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Introduction

It is well-known that the dual algebra of a coalgebra C is a topological algebra with
the weak-∗ topology. In this paper we study some finiteness conditions relative to
the topological structure of C∗ in terms of the category Rat(C∗M) of rational left
C∗-modules. In particular, we focus on the problem whether Rat(C∗M) is closed
under extensions. In torsion theoretic terms this raises the question of deciding when
Rat(C∗M) is a torsion theory or a localizing subcategory in C∗M, the category of
all left C∗-modules (the notion of localizing subcategory used here is as in [5], [19]).
This problem has been previously treated in [9], [11], and [18], where a coalgebra
satisfying this property is said to be a coalgebra having a torsion rat functor.

It was proved in [9, Lemma 2.3] (see also [12, Theorem 3.3]) that if C is right
semiperfect, then C has a torsion rat functor. Determining when an arbitrary coal-
gebra C has a torsion rat functor seems to be a difficult problem. However, there are
some classes of coalgebras where a characterization is possible. For C being almost
connected, i.e., the coradical C0 is finite dimensional (equivalently, Rat(C∗M) has a
finite number of types of simple objects), we prove that C has a torsion rat functor
if and only if C∗ is left almost noetherian, that is, every cofinite left ideal is finitely
generated, see Theorem 2.8. This result may be deduced by combining Lemma 2.10
and [8, Theorem 2.2.6]. We offer here a different approach by linking the notion of
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almost noetherian to the concept of gr-almost noetherian for a graded algebra. Let
gr(C∗) be the graded algebra associated to C∗ by considering the filtration on C∗

induced by the coradical filtration on C. The idea is to lift the property of C∗ being
left almost noetherian from gr(C∗) being left gr-almost noetherian. This is one of the
motivations to consider gr-almost noetherian algebras. This kind of rings are studied
in Section 1 in a general framework of graded rings but with an eye to the applications
for coalgebras. The basic properties of graded almost noetherian rings are developed,
observing that for suitable filtrations the property of being almost noetherian lifts
(Proposition 1.6) from the associated graded ring to the completion of the filtered
ring.

A sufficient condition for C to have a torsion rat functor is that every closed and
cofinite left ideal of C∗ is finitely generated, see [16, 2.5]. Such coalgebras are called
F-noetherian. In Section 2 we establish some results about F-noetherian coalgebras.
When C is a direct sum of almost connected coalgebras, C has a torsion rat functor
if and only if C is F-noetherian, cf. Theorem 2.8. Another class of F-noetherian
coalgebras consists of right semiperfect coalgebras, see Theorem 2.12. A necessary
condition to have a torsion rat functor is given. We prove that if C has a torsion rat
functor, then C is a locally finite coalgebra in the sense of [8]. The converse is not true
in general, although it holds when C is a direct sum of almost connected coalgebras
(in particular cocommutative), cf. Theorem 2.11. In this case being locally finite,
being F-noetherian, and having a torsion rat functor are equivalent notions for C.

In Section 3 we characterize when C∗ is left noetherian. This is equivalent to C
being almost connected and Rat(C∗M) being a stable torsion theory in C∗M, see
Theorem 3.2. This characterization is a consequence of the Artin-Rees property for
the Jacobson radical of C∗. The latter is perhaps an esthetically satisfying characte-
rization, blending the algebraic and topological ingredients of the theory in categorical
(torsion theoretic) phrasing. In this case we show that the homological dimension of
C may be computed from the homological dimension of C∗, Proposition 3.4.

1 Graded almost noetherian k-algebras

In the sequel k will denote a field and all vector spaces, algebras, coalgebras, etc,
unless otherwise stated, will be over k. This section is devoted to the study of graded
almost noetherian k-algebras. Although many of the results of this section are meant
to be applied in the coalgebra setting they may have independent interest.

Let R be a k-algebra. A left R-module M is called almost noetherian if every
cofinite submodule of M is finitely generated. Submodules, quotients, and extensions
of almost noetherian modules are almost noetherian. The algebra R is left almost

2



noetherian if its almost noetherian as a left module. We call R almost noetherian if it
is left and right almost noetherian. See [8, Section 1.1] for further details on almost
noetherian modules and algebras.

