 9.40 2.67 8.61

kff – 1.00 1.00 1.00 1.00 1.00 1.00
Tz – – 2.00 2.00 2.00 2.00 1.51
Tp – – 1.00 0.412 0.213 0.75 0.00

aFB refers to the use of only the feedback controller and without feedforward compensator, which has been
included for comparisons.

nificantly compared with feedback only. The IAE value can be decreased by almost
an order of magnitude. The tables also show that a significant improvement can be
obtained using the new tuning rules compared to the classical tuning rules. Comparing
the two tables, it can also be observed that better performance results can be obtained
using the non-interactive control scheme, but also that larger control signal peaks are
required to obtain these results. If a criteria for a tradeoff between performance and
control effort is considered, rules #1 and #4 (OS) are probably the ones with best
results for the classical and non-interactive control schemes, respectively.

6.2. Non-minimum phase case

For the non-minimum phase example, the transfer function Pu for the previous example
was modified to include a positive zero as follows:

Pu =
(−0.5s+ 1)

2s+ 1
e−2s (21)

and the same Pd transfer function was used.
In this case, the Lambda method was used by considering Lu ≃ Lu + β, where β

is the zero constant, β = 0.5 in this example. Thus, the PI controllers parameters
become K = 0.2929 and τi = 2.

Figure 10 and Table 3 show the simulation results for this example using the non-
interactive control scheme. Classical static and lead-lag compensator are considered
together with the tuning rule #6. The rule is used for the two options described above,
to reach a desired settling time (tst = 3 seconds in this example) and to minimize the
ISE value.

Both tuning options improve the results of the classical solutions in terms of the
IAE and ISE values, but with larger control signal peaks. There are no overshoots in
the responses, but because of the inverse response bahaviour, there will be an increase
in the load disturbance peak, and this peak increases when the feedforward gains
increase. However, notice that the tuning option for fixing the settling time can be
used to find a tradeoff between performance and control effort.
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Figure 10. Simulation example for the non-minimum phase case with the non-interacting feedforward control
scheme and for an unitary step disturbance signal at time instant t = 1. The classical static and lead-lag

compensators are compared with the tuning rule #6 for the tuning options: settling time and ISE minimization.

Table 3. Numerical results for simulations of Figure 10.

Tuning rule

Variable FBa Static FF Classical Lead-Lag Rule #6 ST Rule #6 ISE

IAE 6.62 2.50 1.51 1.20 1.10
ISE 4.39 1.19 0.83 0.78 0.80
Overshoot (%) 0.00 0.00 0.00 0.00 1.70
Control peak 1.00 1.00 2.00 3.00 4.00

aFB refers to the use of only the feedback controller and without feedforward compensator,
which has been included for comparisons.

6.3. Integrating case

Finally, a process with integrating dynamics is analyzed. So, the transfer function Pu

in Equation (12) is modified to add an integration in the following way:

Pu =
1

s(2s+ 1)
e−2s (22)

and transfer function Pd remains the same.
In this case, a PD controller was used following the lambda method approach, result-

ing inK = 0.1716 and τd = 2. In this case, the classical static feedforward compensator
cannot be evaluated since it would provide a stead-state error. The simulation results
are provided in Figure 11 and Table 4, where the classical lead-lag compensator is
compared with the tuning rule #7 using the classical control scheme. Notice that the
classical lead-lag compensator would not be realizable, and it was calculated adding
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an extra pole of Td/20.
As observed, the rule #7 slightly improves the performance of the classical control

scheme but with a much smaller control signal peak. Thus, this rule provides a very
promising tradeoff between performance and control effort.
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Figure 11. Simulation example for the integrating case with the classical feedforward control scheme and for

an unitary step disturbance signal at time instant t = 1. The classical lead-lag compensator is compared with
the tuning rule #7.

Table 4. Numerical results for simulations of Figure 11.

Tuning rule

Variable FBa Classical Lead-Lag Rule #7

IAE 5.83 0.90 0.85
ISE 3.57 0.25 0.30
Overshoot (%) 0.00 15.15 8.36
Control peak 1.56 39.98 7.13

aFB refers to the use of only the feedback controller and
without feedforward compensator, which has been included
for comparisons.