Let R = ⊕n≥0Rn be a positively graded k-algebra. A left graded R-module
M = ⊕n≥0Mn is said to be gr-almost noetherian if every cofinite graded submodule
of M is finitely generated. If RR is gr-almost noetherian, then R is called left gr-almost
noetherian.

Theorem 1.1 M is gr-almost noetherian if and only if M is almost noetherian.

Proof: Let N be a cofinite submodule of M . We may take a finite dimensional
vector space V such that N + V = M . There exists r0 ∈ IN such that V ⊆ M0 ⊕
M1 ⊕ ... ⊕Mr0 . Set L = M1 ⊕ ... ⊕Mr0 . Any element n ∈ N may be written as
n = nk1 + ... + nks where nki

is a non zero element in Nki
and k1 < ... < ks. Let N̄

denote the submodule of N generated by nks for all n ∈ N , i.e., N̄ is generated by the
homogeneous components of highest degree appearing in elements of N . From [14,
page 83], N̄ is a graded submodule of M . We check that N̄ + L = M . Let m ∈ M
with deg(m) = t > r0. We write m = x + y with x ∈ N, y ∈ V . Assume that xmax is
the component of highest degree of x. Since y ∈ L, m = xmax and so m ∈ N̄ .

On the other hand, M/N̄ ∼= L/(N̄ ∩L). Since N ∩Mi ⊂ N̄ for any i ≥ 0, we have
⊕r0

i=0(N ∩Mi) ⊆ N̄ ∩ L. There is an epimorphism

⊕r0
i=0(Mi/N ∩Mi) = L/(⊕n0

i=0(N ∩Mi))→ L/N̄ ∩ L.

Each Mi/(N ∩Mi) is finite dimensional because it is a submodule of M/N . Hence N̄
is cofinite in M . By the hypothesis, it is finitely generated. Set N̄ = Rx1 + ... + Rxq

where x1, ..., xq are homogeneous. We may find elements yi ∈ N such that xi is the
highest component of yi. Setting P = Ry1 + ... + Ryn, we have that P ⊆ N and
clearly P̄ = N̄ . By [14, Corollary II.2.4, page 85], P = N and thus N is finitely
generated. The other implication is obvious.

Proposition 1.2 If M is gr-almost noetherian, then M0 is a left almost noetherian
R0-module. In particular, if R is left gr-almost noetherian, then R0 is left almost
noetherian.

Proof: Let N0 be a cofinite R0-submodule of M0. The space N = N0⊕(
∑

i≥1 Mi)
is a cofinite graded R-submodule of M because M/N ∼= M0/N0. By the hypothesis,
N is finitely generated as R-module. Let N = Rx1 + ... + Rxt where x1, ..., xt are
homogeneous elements. There exists x1, ..., xp (p ≤ t) such that N0 = R0x1+...+R0xp

(R is positively graded). Hence N0 is finitely generated as R0-module.
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Corollary 1.3 Let R = ⊕n≥0Rn be a positively graded algebra such that RnR1 =
Rn+1 for any n ≥ 0. Assume that R0 is left almost noetherian and R1 is finitely
generated as R0-module. Then R is left almost noetherian.

Proof: From the hypothesis, Rn = Rn
1 for any n ≥ 0. Let I = ⊕i≥0Ii be a cofinite

left graded ideal of R. There exists n0 ∈ IN such that In = Rn for all n > n0. As
R/I = ⊕n0

i=0(Ri/Ii), Ii is cofinite in Ri. For any n ≥ 2, Rn = Rn
1 is almost noetherian

since R1 is finitely generated and R0 is left almost noetherian. Then Ii is finitely
generated as a left R0-module. From RRn0+1 = Rn0+1 ⊕ ...⊕Rn ⊕ ..., we get that I
is finitely generated as a left R-module. Therefore R is gr-almost noetherian and by
Theorem 1.1, R is left almost noetherian.

Corollary 1.4 Let R = R0{x1, ..., xn} be the free algebra on n variables with R0

being left almost noetherian. Then R is left almost noetherian. In particular, a
finitely generated algebra is left and right almost noetherian.

Proof: Just consider R with the natural grading and apply the foregoing result.
Note that quotients of left almost noetherian algebras are such.

For an ideal I of an algebra R, the Rees ring associated to I is the graded subring
of R[x] defined as R(I) = ⊕n≥0I

nxn where I0 = R.

Corollary 1.5 If R is left almost noetherian and I is a finitely generated left ideal,
then the Rees ring R(I) is left almost noetherian.

Proof: Straightforward from Corollary 1.3.

Let R be a filtered k-algebra, i.e., it contains a descending chain of k-subspaces

R = F0R ⊃ F1R ⊃ ... ⊃ FnR ⊃ ....

such that (FnR)(FmR) ⊆ Fn+mR for any n, m ≥ 0. One may associate to this
filtration the completion:

R̂ = lim
←−
i≥0

R/FiR,

and the graded k-algebra G(R) = ⊕i≥0FiR/Fi+1R, (see [14, Chapter D]).
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Proposition 1.6 If G(R) is left almost noetherian, then R̂ is left almost noetherian.

Proof: For any p ≥ 0 we define

FpR̂ = lim
−→
n≥p

FpR/FnR.

The family {FiR̂}i≥0 is a filtration on R̂ and R̂ is complete respect to this filtration.
Moreover, G(R̂) ∼= G(R) as graded rings. These facts allow us to assume that R is
complete. Let R − F ilt denote the category of left filtered R-modules. Let I be a
cofinite left ideal of R, and consider the exact sequence 0 → I → R → R/I → 0.
This sequence is strict exact in R−F ilt when considering on I and R/I the induced
filtrations {I ∩ FiR}i≥0 and {(I + FiR)/I}i≥0 respectively. From [14, Chapter D] we
have that the following sequence is exact in G(R)− gr ;

0→ G(I)→ G(R)→ G(R/I)→ 0.

Since I is cofinite in R, there is an i0 ∈ IN such that I + FiR = I + Fi+1R for
any i ≥ i0. Thus G(R/I)i = {0} for every i ≥ i0. On the other hand, for any
i ≥ i0, Fi(R/I)/Fi+1(R/I) ∼= (I +FiR)/(I +Fi+1R) = {0}. Hence G(R/I) is of finite
dimension and so G(I) is cofinite in G(R). By hypothesis, G(I) is finitely generated
as a left G(R)-module. The completeness of R combined with [14, Proposition IV.3,
Chapter D] yield that I is finitely generated as a left R-module.

Corollary 1.7 Let R be a k-algebra and I a two sided ideal such that I is finitely
generated as left ideal and R/I is left almost noetherian. Consider on R the I-adic
filtration. Then R̂ and G(R) are left almost noetherian.

Proof: Follows from Corollary 1.3 and Proposition 1.6.

2 Coalgebras having a torsion rat functor

For general facts on coalgebras and comodules we refer to [1], [4], or [20]. For a
coalgebra C its dual algebra C∗ is a topological vector space with the weak-* topology.
The closed subspaces of C∗ are the annihilators W⊥(C∗) of subspaces W of C. The
closure of a subspace U of C∗ in this topology, denoted by Ū , is U⊥(C)⊥(C∗). Finitely
generated left (or right) ideals of C∗ are closed, [8, Proposition 1.3.1 b)].

Let C∗M denote the category of left C∗-modules. It is well-known that the cate-
gory of right C-comodulesMC is isomorphic to Rat(C∗M), the subcategory of C∗M
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consisting of all rational left C∗-modules. Rat(C∗M) is closed under submodules,
quotients and arbitrary direct sums. In the sense of [19], it is an hereditary pretor-
sion class in C∗M. See loc. cit. for further detail on torsion classes. Recall from [19,
Proposition 4.2] that there is a bijective correspondence between hereditary pretorsion
classes (resp. torsion classes), left exact preradicals (resp. radicals) and left linear
topologies (resp. Gabriel filters). The left exact preradical associated to Rat(C∗M)
is the rational functor RatC(−) : C∗M → C∗M. Given M ∈ C∗M, RatC(M) is
the sum of all rational modules contained in M . The left linear topology FC on C∗

corresponding to Rat(C∗M) is the family of all closed (in the weak-* topology) and
cofinite left ideals of C∗. If I ∈ FC there is a finite dimensional left coideal W of C
such that I = W⊥(C∗). From the Fundamental Theorem of coalgebras is derived that
FC is a symmetric topology. This means that it contains a basis of two-sided ideals,
i.e., for every I ∈ FC there is a two-sided ideal J of C∗ such that J ⊆ I and J ∈ FC .
The category

Rat(C∗M) = {M ∈ C∗M : AnnC∗(m) ∈ FC ∀m ∈M} .