7. Challenges and opportunities

The results presented in this paper have highlighted the relevance and the importance
of feedforward control for the load disturbance rejection problem. It was shown to
be a very powerful complement to feedback control, and even when non-realization
problems arise, simple tuning rules have been derived that improve the results of
classical design methods considerably.

The presented design approaches are results of the research on this topic during the
last decade, becoming a very interesting research field with remarkable practical capa-

22



bilities and where many challenges and opportunities are still open for investigation.
Some of these are:

• Robustness. Most of the tuning rules summarized above are based on the pro-
cess parameters and are derived for the nominal case. Thus, robustness analy-
sis and robust design methodologies are required to account for this problem.
In the literature, some preliminary works are available for the classical solu-
tions (Adam & Marchetti, 2004; Hoyo, Moreno, Guzmán, & Hägglund, 2018;
Rodŕıguez, Normey-Rico, Guzmán, & Berenguel, 2016; Vilanova, Arrieta, &
Ponsa, 2009), but tuning rules with robust capabilities are still a challenging
problem.

• Nonlinear or Adaptive solutions. All industrial processes are nonlinear systems.
Typically, the processes are controlled around an operating point using linear
models and linear control approaches. However, there can be situations where
the system moves among different operating points and thus the proposed control
algorithm should account for that. Therefore, nonlinear or adaptive solutions for
the feedforward control problem is another topic with research opportunities.

• Extensions to multivariable systems. Interactions in multivariable processes
can be considered as disturbances among the different control loops. In fact,
feedforward-based solutions are commonly used in multivariable control as de-
coupling approaches. Thus, the extension or application of the proposed feed-
forward tuning rules to the decoupling control problem is another promising
research topic.

• Detection and evaluation. To use feedforward for load disturbance rejection, rel-
evant and measurable load disturbances useful for feedforward must be deter-
mined. This is often not a trivial task. Therefore, an interesting research topic
is to derive methods for finding such signals in multivariable control systems.
Related to this, it is also interesting to derive indices that quantify the improve-
ments that can be obtained by using feedforward from different disturbance
signals. Results on this are are given in (Guzmán et al., 2015).

• Practical implementation. Only a few of the new feedforward tuning rules
have been evaluated in industrial facilities (Garćıa-Mañas, Guzmán, Rodŕıguez,
Berenguel, & Hägglund, 2021; Montoya-Ŕıos, Garćıa-Mañas, Guzmán, &
Rodŕıguez, 2020). So, the evaluation and experimental analysis of these solu-
tions is another challenging topic to be considered.

8. Conclusions

Feedforward control started to appear in process control around hundred years ago,
but in these early implementations the technique was not treated as a general concept
to improve load disturbance rejection. This view emerged in the sixties, and since then
the use of the feedforward technique has grown and is now a common component in
process control instrumentation solutions.

There are realization problems associated with feedforward control, since it is desired
to use process transfer function inverses in the compensators. In industry, this problem
has traditionally been avoided by restricting the feedforward compensator to just static
gains. However, significant improvements can be obtained by using more advanced
compensators, e.g. lead-lag filters, but to obtain these improvements, tuning rules
for the feedforward compensators that take the inversion problems into account are
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needed. It is surprising that such rules started to appear as late as ten years ago. This
paper has provided a survey of the most common tuning rules that have appeared in
the last decade, and a comparison of these methods has been made.

Two feedforward structures have been treated, the classical one and the non-
interacting one, where the non-interacting structure enables a separation between the
feedback and the feedforward actions. Seven tuning rules with different approaches and
design goals have been presented and compared. They all have their advantages and
disadvantages, and are useful for different purposes. It is shown that they can provide
a significant improvement of the load disturbance rejection in terms of decreased IAE
and ISE values. As for the pure feedback control case, there is a trade-off between
performance and control signal effort, and the different tuning rules provide different
solutions to this balance. A great advantage with feedforward control is that stability
and robustness issues are not influenced by feedforward, and are therefore not part of
the trade-off.

Feedforward control is an old control technique, but it is a young research field. It
is our hope that this tutorial paper will provide an inspiration to further research in
the area.
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