In this section we study when Rat(C∗M) is a torsion theory (also called localizing
subcategory) in C∗M, that is, when Rat(C∗M) is closed under extensions. Equiva-
lently, FC is a Gabriel filter, or RatC(−) is a radical, i.e., Rat(M/Rat(M)) = {0} for
all M ∈ C∗M.

Definition 2.1 A coalgebra C is said to have a torsion rat functor if RatC(−) is a
radical.

Some results concerning coalgebras with a torsion rat functor are contained in [9],
[11], [18], and [16]. Let us just recollect some properties:

Remark 2.2 i) If C is finite dimensional, then C has a torsion rat functor.
ii) If C has a torsion rat functor, then every subcoalgebra also has that property.
iii) The direct sum of a family of coalgebras has a torsion rat functor if and only

if each term has it.

As a consequence, a direct sum of finite dimensional coalgebras has a torsion
rat functor. In particular, cosemisimple coalgebras have a torsion rat functor. The
following sufficient condition to have a torsion rat functor was given in [16, 2.5, page
521].

Proposition 2.3 If every left ideal in FC is finitely generated, then C has a torsion
rat functor.
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Definition 2.4 A coalgebra C satisfying the hypothesis of Proposition 2.3 is called
F-noetherian.

Recall from [8] that a coalgebra C is called left strongly reflexive if C∗ is left
almost noetherian. A left strongly coreflexive coalgebra is clearly F-noetherian. By
[8, Theorem 3.3] the finite dual of a left almost noetherian algebra is left strongly
coreflexive. Then, the finite dual of a left almost noetherian algebra has a torsion
rat functor. In particular, since a finitely generated algebra A is almost noetherian
(Corollary 1.4), Ao has a torsion rat functor.

It is known that C being left strongly coreflexive implies that C is coreflexive, that
is, the canonical embedding λC : C → C∗o is surjective. The notion of F-noetherian
is just the additional hypothesis needed to have a converse.

Proposition 2.5 The following assertions about a coalgebra C are equivalent:
i) C is left strongly coreflexive.
ii) C is coreflexive and F-noetherian.
iii) C0 is coreflexive and C is F-noetherian.

Proof: i ⇒ ii) ⇒ iii) Obvious.
iii) ⇒ i) By [8, 1.1.8], it suffices to show that every cofinite maximal two-sided

ideal is finitely generated as left ideal. Let I be such an ideal. Since C0 is coreflexive,
in light of [8, Proposition 3.5.3], I is closed. By hypothesis, I is finitely generated as
a left ideal.

The following result establishes some basic properties of F-noetherian coalgebras.

Proposition 2.6 i)Subcoalgebras of F-noetherian coalgebras are F-noetherian.
ii) Let {Ci}i∈I be a family of coalgebras and C = ⊕i∈ICi. Then, C is F-noetherian

if and only if Ci is F-noetherian for all i ∈ I.

Proof: i) Let C be a F-noetherian coalgebra and let D be a subcoalgebra. The
inclusion map i : D → C induces a projection i∗ : C∗ → D∗. Given I ∈ FD, the left
ideal i∗−1(I) = i(I⊥(C))⊥(C∗) is closed and cofinite. By hypothesis, i∗−1(I) is finitely
generated, and from I = i∗i∗−1(I) it follows that I is finitely generated as a left ideal.

ii) See [18, Corollary 4.9]. If C is F-noetherian, then it follows from i) that Ci is
F-noetherian for all i ∈ I.

Conversely, let I be a closed cofinite left ideal of C∗ and W a finite dimensional
subspace of C such that I = W⊥(C∗). There are finitely many indexes i1, ..., in such
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that W ⊂ Ci1 ⊕ ...⊕Cin . Let j : Ci1 ⊕ ...⊕Cin → C be the inclusion map. Then we
have an exact sequence,

0 −→
∏

i6=i1,...,in

C∗
i −→ C∗ j∗−→ (⊕n

j=1Cij )
∗ −→ 0.

Since, the image i∗(I) and
∏

i6=i1,...,in C∗
i are finitely generated as C∗-modules, I is

finitely generated.

A coalgebra C is called almost connected if its coradical C0 is finite dimensional.
As an application of the results obtained in the first section, we next characterize
almost connected coalgebras having a torsion rat functor. We first need to recall
several facts on graded coalgebras.

For any coalgebra C let {Cn}n∈IN its coradical filtration. It is well-known that
C = ∪n∈INCn and ∆(Cn) ⊂

∑n
i=0 Ci ⊗ Cn−i. We may consider the graded coalgebra

associated to C,

gr(C) = C0 ⊕ (C1/C0)⊕ ...⊕ (Cn+1/Cn)⊕ ...

Recall that a coalgebra D is graded if D = ⊕n∈IND(n) where {D(n)}n≥0 is a family of
subspaces of D verifying that ∆(D(n)) ⊆

∑
i+j=n D(i) ⊗ D(j) and ε(D(n)) = {0} for

all n ≥ 0. Using the graded dual of D, we may associate a graded ring R = ⊕n≥0Rn

to D where Rn = {f ∈ D∗ : f(Di) = 0, i 6= n}. Clearly R is a subring of D∗ and
Rn
∼= (

∑
i6=n Di)⊥(D∗) ∼= D∗

(n).

The coradical filtration on C induces a filtration on C∗,

C∗ ⊃ C
⊥(C∗)
0 ⊃ C

⊥(C∗)
1 ⊃ ... ⊃ .... (1)

The two-sided ideal J = C
⊥(C∗)
0 is the Jacobson radical of C∗.

Proposition 2.7 Let C be a coalgebra and R the graded dual ring of gr(C). Denote
by gr(C∗) the graded ring associated to the filtration (1). Then,

i) gr(C∗) ∼= R as graded rings.
ii) C∗ is complete with respect to (1).

Proof: i) This may easily be checked.

ii) Since C = lim −→
n≥0

Cn,

C∗ = Homk(C, k) ∼= lim
←−
n≥0

C∗
n
∼= lim
←−
n≥0

C∗/C⊥(C∗)
n .
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Theorem 2.8 Let C be an almost connected coalgebra. The following assertions are
equivalent.

i) C has a torsion rat functor.
ii) J is finitely generated as a left (or right) ideal.
iii) C1 is finite dimensional.
iv) Each term Cn of the coradical filtration is finite dimensional.
v) C∗ is left (or right) almost noetherian.
vi) R is left (or right) almost noetherian.
vii) gr(C) has a torsion rat functor.

Proof: i) ⇒ iv) By hypothesis, J ∈ FC . Then C∗
0/J is a rational C∗-module.

Since Rat(C∗M) is closed under extensions, we obtain that C∗/Jn is also a rational
C∗-module. Hence Jn ∈ FC for all n ∈ IN . But C

⊥(C∗)
n = Jn+1 = Jn+1 and thus

C∗/Jn+1 ∼= C∗
n is finite dimensional for all n ∈ IN .

iv) ⇒ iii) Obvious.

iii) ⇒ ii) From C
⊥(C∗)
1 = J2 we obtain that C∗/J2 ∼= C∗

1 . Since C1 is finite
dimensional, it follows that J/J2 is also finite dimensional. Thus we can find a finite
dimensional vector space V such that J = J2 + V . This yields J = J2 + V , that
is, J2 + V is dense in J . By [17, Lemma 2.2.14], C∗V = J and thus J is finitely
generated as a left ideal.

ii) ⇒ vi) From the hypothesis Jn is finitely generated for all n ≥ 1. Consequently
Jn is closed. Then C

⊥(C∗)
n = Jn+1 = Jn+1. Hence

gr(C∗) ∼= C∗/J ⊕ J/J2 ⊕ ....

Proposition 2.7 i) yields R ∼= gr(C∗), and Corollary 1.3 implies that R is almost
noetherian.

vi) ⇒ v) Follows from Proposition 2.7 ii) and Proposition 1.6.
v) ⇒ i) Follows from Proposition 2.3.
vi) ⇒ vii) Let D = gr(C) and let R be its graded dual ring. Then D = ⊕n≥0D(n)

where D(n) = Cn/Cn−1. This graduation induces a filtration on D,

D(0) ⊂ D(0) ⊕D(1) ⊂ .... ⊂ D(0) ⊕D(1) ⊕ ....⊕D(n) ⊂ ...

which in turn yields a filtration on D∗ by letting FnD∗ = (D(0) ⊕D(1)....D(n))⊥(D∗)

for n ≥ 1 and F0D
∗ = D∗. From D = ∪n≥0(D(0) ⊕D(1)....D(n)) we get

D∗ ∼= lim
←−
n≥0

D∗/FnD∗,
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and thus D∗ is complete with respect to the filtration {FnD∗}n≥0. Let gr(D∗) be the
associated graded algebra. Since FnD∗/Fn+1D

∗ ∼= D∗
n
∼= (Cn/Cn−1)∗, gr(D∗) ∼= R.

Proposition 1.6 implies that D∗ is left almost noetherian. By Proposition 2.3, D has
a torsion rat functor.

vii) ⇒ iii) With notation as above, note that D is almost connected. Then
J = D

⊥(D∗)
0 is cofinite. Since D has a torsion rat functor, J2 is cofinite. But

J2 = (D⊥(D∗)
0 )2 ⊆ (D0 ⊕ D1)⊥(D∗). Hence (D0 ⊕ D1)⊥(D∗) is also cofinite. This

implies that D
⊥(D∗)
0 /(D0⊕D1)⊥(D∗) ∼= D∗

1 is finite dimensional, and from the equality
D1 = C1/C0, it follows that C1 is finite dimensional.

Remark 2.9 i) Part of this result, with a different formulation, was proved in [8,
Theorem 4.6]. The alternative proof offered here is an application of the graded
techniques developed in the first section.

ii) The characterization i) ⇔ iii) ⇔ iv) ⇔ vi) appears in [18, Theorem 4.6].

We provide a necessary condition for a coalgebra to have a torsion rat functor. We
recall from [8] that a coalgebra C is called locally finite if for any two finite dimensional
subspaces U, V of C, the wedge U ∧ V is finite dimensional. Equivalently, for any
subcoalgebra D, D ∧D is finite dimensional, [8, 2.2].

Lemma 2.10 Let C be a coalgebra. The following assertions are equivalent:
i) FC is closed under products.
ii) C is locally finite and any two finite dimensional left coideals U, V verify that

(U ∧ V )⊥(C∗) = U⊥(C∗)V ⊥(C∗).
Hence any coalgebra having a torsion rat functor satisfies ii).

Proof: Let D be a finite dimensional subcoalgebra of C. By hypothesis, there
is a finite dimensional subspace W of C such that D⊥(C∗)D⊥(C∗) = W⊥(C∗). Now
D ∧ D = (D⊥(C∗)D⊥(C∗))⊥(C) = W⊥(C∗)⊥(C) = W . Hence D ∧ D is of finite di-
mension. A similar argument shows that (U ∧ V )⊥(C∗) = U⊥(C∗)V ⊥(C∗) for any
finite dimensional left coideals U, V . Conversely, suppose now that I, J ∈ FC , then
I = U⊥(C∗), J = V ⊥(C∗) for some finite dimensional left coideals U, V of C. The
product IJ = U⊥(C∗)V ⊥(C∗) = (U ∧ V )⊥(C∗) and U ∧ V is finite dimensional since C
is locally finite. Hence IJ ∈ FC .

The other assertion follows from the fact that a Gabriel filter is closed under
products, [19, Lemma 5.3].
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It is not true in general that a locally finite coalgebra has a torsion rat functor.
An example of locally finite coalgebra C such that FC is not closed under products is
given in [17, Example 3.4]. However there are cases where both notions are equivalent.

Theorem 2.11 Let {Ci}i∈I be a family of almost connected coalgebras and C =
⊕i∈ICi. The following assertions are equivalent:

i) C has a torsion rat functor.
ii) C is locally finite.
iii) C is F-noetherian.

In particular, this characterization holds for cocommutative coalgebras.

Proof: i) ⇒ ii) and iii) ⇒ i) are known.
ii) ⇒ iii) Since being locally finite is an hereditary property ([8, 2.3.2]), every Ci

is locally finite. Then, the terms of the coradical filtration of Ci are finite dimensional.
By Theorem 2.8, Ci is F-noetherian for all i ∈ I. Proposition 2.6 ii) now applies.

Semiperfect coalgebras are another kind of coalgebras having a torsion rat functor.
We recall from [9] that a coalgebra C is right semiperfect if for each simple right
comodule S the injective hull E(S) in MC is finite dimensional. It was shown in [9,
Theorem 23] that any right semiperfect coalgebra has a torsion rat functor. Indeed,
it was proved in [12, Theorem 3.3] that a coalgebra is right semiperfect if and only if
the rational functor Rat(−) : C∗M→ C∗M is exact. If it is exact, then it is certainly
a radical.

For semiperfect coalgebras we also get the finiteness conditions on the Gabriel
filter. This, combined with Proposition 2.3, provides an alternative proof to [9, Theo-
rem 23]. In fact, semiperfect coalgebras may be characterized by a finiteness condition
on the Gabriel filter.

Theorem 2.12 The following assertions about a coalgebra C are equivalent:
i) C is right semiperfect.
ii) FC has a basis of principal left ideals generated by an idempotent.

If C is right semiperfect, then C is F-noetherian and locally finite. Consequently, C
has a torsion rat functor.

Proof: i) ⇒ ii) Let I ∈ FC and I ′ be a two-sided ideal such that I ′ ⊆ I and
I ′ ∈ FC . Let D be the finite dimensional subcoalgebra such that I ′ = D⊥(C∗). Now
D ⊆ E(D) = E(D0) and D0 is the direct sum of a finite number of simple right
D-comodules, [5, 1.3b]. By hypothesis E(D0) is finite dimensional. From [5, 1.5f],
E(D0) is a direct summand of C as right C-comodules, then E(D0) = eC for some
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idempotent e ∈ C∗, [3, Proposition 1.12]. The left ideal K = E(D0)⊥(C∗) is closed
and cofinite and K = (eC)⊥(C∗) = C∗e′ where e′ + e = ε.

ii) ⇒ i) Let S be a right simple C-comodule and D be a simple subcoalgebra such
that S is a D-comodule. We may take S to be a simple right coideal of C, [5, 1.3b].
Since E(S) ⊆ E(D), it suffices to show that E(D) is finite dimensional. The proof
will be complete once we prove that D is contained in a finite dimensional injective
comodule. Let I = D⊥(C∗). By hypothesis, we may find an idempotent e ∈ C∗ such
that C∗e ⊆ I and C∗e ∈ FC . We have that D = I⊥(C) ⊆ (C∗e)⊥(C) = eC and eC is
finite dimensional. Since eC is a direct summand of C as a right C-comodule, eC is
injective.

Remark 2.13 In view of Theorems 2.8, 2.11, and 2.12, one could conjecture that a
coalgebra C has a torsion rat functor if and only if C is F-noetherian.

We show that the property of having a torsion rat functor is invariant under
so-called strong equivalences (see [10] for details on strong equivalences). Assume
that C and D are strongly equivalent coalgebras. By [10, Theorem 5], there is
an equivalence F : C∗M−→←−D∗M : G such that F (Rat(C∗M)) ⊆ Rat(D∗M) and
G(Rat(D∗M)) ⊆ Rat(C∗M). It is clear that Rat(C∗M) is closed under extensions
if and only if Rat(D∗M) is so. Then, C has a torsion rat functor if and only if D
has too. In particular, if C has a torsion rat functor, then the comatrix coalgebra of
order n over C, M c(n, C), has too.

3 The noetherian case. The Artin-Rees property

In this section we characterize when the dual algebra of a coalgebra is noetherian in
terms of the stability of Rat(C∗M).

Proposition 3.1 Assume that C∗ is a left noetherian algebra. Then J = C
⊥(C∗)
0 =

Rad(C∗) has the Artin-Rees property for left ideals, that is, for every left ideal K of
C∗ and any n ∈ IN , there is h(n) ∈ IN such that Jh(n) ∩K ⊆ JnK.

Proof: By hypothesis, Jn is finitely generated as a left ideal. Since K is left
finitely generated, JnK is finitely generated as a left ideal. Hence it is closed in C∗.
It is not difficult to see that C is almost connected because C∗ is left noetherian.
Theorem 2.8 yields that Jn is cofinite and thus JnK is cofinite in K (see [8, Lemma
1.1.1]). As JnK is closed, JnK = ∩∞s=1(J

nK + Js). Then,

JnK = JnK ∩K = ∩∞s=1(J
nK + Js) ∩K = ∩∞s=1(J

nK + Js ∩K).
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This implies ∩∞s=1(J
nK + Js ∩ K)/JnK = {0} in K/JnK. Since K/JnK is finite

dimensional, there is an h(n) ∈ IN such that (JnK + (Jh(n) ∩ K))/JnK = {0}.
Therefore Jh(n) ∩K ⊆ JnK.

Recall that Rat(C∗M) is said to be stable if it is closed under injective hulls.
Recall also that an injective left A-module M is called Σ-injective if every direct sum
M (Γ) is injective for any non-empty set Γ.

Theorem 3.2 The following assertions on a coalgebra C are equivalent:
i) C∗ is left noetherian.
ii) C is almost connected and Rat(C∗M) is a stable localizing subcategory.
iii) C is almost connected and Rat(C∗M) is closed under injective hulls.

Proof: i) ⇒ ii) We already observed that C is almost connected when C∗ is left
noetherian. That Rat(C∗M) is a localizing subcategory follows from Theorem 2.8.
It was proved there that FC is generated by the powers Jn, n ≥ 1. Proposition 3.1
combined with [13, Proposition 8.5.3] yields that Rat(C∗M) is stable under injective
hulls.

ii) ⇒ iii) Obvious.

iii)⇒ i) For any non empty set Γ, C∗C
(Γ) is injective in Rat(C∗M). By hypothesis,

C∗C
(Γ) is injective in C∗M. Therefore C∗C is Σ-injective. As C0 is finite dimensional

and C∗/C
⊥(C∗)
0

∼= C∗
0 , we obtain that C∗

0 ∈ Rat(C∗M). The equality J = C
⊥(C∗)
0

yields that every simple C∗-module is rational. It is known that C contains all simple
rational C∗-modules. Hence C∗C is a Σ-injective cogenerator in C∗M. Thus C∗ is a
left noetherian ring.

Theorem 3.3 Let C be an almost connected cocommutative coalgebra and {Cn}n∈IN

its coradical filtration. Then:
i) C is almost noetherian if and only if C∗ is noetherian.
ii) The formal series in k[[x]],

PC(x) = dim(C0) +
∞∑

n=0

(dim(Cn)/dim(Cn−1))xn,

is a rational function, i.e., a quotient of two polynomials.
iii) For a large enough n, dim(Cn) is a polynomial function of n with degree at

most s, where s = dim(C1/C0).
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Proof: i) It is clear that if C∗ is noetherian, then C is almost noetherian. By the
proof of Theorem 2.8,

gr(C∗) ∼= C∗/J ⊕ J/J2 ⊕ ...

Since C∗/J and J/J2 are finite dimensional, gr(C∗) is a commutative noetherian
algebra. On the other hand, as C∗ is complete in the J-adic topology, it follows that
C∗ is noetherian, see [14].

ii) and iii) follow by applying Proposition 2.7 and [2, Theorems 11.1 and 11.4].

We finish this paper by showing that the global dimension of a coalgebra C co-
incides with the left global dimension of C∗ whenever the latter is left noetherian.
Given M ∈ MC , the injective dimension of M , denoted by inj.dim.(M), may be
defined as the minimal length of the injective resolution

0→M → Q0 → Q1 → ...→ Qn → ...

where Qi are injective objects in MC for all i ≥ 0. The right global dimension of C
is defined as r.gl.dim(C) = sup{inj.dim(M) : M ∈MC}. The left global dimension,
l.gl.dim(C), may be similarly defined. It was proved in [15] that both dimensions are
equal. We will simply write gl.dim(C).

Proposition 3.4 Assume that C∗ is left noetherian. Then gl.dim(C) = l.gl.dim(C∗).

Proof: From [13, Corollary 8.3.24], l.gl.dim(C∗) = inj.dim(C∗/J). Since C is
almost connected, C∗/J ∈ Rat(C∗M). Theorem 3.2 now applies.
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[4] S. Dăscălescu, C. Năstăsescu, and S. Raianu, Hopf Algebras. An Introduction.
Marcel-Dekker, New-York, 2000.

[5] P. Gabriel, Des Catégories Abeliennes. Bull. Soc. Math. France 90 (1962), 323-
448.
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